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Abstract. This paper concerns curves on noncommutative schemes, hereafter called quasi-schemes.
A quasi-scheme X is identified with the category ModX of quasi-coherent sheaves on it. Let X

be a quasi-scheme having a regularly embedded hypersurface Y . Let C be a curve on X which is
in ‘good position’ with respect to Y (see Definition 5.1) – this definition includes a requirement
that X be far from commutative in a certain sense. Then C is isomorphic to V1n, where n is the
number of points of intersection of C with Y . Here V1n, or rather ModV1n, is the quotient category
GrModk[x1, . . . , xn]/{Kdim ! n−2} of Zn-graded modules over the commutative polynomial ring,
modulo the subcategory of modules having Krull dimension ! n − 2. This is a hereditary category
which behaves rather like ModP1, the category of quasi-coherent sheaves on P1.

Mathematics Subject Classifications (1991): 16W50, 16E10, 16E70.
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0. Introduction

There are several motivations for this paper, one of which is suggested by the title.
Noncommutative algebraic geometry has not yet developed a conceptual frame-

work which allows one to say, for example, that a curve in one space (quasi-
scheme) is isomorphic to a curve in another space. This gap is particularly apparent
when one considers line modules. One wishes to think of line modules as lines, and
then to decide whether the lines in one quantum projective space are isomorphic
to those in another. There are at least two reasons this has not been done: first, it
is unclear how to define a morphism between schemes; second a line module is a
single module whereas a space (quasi-scheme) is an Abelian category (Definition
1.1). This paper is concerned with the second issue. We can avoid the first issue
since our concern is to show that certain pairs of quasi-schemes are isomorphic,
and it is clear that isomorphism should be defined in terms of equivalence of
categories. The following simple question illustrates the problems surrounding the
second issue. Let R be a ring with a right ideal I . How should we associate to R/I
a full Abelian subcategory of ModR, which is a substitute for ModR/I which only
exists when I is a two-sided ideal? If one has a sound recipe for producing such a
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312 S. PAUL SMITH AND JAMES J. ZHANG

category, one can then compare R/I with S/J , where J is a right ideal in another
ring S, by comparing the categories ‘ModR/I ’ and ‘ModS/J ’.
We address this problem under some hypotheses which, although rather special,

cover several important examples of current interest. The situation we consider is
that of a quasi-scheme X having a sub-quasischeme Y sitting as a regularly embed-
ded hypersurface in X (see Definitions 2.1 and 4.1). Thus we have a Grothendieck
category ModX, which we think of as quasi-coherent sheaves on X, and a full
subcategory ModY which we think of as the quasi-coherent sheaves on the hyper-
surface Y . In several important applications Y is commutative, by which we mean
that ModY is equivalent to the category of quasi-coherent sheaves on a commu-
tative scheme. We define a certain type of X-module called a curve module, and
associate to it a subcategory ModC of ModX. ModC should be thought of as the
quasi-coherent sheaves on the curve of which C is the structure sheaf or coordinate
ring. If C is in general position with respect to Y (Definition 5.1), then we are able
to give a detailed description of ModC. It is similar to the category of coherent
sheaves on P1; for example, it is hereditary, meaning that Ext2(−,−) ≡ 0; every
Noetherian object in it is a direct sum of line bundles and uniserial modules of finite
length; its Picard group is Zn, where n is the number of points where C meets Y .
This description is used to show that ModC is isomorphic to a certain quotient
category of the graded modules over the n-dimensional commutative polynomial
ring graded by Zn. Thus, ModC is a very special category, and it follows that many
different quasi-schemes may contain isomorphic curves.
The notion of general position referred to in the previous paragraph contains

within it a requirement that X be far from the commutative case. Thus our results
say nothing about a quasi-scheme which arises from a ring which is a finite module
over its center.
Section 7 shows that the results apply to the enveloping algebra of the two-

dimensional non-Abelian Lie algebra; the quantum affine plane kq[x, y] with rela-
tion yx = qxy; the quantum P2’s of Artin, Tate, and Van den Bergh; the quantum
quadrics in the Sklyanin P3; the quantum P3’s investigated by Vancliff [23] arising
from 2×2 quantum matrices; and more. Each of these quasi-schemes has a (homo-
geneous) coordinate ring containing a normal, regular, nonunit and the ‘zero locus’
of this element is a regularly embedded hypersurface. Thus, each of these spaces
contains curves isomorphic to curves lying in the other spaces.
The following simple example illustrates our results. Let A = kq[x, y] with

defining relation yx = qxy, and 0 $= q ∈ k is not a root of 1. Let C be the
right A-module A/(y + f )A where f ∈ k[x] has degree n − 1. Write f as a
product of linear factors, say f = a

∏n−1
i=1 (x − ri). We say C is in general position

if the elements qlri are different for different (l, i). If we think of C as a curve
in quantum affine 2-space, then the general position condition says that C meets
the x- and y-axes transversally; recall that the points in this quantum plane are
the points on the x- and y-axes. Given a critical module M with respect to some
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dimension function, we define the subcategory C(M) ‘generated by M’ to be the
smallest full subcategory of ModA satisfying the following conditions:

(1) if N is critical andM and N have the same injective hull, then N ∈ C(M);
(2) if L ∈ C(M), then submodules and quotient modules of L are in C(M);
(3) C(M) is closed under direct sums.

We prove that ifC = A/(y+f )A is in general position, then there is an equivalence
of categories

C(C) ∼= V1
n := GrModZnk[x1, . . . , xn]/(Kdim ! n − 2),

where k[x1, . . . , xn] is the commutative polynomial ring graded by Zn in the ob-
vious way. It is easy to check that C has exactly n simple quotient modules corre-
sponding to the n simple quotients of C =: OV1n .
If M is a module over a Noetherian ring R satisfying a polynomial identity,

then C(M) = Mod(R/AnnM) because R/AnnM embeds in a finite direct sum of
copies ofM.
The applications of this paper to line modules in quantum projective spaces

explain to some extent the fact that the lattice of submodules which are again line
modules is often isomorphic to Nn (n = 3 for the quantum P2’s in [3], n = 2 for
the four-dimensional Sklyanin algebra, etc.).
Although the word curve appears throughout this paper, we do not have a de-

finition of a noncommutative curve with which we are happy. We do know many
examples which should be included in any reasonable definition, but the boundary
of the definition will not become clear until a greater variety of examples has been
examined.

1. Quasi-Schemes

In this section k denotes a commutative ring. Later on k will denote an algebraically
closed field. Modules will always be right modules, and the category of right
modules over a ring R is denoted ModR.
We will adopt the language and framework set out by Van den Bergh in [27].
To avoid set theoretic problems we work in a fixed universe. Sets belonging to

the universe are called small, all Hom-sets in a category are required to be small. A
small category is one in which the objects form a small set. All index sets for limits
or colimits are required to be small. We will use the phrase ‘direct limit’ only for a
colimit indexed by a directed set.
Recall that aGrothendieck category is an Abelian category which is co-complete

(i.e., has all colimits), has exact direct limits, and has a set of generators. If in
addition it has a set of Noetherian generators it is said to be locally Noetherian. A
Grothendieck category has enough injectives [11, Théorème 1.10.1], and even has
injective envelopes [8]. If T is a localizing subcategory of a Grothendieck category
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C, then the quotient category C/T is again a Grothendieck category [16, Corollary
4.6.2]. A Grothendieck category is complete.

DEFINITION 1.1 ([17, 27]). A quasi-schemeX is a Grothendieck category,ModX.
Objects in ModX are called X-modules. We write modX for the full subcategory
of Noetherian modules. We say X is commutative if ModX is equivalent to the
category of quasi-coherent sheaves on a scheme in the sense of Grothendieck.

Sometimes it is useful to specify a distinguished X-module called a structure
sheaf, and usually denoted by OX. It is also natural to insist that OX be large in
some suitable sense. For example, one might ask that as s runs through all auto-
equivalences of ModX, the objects sOX form a generating set for modX. The
structure sheaf OC of the curves C which we study in this paper are large in this
sense.
Notice thatX = ModX; we tend to use the letter X alone when we wish to think

of X as a geometric object.
The next definition isolates an important subclass of Grothendieck categories;

one property of these is that they have all limits.

DEFINITION 1.2. Let C be a k-linear Abelian category. We define the category

Lex(Cop,Modk) := left exact contravariant k-linear functors C → Modk.

The morphisms are the natural transformations. We view C as a full subcategory
of Lex(Cop,Modk) through the Yoneda embedding U (→ HomC(−, U).

PROPOSITION 1.3 ([9, Chapitre II]). LetC be a small Abelian category, and write
C = Lex(Cop,ModZ). Then C has the following properties:

(1) C is a Grothendieck category;
(2) the inclusion C → C is full, faithful, and exact;
(3) every object in C is a direct limit of objects in C;
(4) if C is Noetherian, then

(a) an object in C is injective if and only if it is an exact functor;
(b) every Noetherian object in C belongs to C;
(c) every object in C is the direct limit of its Noetherian subobjects.

The hypothesis that C is small ensures that the family of generators HomC(−, U)
for Lex(Cop,ModZ) is a small set. There is a version of the previous result for
k-linear Abelian categories.
The two prototypical examples of quasi-schemes are the usual commutative

schemes, and ModR, where R is a ring which need not be commutative. The next
example gives some important examples.

EXAMPLE 1.4. Let A be a k-algebra graded by a group G. The category of G-
graded A-modules is denoted GrModA, or GrModGA. Since GrModGA is a
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Grothendieck category it is a quasi-scheme. Let Tors be a localizing subcategory of
GrModGA. By [16, 4.6.2], the quotient GrModGA/Tors is a Grothendieck category,
hence a quasi-scheme.
If A is right Noetherian, the full subcategory of modules whose finitely gener-

ated submodules have Krull dimension ! l is a localizing subcategory, so modding
out such a subcategory gives another quasi-scheme. This is our basic example of a
quasi-scheme.
If the group G is trivial, and ! = −1, this quotient category is ModA, which we

will sometimes call SpecA. If G = Z, and ! = 0, we sometimes call this quotient
category TailsA.

The notion of Krull dimension can be defined in any Abelian category C. First
the objects of Krull dimension ! 0 are the direct limits of Artinian modules. These
form a Serre subcategory, say C0, so the quotient category C/C0 exists; the objects
in C which are not in C0, but whose image is in (C/C0)0 are said to have Krull
dimension! 1. One keeps going in the obvious way. A Noetherian 1-critical object
in an Abelian category is a non-Artinian object, all of whose proper quotients are
Artinian.

DEFINITION 1.5. A full subcategory E of an Abelian category D is closed if it is
closed under subquotients, and the inclusion functor has a right adjoint. A closed
subcategory E ⊂ D is biclosed [27] if it is closed, and the inclusion functor has a
left adjoint. We write i∗: E → D for the inclusion, and write i! and i∗ for the right
and left adjoints respectively.

If E is closed in D, then i∗ is exact.

LEMMA 1.6. Let D be a k-linear Abelian category, and let E be a full subcategory
closed under subquotients and direct sums.

(1) If D is Noetherian, or locally Noetherian, then E is closed.
(2) If D is Noetherian, then Lex(Eop,Modk) is closed in Lex(Dop,Modk).
(3) If E is closed in D, and D has enough injectives, so does E.
(4) If D is Grothendieck, then E is closed [27, Proposition 3.4.3].
(5) If D is Grothendieck, so is E.
(6) If D is locally Noetherian, so is E.

Proof. (1) An object M in D has a largest subobject belonging to E. To see this,
ifM has subobjects Ui belonging to E, then

⊕
finiteUi belongs to E, so its image in

M belongs to E; ifM is Noetherian, this image stabilizes as the finite set increases,
so all the Ui are contained in a single subobject ofM belonging to E; if D is locally
Noetherian, then the direct sum of all the Ui’s is in E, and the image of that in M
is the largest subobject ofM belonging to E.
The adjoint functor assigns to an object of D its largest subobject belonging to

E, and assigns to a morphism its restriction to these subobjects; if f : M → N is a
morphism in D, and U ⊂ M belongs to E, so does f (U).
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316 S. PAUL SMITH AND JAMES J. ZHANG

(2) First we show that Ē embeds in D̄. Let E′ be the full subcategory of D̄
consisting of those objects all of whose Noetherian subobjects belong to E. Then E′

satisfies Ab5, so is locally Noetherian. But every locally Noetherian category is the
completion of its full subcategory of Noetherian objects [9, Théorème 1, p. 356],
so E′ is equivalent to Ē. Thus, Ē may be viewed as a full subcategory of D̄. It is
straightforward to show that it is a closed subcategory.
(3) A right adjoint to an exact functor sends injectives to injectives, so if M is

in E with injective envelope I in D, the adjoint functor sends I to an injective in E
containing M.
(5) By [27, Proposition 3.4.3.1], E has direct limits. Since the inclusion i∗: E →

D is a left adjoint, it commutes with direct limits; so E has exact direct limits. Since
i! is right exact, it sends a set of generators in D to a set of generators in E. Hence,
E is Grothendieck.

A locally Noetherian category is cocomplete by definition, and is also complete
[9, p. 358]. Therefore a closed subcategory of a locally Noetherian category has
small products; but the product in the subcategory need not equal the product in
the larger category. Thus the inclusion functor need not preserve products; it will
preserve products if and only if the subcategory is biclosed.

2. Subschemes

DEFINITION 2.1. Let X be a quasi-scheme. A (bi)closed subscheme Y ⊂ X
is a (bi)closed subcategory ModY ⊂ ModX. If we write i: Y → X to indicate
this, we write i∗: ModY → ModX for the inclusion functor. We call i∗ the direct
image functor, its left adjoint i∗ the inverse image functor, and its right adjoint i!
the support functor. We call i!M the part ofM supported on Y .

Remark 2.2. Let Y be a biclosed subscheme ofX. Then the direct image functor
i∗ is exact, and

(1) i∗ is right exact because it is a left adjoint (similarly, i! is left exact);
(2) because i∗ is a full embedding it follows, say from the Yoneda embedding, that

the adjunctions i∗i∗ → idY and idY → i!i∗ are natural equivalences;
(3) because ModY is closed under subquotients, if M is an X-module, the ad-

junction morphisms M → i∗i∗M and i∗i!M → M are epic and monic,
respectively;

(4) if N is an simple Y -module, then it is a simple X-module (because ModY is
closed under submodules and quotients in ModX);

(5) if Y is a closed subscheme of X, then the Krull dimension of a Y -module is
independent of whether it is viewed as an object in ModX or ModY .

If ϕ: R → S is a ring homomorphism, there are functors

• f ∗: ModR → ModS defined by f ∗ = S ⊗R −,
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• the restriction functor f∗: ModS → ModR, namely f∗ = RS ⊗S − =
HomS(SR,−), and

• f !: ModR → ModS defined by f ! = HomR(SS,−).

Both (f ∗, f∗) and (f∗, f !) are adjoint pairs. If ϕ is surjective, then f∗: ModS →
ModR is a biclosed subscheme.
The following result is due to Rosenberg [18, Example 3.1] and [19, Proposi-

tion 6.4.1, p. 127].

PROPOSITION 2.3. Let R be a ring, and C a biclosed subcategory of ModR.
Write i∗: C → ModR for the inclusion. Define S = HomC(i

∗R, i∗R). Then the
functor HomC(i

∗R,−): C → ModS is an equivalence of categories, the canonical
ring homomorphism ϕ: R → S induced by i∗ is surjective, and ϕ∗ ∼= i∗, and
ϕ∗ ∼= i∗.

Proof. Since i∗ is a left adjoint it is right exact, so sends progenerators to pro-
generators, whence i∗R is a progenerator in C. Thus C is a module category, and
the rest of the proof is straightforward.

PROPOSITION 2.4. Let i: Y → X be a closed subscheme. Let P ∈ ModY and
Q ∈ ModX. There is a Grothendieck spectral sequence

E
pq
2 = ExtpY (P,Rqi!Q) ⇒p ExtnX(i∗P,Q).

Proof. Let F = HomY (P,−). A right adjoint to an exact functor preserves
injectives so, if E is injective in ModX, i!E is injective in ModY . Thus i! is right
acyclic for F . Hence there is a third quadrant Grothendieck spectral sequence

(RpF)(Rqi!)(Q) ⇒ Rn(F ◦ i!)(Q).

But F ◦ i! = HomY (P,−) ◦ i! ∼= HomX(i∗P,−), thus giving the result.

3. Some Examples

NOTATION. We will consider objects graded by the group Zn. We fix a basis

ε1 = (1, 0, . . . , 0), . . . , εn = (0, . . . , 0, 1).

We also define ε := ε1 + · · · + εn. If i ∈ Zn we write i = (i1, . . . , in). We define a
partial ordering i " j if is " js for all s. We define |i| = i1 + · · · + in.

EXAMPLE 3.1. Let S = k[X1, . . . , Xn] be the commutative polynomial ring
graded by Zn with degXs = εs . Then V!

n := GrModS/{Kdim ! n − ! − 1} is
a quasi-scheme with Krull dimension !. Let π : GrModS → V!

n be the quotient
functor. We view V1

n as a noncommutative curve, and V2
n as a noncommutative

surface. The ‘line bundles’ on V!
n are {L(i) := πS(i) | i ∈ Zn}, where S(i) is

the shift of S, namely S(i)j = Si+j . There is a monomorphism L(i) → L(j)
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whenever i ! j . The ‘points’ of V1
n are the objects ps = π(S/(Xs)) for s =

1, . . . , n, and their shifts.

The examples V1
n play a central role in this paper: we will show that many

noncommutative surfaces contain curves which are isomorphic to V1
n. The results

suggest that when the surface is far from the commutative case (for example, it does
not have a homogeneous coordinate ring which satisfies a polynomial identity)
most curves on the surface are isomorphic to V1

n for some n. In particular, even
when a noncommutative ring is not graded its module category may contain sub-
categories which are equivalent to (a quotient category of) the category of graded
modules over an algebra graded by an Abelian group of large rank.
Section 8 gives more information about V1

n, emphasizing its similarity to P1.

DEFINITION 3.2. Let X be a quasi-scheme. The cohomological dimension of
an X-module M is cdM := max{d | ExtdX(M,N) $= 0 for some N}. The global
dimension ofX is gldimX := max{cdM | M is an X-module}. IfX has a structure
sheaf OX, the cohomological dimension of X is cdX := cdOX.

DEFINITION 3.3. An exact dimension function on X is a function ∂: ModX −
{0} → Z such that whenever 0 → L → M → N → 0 is exact, ∂M =
max{∂L, ∂N}. A module M is ∂-pure if ∂L = ∂M for all nonzero submodules
L of M. An injective resolution 0 → M → I 0 → I 1 → · · · of an X-module is
pure if ∂I n = ∂M − n for 0 ! n ! ∂M and ∂I n = 0 for n > ∂M.

Krull dimension, Kdim, in the sense of Gabriel and Rentschler is exact and fi-
nitely partitive and Gelfand–Kirillov dimension, GKdim, is often exact and finitely
partitive.

PROPOSITION 3.4. Let X be a Noetherian quasi-scheme with structure sheaf
OX. Suppose that

• S = {sj } is a set of auto-equivalences ofX such that {sjOX} generates ModX,
• the minimal injective resolution of OX is pure with respect to an exact dimen-
sion function ∂ ,

• ∂ is invariant with respect to all sj ,
• every indecomposable injective is pure with respect to ∂ .

Suppose that 0 ! ! ! gldimX < ∞. Let T be the full subcategory of ModX con-
sisting of all modules M such that ∂M ! ∂OX − ! − 1. Let π : ModX → ModX/T
be the quotient functor, and define ModZ = ModX/T. Then Z is a quasi-scheme
with gldimZ = !. Furthermore, if ∂ denotes Krull dimension, then KdimZ = !.

Remark 3.5. For many rings R, if ModX is a suitable quotient category of
ModR and OX is the image of R, then the existence of a pure resolution for OX im-
plies that every indecomposable injective is ∂-pure because every indecomposable
injective appears in the minimal resolution of OX (see [2]).
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Proof. Since indecomposable injectives are ∂-pure, π sends injectives to in-
jectives [16, Corollary 5.4, p. 182]. Therefore, applying π to a minimal injective
resolution in ModX yields an injective resolution in ModX/T of length no more
than gldimX. Hence gldimZ ! gldimX. Since ∂ is sj -invariant, sj preserves T,
so descends to an auto-equivalence of Z. Since ModX is generated by the sjOX,
ModZ is generated by the sjOZ, where OZ = πOX. Applying HomZ(M,−) to a
short exact sequence 0 → L → ⊕

sjOZ → N → 0, we see that

cdM = max{i | ExtiZ(M, sjOZ) $= 0 for some j}.
But the minimal injective resolution of OX and, hence, of each sjOX, is ∂-pure, so
sjOZ has an injective resolution of length !. Thus cdM ! !. IfM is a Noetherian
submodule of the last term in the minimal injective resolution of OZ, then
Ext!Z(M,OZ) $= 0, whence cdM = !.

COROLLARY 3.6. The Krull and global dimensions of V!
n equal !.

Proof. Apply Proposition 3.4 with ModX being the category of Zn-graded mod-
ules over the polynomial ring S = k[X1, . . . , Xn]. The set of shifts S(i), i ∈ Zn,
generates ModX. Krull dimension is invariant with respect to the shifts (i). The
minimal injective resolution of S is known to be pure with respect to Krull dimen-
sion (this property holds for commutative Gorenstein rings). It follows that V!

n has
Krull dimension and global dimension !.

Some of the terminology in the statement of the next result is explained in its
proof.

PROPOSITION 3.7. LetL be the hyperplane inV!
n defined by the equationXn = 0.

The open complement to L is isomorphic to V!
n−1.

Proof. Let S = k[X1, . . . , Xn] be graded as in Example 3.1 by the group
G = 〈ε1, . . . , εn〉 ∼= Zn. Let H be the subgroup of G generated by ε1, . . . , εn−1.
The inclusion S → S[X−1

n ] induces a functor GrModGS → GrModGS[X−1
n ], and,

hence, a functor between the quotient categories which kills the modules of Krull
dimension ! n − ! − 1. The quotient category of GrModGS[X−1

n ] is the category
corresponding to the open complement of L in V!

n.
The proof of the proposition is analogous to the proof for strongly graded rings.

That is, if the subalgebra B = k[X1, . . . , Xn−1] of S is given the inherited H -
grading, then there is an equivalence of categories GrModGS[X−1

n ] → GrModHB
defined by sending a module M to MH := ∑

h∈H Mh; the inverse is defined by
sending an H -graded B-module N to B[Xn,X

−1
n ] ⊗B N with the tensor product

grading.

Under any reasonable definitions, the previous result says that V1
n−1 is an open

subscheme of V1
n.
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4. Regularly Embedded Hypersurfaces

DEFINITION 4.1. A regularly embedded hypersurface in a quasi-scheme X is
a biclosed subscheme, say i: Y → X, for which there is an autoequivalence
σ : ModY → ModY and a natural equivalence of functors σ ◦ R1i! ∼= i∗.

If X is commutative, this is compatible with the usual terminology [7, p. 437];
in that case σ is given by tensoring with the conormal bundle (see Theorem 4.3).
Because i∗ is a left adjoint, it is right exact, whence R2i! = 0; this is saying that
Y has codimension one in X, and the existence of σ expresses the regularity of the
embedding.
If P ∈ ModY , we will often write P σ rather than σ (P ); thus P σ−1 ∼= R1i!P . If

Y is a commutative scheme then σ is an automorphism of Y as a scheme. If X is
also commutative, then σ acts as the identity on the points of Y .
The five term exact sequence arising from the spectral sequence in Proposi-

tion 2.4 is

0 → Ext1Y (P, i!Q) → Ext1X(i∗P,Q) → HomY (P,R1i!Q) (4.1)
→ Ext2Y (P, i!Q) → Ext2X(i∗P,Q).

When Y is a regularly embedded hypersurface R2i! = 0, so the E2 page of the
spectral sequence in Proposition 2.4 has only two nonzero rows, and the five term
sequence continues to a long exact sequence

· · · → Ext2X(i∗P,Q) → Ext1Y (P,R1i!Q) (4.2)
→ Ext3Y (P, i!Q) → Ext3X(i∗P,Q) → Ext2Y (P,R1i!Q) → · · · .

Rees’ Lemma [20, Theorem 9.37] can be obtained from the next result by tak-
ing X = ModR and Y = ModR/(u), where u is a normal regular element in R
(Theorem 4.3 shows that Y is a regularly embedded hypersurface).

LEMMA 4.2. Let Y be a regularly embedded hypersurface in X. Let P ∈ ModY ,
andQ ∈ ModX. If i!Q = 0, then ExtmY (P σ , i∗Q) ∼= Extm+1

X (i∗P,Q) for allm " 0.
Proof. Since i!Q = 0, every third term in the long exact sequence (4.2) is

zero, thus giving isomorphisms ExtmY (P,R1i!Q) ∼= Extm+1
X (i∗P,Q) for all m " 0.

Applying the auto-equivalence σ to the Y -modules on the left-hand side gives the
result.

THEOREM 4.3. Let R be a ring having an invertible ideal I $= R, i.e. I is a two-
sided ideal and there is an R-R-bimodule I−1 such that I ⊗R I−1 ∼= I−1⊗R I ∼= R
as R-R-bimodules. Then ModR/I is a regularly embedded hypersurface in ModR,
and the auto-equivalence is given by σ = − ⊗R/I I/I 2.

Proof. Let i∗: ModR/I → ModR be the restriction of scalars functor, and write
i∗ and i! for its left and right adjoints. We will show that there is a natural isomor-
phism Ext1R(R/I,M) ⊗R/I I/I 2 ∼= M ⊗R R/I of right R/I -modules wheneverM
is a right R-module.
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The projective resolution 0 → I → R → R/I → 0 is a complex of R-
bimodules, so Ext1R(R/I,M) is isomorphic as a right R-module to the cokernel of
the natural map HomR(R,M) → HomR(I,M) of right R-modules. Since I−1 has
a bimodule structure, this cokernel is isomorphic to the cokernel of the natural right
R-module homomorphism M ⊗ R → M ⊗R I−1. This cokernel is isomorphic to
M ⊗R (I−1/R) as a right R-module. Hence, to prove the result we need to show
that (I−1/R) ⊗R/I (I/I 2) ∼= R/I as an R-R-bimodule. We can replace ⊗R/I by
⊗R. Since I/I 2 ∼= I ⊗ R/I as an R-R-bimodule, we must show that (I−1/R) ⊗R

I ⊗R R/I is isomorphic to R/I as R-R-bimodules.
Because I is projective as a right R-module, applying I ⊗R − to the exact

sequence 0 → R → I−1 → I−1/R → 0 of R-R-bimodules yields an exact
sequence 0 → I → I−1 ⊗R I → (I−1/R) ⊗ I → 0 of R-R-bimodules. But
I−1 ⊗R I ∼= R, so (I−1/R) ⊗ I ∼= R/I .

We also note that σ is the restriction of the auto-equivalence τ = I ⊗R − on X;
that is, σ ∼= i∗τ i∗ ∼= i!τ i∗.
It is a simple consequence of Theorem 4.3 that normal, regular, nonunits in a

ring cut out regularly embedded hypersurfaces. Proposition 7.1 gives an explicit
description of the auto-equivalence σ in such a situation.

Remark 4.4. If p is a simple X-module which is not in ModY , then i∗p =
i!p = 0 (to see that i∗p = 0 just use the fact that there is an epimorphism p → i∗p).

PROPOSITION 4.5. Let i: Y → X be a regularly embedded hypersurface. Let p
and q be simple Y -modules.

(1) If p = pσ , then

Ext1X(p, q) ∼=
{
Ext1Y (p, q) if q $= p,
Ext1Y (p, p) ⊕ HomY (p, p) if q = p and Ext2Y (p, p) = 0.

(2) If p $= pσ , then

Ext1X(p, q) =






Ext1Y (p, q) if q /∈ {p,pσ },
Ext1Y (p, q) ⊕ HomY (p, p) if q = pσ and Ext2Y (p, q) = 0,
Ext1Y (p, p) if q = p.

Proof. Putting P = p and Q = q in (4.1) gives an exact sequence

0 → Ext1Y (p, q) → Ext1X(p, q) → HomY (p, qσ−1
) → Ext2Y (p, q).

The result now follows from a case-by-case analysis.

Remark 4.6. If Y is commutative, then ExtiY (p, q) = 0 if p $= q and i > 0.

LEMMA 4.7. Let i: Y → X be a regularly embedded hypersurface. If P ∈ ModY
is Noetherian, and q is a simple X-module which is not in ModY . Then
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(1) ExtmX(P, q) = 0 for all m " 0;
(2) Ext1X(q, P ) = 0.

Proof. (1) By Remark 4.4, i∗q = i!q = 0, so R1i!q = 0 also. Hence, the result
follows from (4.2) with Q = q.
(2) Suppose that 0 → P → V → q → 0 is an exact sequence in ModX. The

long exact sequence for R∗i! is, in part,

0 = i!q → R1i!P → R1i!V → R1i!q → 0.

Applying the auto-equivalence σ yields the short exact sequence 0 → i∗P →
i∗V → i∗q → 0. But i∗q = 0 because q /∈ Y , and i∗P ∼= P because P is an
OY -module, so i∗V ∼= i∗P ∼= P . However, there is an epimorphism V → i∗V , so
composing gives an epimorphism π : V → P . Since q $∈ Y , q is not a subquotient
of P , whence q is in the kernel of π . Composing with the inclusion P → V
gives an epimorphism from P to itself. Since P is Noetherian, this must be an
isomorphism; this allows us to split the original sequence.

Remark 4.8. Suppose that i: Y → X is a regularly embedded hypersurface.
Suppose further that gldimX = n < ∞; that is, ExtrX(M,N) = 0 if r " n +
1. It follows from (4.2) that if M and N are Y -modules, then ExtiY (M,N) ∼=
Exti+2Y (M,Nσ )whenever i " n. Therefore either gldimY = ∞ or gldimY ! n−1.
Suppose further that ModX = GrModA where A is a connected N-graded k-
algebra, and ModY = GrModA/(z) where z is a homogeneous, regular, normal
element; then ExtiY (M, k) ∼= Exti+2Y (M, kσ ), where k denotes the trivial module;
hence the minimal projective resolution for M ∈ GrModA/(z) becomes periodic
of period two up to the action of σ . This recovers a result of Jörgensen [14] which
is an extension of the analogous periodicity result for Noetherian, regular, local,
commutative rings [6].

5. Curves on Quasi-Schemes with a Regularly Embedded Hypersurface

Throughout this section we assume that

• X is a k-linear quasi-scheme, where k is a field;
• Y is a regularly embedded hypersurface in X.

For the purposes of this paper, a k-valued point p ∈ X, or simply a point, is a
simple X-module such that HomX(p, p) ∼= k.

DEFINITION 5.1. A curve module onX is a Noetherian module C ∈ ModX with
Krull dimension one. We say that C is irreducible if it is 1-critical; that is, if all its
proper quotients are Artinian. We say C is a pure curve module if i!C = 0. A point
p ∈ Y lies on C if there is an epimorphism C → p.
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A pure curve module C is in good position (with respect to Y ) if

• i∗C is semisimple, say i∗C = p1 ⊕ · · · ⊕ pn, where pi are points in Y ,
• σ i(pr) = σ j (ps) if and only if i = j and r = s,
• the simple X-modules which are quotients of C are p1, . . . , pn, and
• Ext1Y (p, q) = 0 if p and q are distinct elements in {σ i(pr)|i ∈ Z, r =
1, . . . , n}.

If C is in good position, we will write C ∩ Y = {p1, . . . , pn} for the composition
factors of i∗C, and [C ∩ Y ] = p1 + · · · + pn (the notation should make one think
of this as a divisor on C).

Remarks 5.2. (1) Because C is Noetherian, and there is an epimorphism C →
i∗C, the semi-simplicity hypothesis means that i∗C is a sum of a finite number of
simple Y -modules.
(2) The hypothesis that i∗C is semisimple is in effect saying that C meets Y

transversally.
(3) The condition on the distinctness of the various σ i(pr) can only be satisfied

if σ has infinite order. This means thatX is far from being commutative; thus the re-
sults in this paper do not apply when, for example, X = ModR with R a ring which
is a finite module over its center. However, even if R is far from commutative, our
results may not say anything. For example, the enveloping algebra of a Heisenberg
Lie algebra, U say, has a regularly embedded commutative hypersurface, but the
induced auto-equivalence σ is the identity, so there are no curves in good position.
(4) In some applications Y might be the scheme parametrizing the point mod-

ules over anN-graded k-algebra (see Example 7.5, where σ is related to the functor
which shifts the grading).
(5) The condition that all the simple quotients of C be points lying on Y can

often be achieved by choosing Y carefully.
(6) If Y is commutative, then the last condition in the definition is automatic.

PROPOSITION 5.3. Let C and D be pure curve modules, and suppose that p ∈
C ∩ Y . If 0 → D → C → p → 0 is exact, then D is in good position if and only
if C is. In this case [D ∩ Y ] = [C ∩ Y ] − p + pσ .

Proof. Let q be a simple X-module which is not in ModY . The last term of the
exact sequence

0 → HomX(p, q) → HomX(C, q) → HomX(D, q) → Ext1X(p, q)

is zero by Lemma 4.7, so HomX(C, q) ∼= HomX(D, q). Therefore all the simple
quotients of C lie on Y if and only if the same is true of D.
Since i!C = 0, and R2i! = 0, the long exact sequence for R∗i! is, in part,

0 → i!p → R1i!D → R1i!C → R1i!p → 0.

Since i!p = p, and i∗p = p, applying the auto-equivalence σ gives an exact
sequence
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0 → pσ → i∗D → i∗C → p → 0

of Y -modules.
SupposeC is in good position. Then q $= pσ for all q ∈ C∩Y and Ext1Y (q, pσ ) =

0. Also i∗C is semisimple, so for all subquotients V of i∗C, Ext1Y (V, pσ ) = 0;
hence i∗D is semisimple, and it follows from the exact sequence that [D ∩ Y ] =
[C ∩ Y ] − p + pσ .
SupposeD is in good position. Then q $= p for all q ∈ D∩Y and Ext1Y (p, q) =

0. Also i∗D is semisimple, so for all subquotients V of i∗D, Ext1Y (p, V ) = 0;
hence i∗C is semisimple, and it follows from the exact sequence that [D ∩ Y ] =
[C ∩ Y ] − p + pσ .

COROLLARY 5.4. Let C be a pure curve module in good position, and let p ∈
C ∩ Y . If 0 → D → C → p → 0 is exact, then D is a pure curve module in good
position.

Proof. It is clear that KdimD = 1 and that i!D = 0, so D is a pure curve
module. By Proposition 5.3, D is in good position.

COROLLARY 5.5. Let D be a pure curve module in good position with pσ ∈
D ∩ Y . Then there is a unique X-module C fitting into a nonsplit exact sequence
0 → D → C → p → 0. Moreover, C is a pure curve module in good position.

Proof. Since D is pure, i!D = 0, so by Rees’ Lemma 4.2,

Ext1X(p,D) ∼= HomY (pσ , i∗D); (5.1)

the right-hand side of this is isomorphic to k by hypothesis, so there is a unique
C fitting into such a nonsplit sequence. Obviously KdimC = 1. We want to show
that C is pure. If not, then it follows from the purity of D and the exact sequence
0 → i!D → i!C → i!p = p that i!C ∼= p; but then the sequence splits, so we
conclude that i!C = 0. Thus C is a pure curve module. By Proposition 5.3, C is in
good position.

THEOREM 5.6. Let C be a pure irreducible curve module in good position with
[C ∩ Y ] = p1 + · · · + pn. There is an associated collection of X-modules C(i),
indexed by i ∈ Zn, with the following properties:

(1) C(0) = C,
(2) each C(i) is a pure curve module in good position,
(3) [C(i) ∩ Y ] = σ−i1(p1) + · · · + σ−in (pn),
(4) HomX(C(i), C(j)) =

{
k if i ! j ,
0 otherwise,

(5) there are monomorphisms ψ i
j : C(i) → C(j) for all i ! j such that ψh

j =
ψ i

j ◦ ψh
i whenever h ! i ! j;

(6) the images of the morphisms C(i) → C(j) for i ! j give all submodules of
C(j).
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Proof. (1) and (2). First we construct for each i ! 0 a submodule C(i) ⊂ C.
Define C(−εs) to be the kernel of ‘the’ nonzero map C → ps . To see that we may
unambiguously define the other C(i) for |i| ! −2 by

C(i − εs) := C(i)(−εs) = ker(C(i) → σ−is (ps)),

we need only show that there is no ambiguity in constructing C(−εr − εs) when
r $= s: that is, we must show that C(−εr )(−εs) ∼= C(−εs)(−εr). Since C(−εr )
and C(−εs) are distinct maximal submodules of C, C(−εr )∩C(−εs) is the kernel
of the maps C(−εr) → ps and C(−εs) → pr , so

C(−εr )(−εs) ∼= C(−εs) ∩ C(−εr ) ∼= C(−εs)(−εr).

By Corollary 5.4, each C(i) is a pure curve module in good position with [C(i)∩Y ]
as claimed.
Now we use Corollary 5.5 to construct for each i " 0 an X-module C(i)

containing a copy of C. It will follow from Corollary 5.5 that each C(i) is a pure
curve module in good position with [C(i)∩Y ] as claimed. We construct the C(i)’s
by induction on |i|. Define C(εs) to be the unique X-module fitting into a nonsplit
exact sequence

0 → C → C(εs) → σ−1(ps) → 0.

To see that we may unambiguously define the other C(i) for |i| " 2 by a similar
method, we need only show that there is no ambiguity in constructing C(εr + εs)
when r $= s: we must show that C(εr )(εs) and C(εs)(εr ), each of which is obtained
by applying Corollary 5.5 twice, are isomorphic. Set N = C(εr)(εs); there is a
nonsplit extension

0 → C(εr ) → N → σ−1(ps) → 0.

Since C is in good position

Ext1X(σ−1(ps), σ
−1(pr)) = Ext1Y (σ−1(ps), σ

−1(pr)) = 0,

whenceN/C ∼= σ−1(pr)⊕σ−1(ps). Hence C is contained in a submodule C′ ⊂ N
such that C′/C ∼= σ−1(ps). Since N has no simple submodules, the sequence

0 → C → C′ → σ−1(ps) → 0

is nonsplit, whence C′ ∼= C(εs). Likewise, the sequence

0 → C′ → N → σ−1(pr) → 0

is nonsplit soN ∼= C′(εr) = C(εs)(εr ), whenceC(εr )(εs) ∼= C(εs)(εr) as required.
We may now unambiguously define C(i) by induction on |i| for all i " 0.
Now for a general i ∈ Zn, we choose j " 0 such that i + j " 0, and define

C(i) := C(i + j)(−j). We must show this is independent of the choice of j . If j ′

also works, let h = j ∪ j ′; it suffices to show that

C(i + j)(−j) ∼= C(i + h)(−h);
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using an induction argument, we can reduce to the case h = j + εs , so we need
only show that C(i + j)(−j) ∼= C(i + j + εs)(−j − εs). But the latter is, by
definition, isomorphic to C(i + j)(εs)(−j)(−εs), which is isomorphic to C(i +
j)(εs)(−εs)(−j) by the earlier arguments. However, it is easy to see from the
earlier arguments that (εs)(−εs) does not change the isomorphism class. Thus,
C(i) is defined for all i ∈ Zn. This completes the proof of (1) and (2).
(3) It is straightforward to use the formula for the divisors in Proposition 5.3 to

show that [C(i) ∩ Y ] is as described.
(6) To see that the nonzero submodules of C are precisely the C(i) for i ! 0,

suppose that 0 $= D ⊂ C. Since C is irreducible, C/D has finite length. Choose
a maximal submodule of C containing D, say D′. Because C is in good position,
all the simple quotients of C lie on Y ; thus C/D′ is one of the ps ∈ C ∩ Y , and
D′ = ker(C → ps) = C(−εs) for some s. The length of D′/D is less than that of
C/D, so an induction argument on length shows that D ∼= C(i) for some i ! 0.
More generally, C(i) is a submodule of C(j) whenever i ! j , and these are all the
nonzero submodules.
(4) It follows from (3) that C(i) $∼= C(j) if i $= j . Hence there is only one possi-

bility for the image of a nonzero mapC(i) → C(j). Thus, if HomX(C(i), C(j)) $=
0, it is isomorphic to HomX(C(i), C(i)). Consider the case i = 0, the general case
being similar. Because the simple quotients of C are pairwise nonisomorphic, any
endomorphism C → C induces an automorphism of each point ps ∈ C ∩ Y .
But EndXps = k, by hypothesis. Therefore HomX(C(i), C(j)) is either zero or
isomorphic to k. It is clear from the construction that there is a monomorphism
C(i) → C(j) if i ! j . It follows from (6) and the description of the divisors
[C(i) ∩ Y ] that there is no such monomorphism if i $! j .
(5) Let I be an injective envelope of C in ModX. If j " 0, then C(j) is an

essential extension of C, so C(j) embeds in I ; for any i ∈ Zn there exists j " 0
such that C(i) embeds in C(j), so every C(i) embeds in I .
Now we show that I cannot contain two distinct submodules, each isomorphic

to the same C(i). Suppose to the contrary that U and V were such submodules.
Because C contains no proper direct sums, and is essential in I , I contains no
proper direct sums. Therefore U ∩ V $= 0, and this is isomorphic to some C(j)
with j < i. There exists s ∈ {1, . . . , n} such that i " j + εs , so we may replace
U and V by their submodules isomorphic to C(j + εs). In other words, we may
assume that i = j + εs for some s. Therefore there is a nonsplit exact sequence

0 → U → U + V → V/U ∩ V → 0,

with U ∼= V ∼= C(i), and V/U ∩ V isomorphic to a simple quotient of C(i). But

Ext1X(V/U ∩ V,U) = 0

by (5.1), so the sequence splits, contradicting the fact that I has no simple submod-
ules. We conclude that no such U and V can exist.
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For each j choose a monomorphism θj : C(j) → I . By the uniqueness result
in the previous paragraph, if i ! j there is a unique ϕi

j : C(i) → C(j) such that
θjϕ

i
j = θi . It follows that ϕi

jϕ
h
i = ϕh

j whenever h ! i ! j .

Remark 5.7. If i, j, k ∈ Zn with i, j ! k, then there are unique submodules
of C(k) isomorphic to C(i) and C(j), so for the moment let us identify C(i) and
C(j) with these submodules. Then C(i) + C(j) = C(i ∪ j), where

i ∪ j := (max{i1, j1}, . . . ,max{in, jn}),
and C(i) ∩ C(j) = C(i ∩ j), where

i ∩ j := (min{i1, j1}, . . . ,min{in, jn}).
Hence, there is an exact sequence

0 → C(i ∩ j) → C(i) ⊕ C(j) → C(i ∪ j) → 0. (5.2)

Notation and terminology. Let C be a pure irreducible curve module in good
position, and let n denote the length of i∗C; that is, n is the number of points in
C ∩ Y . We are now going to use the letter C to denote the quasi-scheme

ModC = the full subcategory of ModX consisting of subquotients
of direct sums of the modules C(i), i ∈ Zn.

We will write OC for the module C itself, and writeO(i) := C(i) to emphasize the
fact that these modules behave like twists of an ample line bundle. By a point of C
we mean a point p ∈ C(i) ∩ Y for some i.

COROLLARY 5.8. Let C = ModC be defined as above. Then C is a closed sub-
quasischeme of X. If Y is a commutative scheme, then C → X is not biclosed.

Furthermore, the points p ∈ C are biclosed in C if we define Modp to be all
direct sums of p in ModC (equivalently, in ModX).

Proof. By Lemma 1.6.4, ModC is a closed subcategory of ModX. By 1.6.5, C
is a closed sub-quasischeme.
To show that C is not biclosed in X we must show that the inclusion, say

g∗: ModC → ModX, does not have a left adjoint. Thus, we must show g∗ does
not commute with products. By Corollary 6.2 below, C has infinitely many points.
If their product inModX were inModC, then all submodules of it, in particular OY ,
would also be inModC. But every point of Y is a quotient of OY , so all these would
be in ModC also. This contradicts Corollary 6.2. Hence g∗ has no left adjoint.
By [27, Proposition 3.4.3.2], Modp is closed in ModC. We will show it is bi-

closed by proving that Modp is closed under products in ModC. This follows from
Theorem 6.9 and an easy computation.

Remark 5.9. It is easy to see that ModC is a closed subcategory of the category
C(C) defined in the introduction. If ModY contains all simple X-modules (which
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can often be achieved), thenModC = C(C). In general, it is unclear ifModC equals
C(C).

6. The Curve C and the Structure of ModC

In this section we will prove that if C has the properties listed in Theorem 5.6 then
ModC is equivalent to V1

n.
The proof will involve showing that C behaves like P1. As a first hint of this,

recall that on P1 there are exact sequences 0 → O(−!−m) → O(−m)⊕O(−!) →
O → 0 for all integers !,m > 0; analogously, since OC is the sum of O(−mεs)
and O(−!εr) whenever r $= s, there is an exact sequence 0 → O(−!εr − mεs) →
O(−!εr) ⊕ O(−mεs) → OC → 0. The next result also shows that C behaves
like P1.

PROPOSITION 6.1. Let C be a pure irreducible curve module in good position.
Every Noetherian C-module is a quotient of a finite direct sum of O(i)’s.

Proof. Since every C-module is a subquotient of a direct sum of O(j)’s, it
suffices to show that an arbitrary submodule K of a finite direct sum N = ⊕

O(j)
is a quotient of a direct sum of various O(i)’s. This is what we will prove.
It is convenient to reindex the terms in the sum, say N = N1 ⊕ · · · ⊕ Nr with

each Nt isomorphic to O(bt) for some bt ∈ Zn.
Step 1. We can assume that no Nt is contained in K. If K contains Nt , then

K = Nt ⊕ K ′, where K ′ = K ∩ N ′, N ′ = N1 ⊕ · · · ⊕ N̂t ⊕ · · · ⊕ Nr , and
N/K ∼= N ′/K ′, so it suffices to prove the result for K ′ ⊂ N ′.

Step 2. It suffices to prove the result when K ∩ Nt $= 0 for all t . If K ∩ Nt = 0,
then K is a submodule of N/Nt which is again a sum of various O(j)’s, so we
could replace N by N/Nt .

Step 3. It suffices to prove the result when N/K is simple. By Step 2, we may
assume that K ∩Nt $= 0 for all t . Since eachNt is 1-critical, N/K has finite length.
There is a chain of submodules

N = K0 ⊃ K1 ⊃ · · · ⊃ K! = K

with eachKs/Ks−1 simple, so a downwards induction argument shows that Ks is a
quotient of a finite direct sum of O(i)’s.

Step 4. The result is true when N/K is simple. Suppose there is an exact
sequence

0 → K → ⊕Nt
α→ p → 0

with p a point on Y , and α the sum of morphisms αt : Nt → p. Write Lt := kerαt ;
since Nt $⊂ K, Lt is a maximal submodule of Nt . Thus αt $= 0.
Define b = b1 ∪ · · · ∪ br , where b1, . . . , br ∈ Zn are defined by Nt

∼= O(bt).
By Theorem 5.6.4, there is a monomorphism ϕt : Nt → O(b) for each t , and by
Remark 5.7, O(b) = ∑

t ϕtNt .
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The points on any submodule of O(b) are in the σ -orbits of the points on O(b)
so, if [O(b)∩Y ] = q1+· · ·+ qn, p is in the orbit of some qt , say q1 for simplicity.
For each t = 1, . . . , r, write bt = (bt1, . . . , btn); since the morphisms αt : Nt → p
are nonzero, b11 = · · · = br1, and as O(b) = ∑

t ϕtNt , O(b) = O(b11, . . .) by
Remark 5.7. Hence, there is a morphism γ : O(b) → p, and we may adjust the
ϕt ’s by suitable scalar multiples so that αt = γ ◦ ϕt for all p.
Now L1⊕ · · ·⊕Lr is a submodule ofK and the quotient has length r −1. Each

Lt is isomorphic to some O(i), so our plan for showing that K is a quotient of a
direct sum of O(i)’s is to find submodules Q2, . . . ,Qr of K, each isomorphic to
some O(i), such that the chain

L1 ⊕ · · · ⊕ Lr ⊂ L1 ⊕ · · · ⊕ Lr + Q2 ⊂ L1 ⊕ · · · ⊕ Lr + Q2 + Q3 ⊂ · · ·
is strictly increasing, from which it follows that

K = L1 ⊕ · · · ⊕ Lr + Q2 + · · · + Qr.

We defineQt to be the kernel of the morphism ϕ1⊕ϕt : N1⊕Nt → O(b). Since
ϕt is a monomorphism, Qt is isomorphic to ϕ1N1 ∩ ϕtNt , which is a submodule
of O(b), and therefore isomorphic to some O(i). Suppose, contrariwise, that the
chain is not strictly increasing. Thus, for some t ,

Qt ⊂ L1 ⊕ · · · ⊕ Lr + Q2 + · · · + Qt−1
⊂ N1 ⊕ · · · ⊕ Nt−1 ⊕ Lt ⊕ · · · ⊕ Lr,

whenceQt ⊂ N1 ⊕ Lt . Hence, if π1 and πt are the projections of N1 ⊕Nt onto N1
and Nt , then αtπt (Qt ) = 0; however,

(α1π1 ⊕ αtπt )(Qt) = γ (ϕ1π1 ⊕ ϕtπt )(Qt) = 0,

so α1π1(Qt) = 0 also, whenceQt ⊂ L1 ⊕ Nt . ThereforeQt ⊂ L1 ⊕ Lt . It follows
that there is an epimorphism

ϕ1N1 + ϕtNt
∼= N1 ⊕ Nt/Qt → N1/L1 ⊕ Nt/Lt

∼= p ⊕ p,

contradicting the fact that submodules of O(b) are curve modules in good position.
We conclude that the chain of submodules is strictly increasing, from which it
follows that K is a quotient of a direct sum of O(i)’s.

COROLLARY 6.2. The simple C-modules, or the points on C, are

{σ r(ps) | r ∈ Z, 1 ! s ! n}.
Proof. By Proposition 6.1, a simple C-module is a quotient of some O(i) =

C(i), so the result follows from Theorem 5.6.3.

PROPOSITION 6.3. The Noetherian 1-critical C-modules are the O(i)’s.
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Proof. Let N be a Noetherian 1-critical C-module. By Proposition 6.1, there is
a nonzero morphism O(i) → N for some i. Since O(i) and N are 1-critical this
is a monomorphism, yielding a short exact sequence 0 → O(i) → N → T → 0
with T of finite length. Now choose a submodule D of N such that D contains
O(i) and D/O(i) is simple. Then D, being 1-critical also, is a nonsplit extension
of O(i). By the proof of Theorem 5.6, D ∼= O(i)(εs) ∼= O(i + εs) for some s. An
induction argument on the length of T shows that N ∼= O(j) for some j " i, with
|j − i| equal to the length of T .

The next result can be interpreted as saying that vector bundles on C can be
filtered by line bundles.

COROLLARY 6.4. If M is a Noetherian C-module having no nonzero Artinian
submodules, then M has a filtration by submodules, say M = Mt ⊃ · · · ⊃ M0 =
0, such that each Ms/Ms−1 is isomorphic to some O(i).

Proof. This is a standard argument. First M has Krull dimension one because
it is a subquotient of a finite direct sum of O(j)’s. Pick a submodule N which
is maximal in M subject to the condition that M/N has no Artinian submodule,
except zero. ThenM/N is 1-critical, so isomorphic to some O(i) by the previous
result. Downwards induction completes the proof; such a descending chain must
stop because KdimM = 1.

PROPOSITION 6.5. If p is a point on C, then

(1) Ext1C(p, q) =
{

k if q = pσ ,
0 otherwise;

(2) Ext1C(O(i), p) = 0 for all i ∈ Zn.

Proof. (1) Suppose that 0 → q → V → p → 0 is a nonsplit extension of C-
modules. By Theorem 6.1, there is an epimorphism ψ :

⊕
O(j) → V . For some j ,

ψ(O(j)) $⊂ q, whence O(j) → V is an epimorphism because V is nonsplit. Thus
V ∼= O(j)/O(j)(−εr − εs) for some r and s. If r $= s this quotient is semisimple.
Thus r = s, and it follows that q = pσ .
(2) Suppose that 0 → p → V → O(i) → 0 is a nonsplit extension of C-

modules. Since ModC is a full subcategory this sequence is also nonsplit in ModX.
By Proposition 6.1, there is an epimorphism ϕ: Q = ⊕

O(j) → V . If we call the
number of summands the rank of Q, we may choose Q of minimal rank.
Choose an arbitrary rank two submodule of Q, say O(a) ⊕ O(b), and write

W = ϕ(O(a) ⊕ O(b)). If p ∩ W = 0, then W embeds in O(i), so is isomor-
phic to some O(h), so we could replace O(a) ⊕ O(b) by O(h), contradicting the
minimality of the rank; hence p ⊂ W . Our immediate goal is to show that the
sequence 0 → p → W → W/p → 0 splits. Since W/p embeds in O(i) it is
isomorphic to some O(h). To show the sequence splits it suffices to show that W
contains a copy of O(h). If p ⊂ ϕ(O(a)), then p = ϕ(O(a)) because O(a) and
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O(h) are 1-critical; therefore O(b) → W → W/p ∼= O(h) is an epimorphism,
from which it follows that ϕ(O(b)) ∼= O(h); hence the sequence splits. So we
may assume that p ∩ ϕ(O(a)) = 0, and similarly p ∩ ϕ(O(b)) = 0. Now the
morphism O(a) → W → W/p ∼= O(h) is monic, making O(a) a submodule of
O(h); similarly, O(b) is a submodule of O(h). Since O(h) is the sum of these two
submodules, the epimorphism O(a)⊕O(b) → W/p ∼= O(h) arises from an exact
sequence

0 → O(a ∩ b) → O(a) ⊕ O(b) → O(a ∪ b) = O(h) → 0,

as in (5.2) above. The kernel of the epimorphism O(a) ⊕ O(b) → W is a sub-
module of O(a ∩ b), so is isomorphic to some O(d), and O(a ∩ b)/O(d) ∼= p.
Therefore

d = a ∩ b − εs

for some s. We may, without loss of generality, assume that bs " as , whence

d = (a − εs) ∩ b;
this implies that (a − εs) ∪ b = a ∪ b = h, so there is an exact sequence

0 → O(d) → O(a − εs) ⊕ O(b) → O(h) → 0.

But this yields a monomorphism

O(h) ∼= O(a − εs) ⊕ O(b)

O(d)
−→ O(a) ⊕ O(b)

O(d)
∼= W,

from which it follows that the sequence 0 → p → W → W/p → 0 splits.
Explicitly, ϕ(O(a) ⊕ O(b)) ∼= p ⊕ O(a ∪ b).
The foregoing proves that the sequence 0 → p → V → O(i) → 0 splits if the

rank of Q is two. Of course, the rank of Q cannot be one. Now suppose that the
rank ofQ is at least three, and writeQ = O(a)⊕O(b)⊕O(c)⊕ · · ·. The previous
paragraph showed that

ϕ(O(a) ⊕ O(b)) = p ⊕ O(h),

for some h. For some g ∈ Zn there is an epimorphism O(g) → p. Define Q′ :=
O(g) ⊕ O(h) ⊕ O(c) ⊕ · · ·, and define ψ : Q′ → V by declaring that ψ agrees
with ϕ on O(c) ⊕ · · ·, ψ(O(g)) = p, and ψ(O(h)) = O(h). Therefore

ϕ(O(a) ⊕ O(b) ⊕ O(c)) = p + O(h) + ϕ(O(c))

= p + ψ(O(h) ⊕ O(c)).

The same argument as before shows that the minimality of the rank implies
that p ⊂ ψ(O(h) ⊕ O(c)). Hence ψ(O(h) ⊕ O(c) ⊕ · · ·) = V , contradicting the
minimality of the rank. We conclude that the rank of Q is two, so the sequence
0 → p → V → O(i) → 0 splits, as required.
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The fact that Ext1C(p, p) is zero is a noncommutative phenomenon: such an Ext
group is nonzero for all points on a commutative curve. In the commutative case σ
is invisible – it is the identity. The fact that

⊕
q∈C Ext1C(p, q) is one-dimensional

is saying that C is smooth. The fact that Ext1C(O(i), p) = 0 is like the fact that
H 1(Z, p) = 0 for points on a commutative curve Z. One more curve-like feature
is apparent at this stage: it is a straightforward consequence of Proposition 6.5 that
every Noetherian C-module is isomorphic to a direct sum of a torsion and a torsion-
free C-module, if torsion = Artinian. The next result says that locally ModC is like
the category of modules over a principal ideal domain.

COROLLARY 6.6. Every finite length C-module is a direct sum of uniserial mod-
ules. In particular, if h ! i ∈ Zn, then O(i)/O(h) is a direct sum of indecompos-
able uniserial modules, each of which looks like

•

•

•

··
··

·

•

•

}
σ−is (ps)

}
σ−is+1(ps)

}
σ−hs−1(ps)

provided is > hs .
Proof. By Proposition 6.5, if p ∈ C, there is a unique point q ∈ C such that

Ext1C(p, q) $= 0, namely q = pσ . Hence any finite length C-module, M say,
decomposes as a direct sumM = M1⊕· · ·⊕Mn where eachMs has all its composi-
tion factors belonging to the orbit of ps . Moreover, because dimk Ext1C(p, pσ ) = 1,
each Ms splits as a direct sum of indecomposables which look like the diagram
above. Finally, the decomposition of O(i)/O(h) follows from Theorem 5.6.3.

Fix a point p ∈ C. The category of finite length C-modules having composition
factors in the orbit of p is equivalent to the category of finite length objects in
GrModk[t], where deg t = 1. The Auslander–Reiten quiver of this category is
ZA∞.
Before computing Ext1C(O(i),O(j))we must describe the injective envelope of

O(j).

PROPOSITION 6.7. Let E denote the injective envelope of OC in ModC. Then

ALGE030.tex; 5/02/1999; 16:20; p.22



CURVES ON QUASI-SCHEMES 333

(1) E is the direct limit of the directed system (O(i),ψ i
j ) described in Theorem

5.6,
(2) the universal morphisms ψi : O(i) → E are monomorphisms,
(3) E is the injective envelope in ModC of all the O(i),
(4) the O(i)’s give all the nonzero Noetherian submodules of E,
(5) HomC(E,E) ∼= k.

Proof. Since O(i) → O(j) are essential extensions for all i ! j (see Theorem
5.6.5), E is also an injective envelope of O(i) for all i.
Let 0 $= N be a Noetherian submodule of E. Then there is an epimorphism

ϕ:
⊕

O(i) → N from a suitable finite direct sum of O(i)’s. We can assume that
ϕ(O(i)) $= 0 for all terms in the sum. Since OC is essential in E, E has no nonzero
Artinian submodules, whence ϕ(O(i)) ∼= O(i). Since OC is indecomposable, so is
E, so ϕ(O(i))∩ϕ(O(j)) $= 0 for all i, j appearing in the direct sum. It follows that
N/ϕ(O(i)) has finite length, whenceN is 1-critical. By Proposition 6.3,N ∼= O(i)
for some i. By Theorem 5.6.6, E cannot contain two distinct submodules, each
isomorphic to the same O(i). Therefore, the set of all Noetherian submodules of E
is {O(i) | i ∈ Zn}. Thus E is the direct limit of the O(i)’s as described.
It only remains to prove (5). Let θ : E → E be a nonzero morphism. It is a

monomorphism because every proper Noetherian quotient of E is Artinian. Since
E contains a unique copy of any of its submodules, θ sends OC ⊂ E to itself.
Replacing θ by a scalar multiple of itself, we may assume that its restriction to
OC is the identity. However, if i " 0, and θ ∈ HomX(O(i),O(i)) restricts to the
identity on OC , then θ is the identity on O(i). Since E is the direct limit of the
O(i)’s, it follows that θ is the identity on E.

The next result should be compared to the fact that H 1(P1,O(j)) is zero if
j " −1, and k−j−2 otherwise. In Section 8 we give a proof of the next result
based on a description of the minimal graded injective resolution of the Zn-graded
polynomial ring k[x1, . . . , xn].
PROPOSITION 6.8. Let C be a pure irreducible curve in good position. Then

dimExt1C(O(i),O(j)) = max{0, |{s | is " js + 1}| − 1}.
Proof. Let E denote the injective envelope of OC in ModC. Since O(j) embeds

in E, there is an exact sequence

· · · → HomC(O(i), E) → HomC(O(i), E/O(j))

→ Ext1C(O(i),O(j)) → 0.

If i ! j , the map HomC(O(i),O(j)) → HomC(O(i), E) is surjective, so

Ext1C(O(i),O(j)) ∼= HomC(O(i), E/O(j)),

and this is zero because no simple quotient of O(i) can be a quotient of any O(k)
with k > j .
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From now on suppose that i $! j . Thus

dimExt1C(O(i),O(j)) = dimHomC(O(i), E/O(j)) − 1.

The image of any morphism O(i) → E/O(j) is of the form N/O(j) where N is
a Noetherian submodule of E containing O(j). Thus, N ∼= O(k) for some k " j .
Hence, HomC(O(i), E/O(j)) arises from pairs h, k ∈ Zn such that h ! i and
j ! k, and

O(i)/O(h) ∼= O(k)/O(j) $= 0.

By Corollary 6.6,O(i)/O(h) andO(k)/O(j) are direct sums of uniserial modules,
and they are isomorphic if and only if the intervals [hs + 1, is] and [js + 1, ks] are
equal for all s. Define h′, k′ ∈ Zn by

(h′
s, k

′
s) =

{
(is − 1, js + 1) if is < js + 1,
(js, is) if is " js + 1.

Then O(i)/O(h′) ∼= O(k′)/O(j) and, given any other isomorphism O(i)/O(h) ∼=
O(k)/O(j), we have h " h′ and k ! k′, so there are morphisms

O(i)/O(h′) → O(i)/O(h) → O(k)/O(j) → O(k′)/O(j).

Now O(i)/O(h′) is a direct sum of |{s | is " js + 1}| nonzero uniserial modules,
and there are no nonzero homomorphisms between any two of these summands, so

dimk HomC(O(i), E/O(j)) = dimk HomC(O(i)/O(h′),O(k′)/O(j))

= |{s | is " js + 1}|.
Subtracting one gives the result.

It is now possible to prove that E/OC is injective, but we prefer to see this as
a consequence of the next theorem: the theorem shows that gldimC = 1, which
implies that E/OC is injective.

THEOREM 6.9. Let C be a pure irreducible curve in good position, and let n
denote the cardinality of C ∩ Y . Then C ∼= V1

n, via an equivalence of categories
sending OC to OV.

Proof. Let S = k[X1, . . . , Xn] be the polynomial ring with its Zn grading as in
Example 3.1. Let π : GrModS → GrModS/{Kdim ! n−2} be the quotient functor.
It is standard that π is exact.
Define the functor F : ModC → GrModS by

F =
⊕

i∈Zn

HomC(O(i),−).

The action of S on F(N) is defined as follows. The monomorphism ψ i
i+εs

: O(i) →
O(i + εs) induces a map Xs: HomC(O(i + εs), N) → HomC(O(i),N); summing
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over all i ∈ Zn gives an action of Xs on F(N). The commutativity of the maps
ψ i

j ensures that the actions of Xs and Xr on F(N) commute, so F(N) becomes an
S-module. The Zn-grading on FN is defined by (FN)−i := HomC(O(i),N), thus
giving FN the structure of a graded S-module.
We will prove that π ◦ F is an equivalence of categories. By Proposition 1.3,

it suffices to show this is an equivalence between the subcategories of Noetherian
objects.
Since F is left exact, so is πF . Unfortunately F is not right exact: if 0 → U →

V → W → 0 is exact in ModC, then there is an exact sequence

0 → FU → FV → FW →
⊕

i

Ext1C(O(i), U) → · · ·

of graded S-modules. To show that πF is right exact it suffices to show that π
sends

⊕
i Ext1C(O(i), U) to zero, and for this it suffices to show it is a direct

limit of modules of GK-dimension ! n − 2. Of course, GK-dimension equals
Krull dimension for S-modules. Since U has a finite filtration by submodules with
slices isomorphic to various O(j)’s and various points p ∈ C, we need only
show that

⊕
i Ext1C(O(i),O(j)) has GK-dimension ! n − 2. (By Proposition 6.5,

Ext1C(O(i), p) = 0 for all points p ∈ C.)
Proposition 6.8 showed that Ext1C(O(i),O(j)) = 0 if is < js for all except one

s. The action of Xm
s on

⊕
i Ext1C(O(i),O(j)) is obtained from the natural maps

Ext1C(O(i),O(j)) → Ext1C(O(i − mεs),O(j)).

Therefore, for large m, (X1X2 · · · Xn−1)m annihilates Ext1C(O(i),O(j)); the same
is true for other products X1 · · · X̂s · · · Xn. Thus, every element of

⊕

i

Ext1C(O(i),O(j))

is annihilated by some power of the ideal generated by

X1X2 · · · Xn−1, . . . , X1 · · · X̂s · · · Xn, . . . , X2X3 · · · Xn.

But the quotient of the polynomial ring by this ideal has GK-dimension n − 2, so⊕
Ext1C(O(i),O(j)) has GK-dimension ! n − 2.
Therefore πF is exact.
To prove πF is faithful it suffices to show that if p is a point on C, then

KdimF(p) " n − 1. If p = σm(ps), where ps ∈ C ∩ Y , then HomC(O(i), p) $= 0
for all i such that is = m; the set of such i is a sublattice of Zn isomorphic to Zn−1,
so it follows that GKdimF(p) = n − 1. Thus πF is faithful.
Now we show that πF is full. First, we show that FC ∼= S. It follows from

the definition of F that FC is the direct sum of the one-dimensional subspaces
(FC)i = HomC(O(−i), C) indexed by i " 0, so it suffices to show that FC
is generated as an S-module by (FC)0. This is obvious from the way the action
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of the Xs’s is defined. Thus, πFOC = πFC = OV. It follows that each OV(i)
is in the image of πF . These are generators for the category of OV-modules. It
is easy to see that F(ψ0

εs
)): S → S(εs) coincides with multiplication by Xs . It

follows that π sends HomC(O(i),O(j)) isomorphically to HomGrS(S(i), S(j)) ∼=
HomV1n(OV(i),OV(j)). It follows from the exactness of πF that it is full.

A general result on equivalences of categories is proved in Section 9.

7. Applications

In this section we apply our results to some well-known examples.
The first application is to two affine surfaces containing a regularly embedded

curve. Specifically, we have a Noetherian domain R with global dimension and
Krull dimension two, and a normal, regular, nonunit u ∈ R such that that R/uR is
a commutative ring of Krull dimension one. The first suchR is the enveloping alge-
bra of the two-dimensional non-Abelian Lie algebra. The second is the coordinate
ring of the quantum affine plane, namely kq [x, y] with defining relation yx = qxy,
where 0 $= q ∈ k is not a root of unity.

PROPOSITION 7.1. Let R be a ring containing a regular, normal, nonunit u.
Then

(1) ModR/(u) is a regularly embedded hypersurface in ModR,
(2) the auto-equivalence on ModR/(u) is induced by the auto-equivalence τ on

ModR defined as follows: if M is an R-module, then τM = M as an Abelian
group, endowed with the new R-action

m ∗ a = m.(uau−1),

for a ∈ R and m ∈ M.

Proof. The hypotheses in Theorem 4.3 hold with I = uR. Now M ⊗R I may
be identified withM, via the map m ⊗ ru ↔ mr; if the right R-action onM ⊗R I
is transferred to M via this bijection, then we may identify τM with M endowed
with the R-action as described.

EXAMPLE 7.2. Let U = k[x, y] be the enveloping algebra of the two-dimen-
sional solvable Lie algebra, with defining relation xy − yx = y. Set I = yU =
Uy. Define X = ModU and Y = ModU/I . Then Y is a regularly embedded
commutative hypersurface in X.
In particular, Y ∼= A1, the points on it being the simple modules U/(y, x − λ),

λ ∈ k. If p = U/(y, x − λ), then pσ = U/(y, x − λ + 1).
The simplest curves inX arise from the ‘line modules’ C = U/(αx+βy+γ )U .

Now i∗C = U/(αx + βy + γ )U + yU ; if α = 0, then i∗C = 0, or equivalently
[C ∩ Y ] = ∅, so suppose that α $= 0. Then i∗C is a single point p. By the results
in Sections 5 and 6, the curve associated to C is isomorphic to V1

1
∼= GrModk[t].
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More generally, consider a curve module C = U/aU . Write a = yr + g where
g ∈ k[x]. Then i∗C ∼= k[x]/(g), so C is in good position if and only if g has
no multiple zeroes and no two of these zeroes differ by an integer. We do not
know a simple criterion for C to be 1-critical. If it is, then the associated curve is
isomorphic to V1

n, where n = deg g.

EXAMPLE 7.3. Let R = k[x, y] with defining relation yx = qxy, where 0 $=
q ∈ k is not a root of unity. Let I = (xy). Since q is not a root of unity, the only
finite-dimensional simple R-modules are the one-dimensional modules over the
commutative ring R/I . Let X = ModR, and Y = ModR/I . Then Y is a regularly
embedded commutative hypersurface inX. (We could also take Y to beModR/(x),
or ModR/(y).)
Let p be a point on Y . Either x or y vanishes at p. If p = R/(x, y − α) then

pσ = R/(x, y − q−1α), and if p = R/(x − α, y) then pσ = R/(x − qα, y). Since
q is not a root of unity all points of Y except (0, 0) have infinite σ -orbit.
The simplest curves are the ‘line modules’ C = R/(αx + βy + γ )R. If γ =

0, then C is not in good position because C passes through the point (0, 0) =
R/(x, y) which is fixed by σ . So suppose that γ $= 0. Then C is in good position,
and the curve it determines is isomorphic to V1

2, except if αβ = 0, in which case
it is isomorphic to V1

1. More generally, suppose that C = R/fR is 1-critical. Then
[C∩Y ] is corresponds to the points inModR/(xy, f ). Let fx ∈ k[x] and fy ∈ k[y]
be such that R/(x, f ) = R/(x, fy) and R/(y, f ) = R/(y, fx). Then C is in good
position if both fx and fy have distinct zeroes, both have nonzero constant term,
and no two zeroes lie in the same σ -orbit. Suppose this happens. Then [C ∩ Y ]
consists of n = deg fx + deg fy points. The associated curve is isomorphic to V1

n.

Our next application is to the quantum P2’s of Artin, Tate, and Van den Bergh
[3]. It follows from Proposition 3.4, and is implicit in [3], that these quasi-schemes
have global and Krull dimension two, so they are ‘smooth surfaces’. Before ap-
plying our results we show that the scheme parametrizing the point modules is a
regularly embedded curve.

PROPOSITION 7.4. Let A be a Z-graded algebra, and let z be a homogeneous
regular normal nonunit. Then TailsA/(z) is a regularly embedded hypersurface in
TailsA. Moreover, if z is central of degree d, then σ is naturally equivalent to the
degree shift (−d).

Proof. Set B = A/(z). Let g∗: GrModB → GrModA be the inclusion of the full
subcategory of graded A-modules annihilated by z. By Theorem 4.3 and Propo-
sition 7.1, GrModB is a regularly embedded hypersurface in GrModA. However,
the proof of Proposition 7.1 must be slightly modified since we are working in
the graded category. Explicitly, ν ◦ R1g! ∼= g∗ where ν is the auto-equivalence
−⊗

A Az. Explicitly, νM = M(−d) as a graded Abelian group, and the A-action
on νM is defined by m ∗ a = m(z−1az).
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Set X = TailsA and Y = TailsB. There is a commutative diagram

GrModB
g∗

π1

GrModA
π2

ModY
i∗

ModX

where π1 and π2 are the quotient functors. The existence of i∗ follows from the
universal property of the quotient category GrModB/Tors.
We refer to Artin and Zhang [5] for details about the functors πi . Each πi has

a right adjoint, say ωi , and πiωi is naturally equivalent to the identity functor. By
[5],

ω2π2M ∼= lim
→
HomA(A!n,M),

and similarly for ω1π1.
The auto-equivalence ν sends finite-dimensional modules to finite-dimensional

modules so induces an automorphism, τ say, on ModY such that τπ1 = π1ν. We
wish to show that i∗ has a left adjoint i∗ and a right adjoint i! such that τ ◦R1i! ∼= i∗.
Define i! := π1g

!ω2, and i∗ := π1g
∗ω2. Before showing these are adjoints to i∗ we

make some preliminary calculations.
Since g! = HomA(B,−), we have

g!ω2π2M = HomA(B, lim
→
HomA(A!n,M))

= lim
→
HomB(B!n,HomA(B,M))

∼= ω1π1g
!M,

so g!ω2π2 ∼= ω1π1g
!. It follows that

i!π2 = π1g
!ω2π2 ∼= π1ω1π1g

! ∼= π1g
!.

If N is a graded B-module, then

g∗ω1π1N = g∗ lim→ HomB(B!n,N)

= lim
→
HomB(B!n,N)

∼= lim
→
HomA(A!n,N)

= lim
→
HomA(A!n, g∗N)

= ω2π2g∗N,

so g∗ω1π1 ∼= ω2π2g∗.
Now we check that i! and i∗ are adjoints to i∗ as claimed. LetM be aX-module,

and let N be a Y -module. DefineM = ω2M and N = ω1N . Then
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HomY (N , i!M) = HomY (π1N,π1g
!ω2M)

∼= HomGrB(N,ω1π1g
!M)

∼= HomGrB(N, g!ω2π2M)
∼= HomGrA(g∗N,ω2π2M)
∼= HomX(π2g∗N,π2M)
∼= HomX(i∗π1N,π2M)

= HomX(i∗N ,M),

showing that i! is right adjoint to i∗. Also
HomY (i∗M,N ) = HomY (π1g

∗ω2M,N )
∼= HomGrB(g∗ω2M,ω1N )
∼= HomGrA(ω2M, g∗ω1π1N)
∼= HomGrA(ω2M,ω2π2g∗N)
∼= HomX(π2ω2M,π2g∗N)
∼= HomX(M, i∗π1N)

= HomX(M, i∗N ),

showing that i∗ is left adjoint to i∗.
The following computation, using the exactness of the πi’s, completes the proof.

τ ◦ (R1i!) ∼= τ ◦ (R1i!) ◦ π2ω2
∼= τ ◦ (R1(i!π2)) ◦ ω2
∼= τ ◦ (R1(π1g

!)) ◦ ω2
∼= τπ1 ◦ (R1g!) ◦ ω2
∼= π1ν ◦ (R1g!) ◦ ω2
∼= π1g

∗ω2
= i∗.

EXAMPLE 7.5. Let A be one of the three-dimensional regular algebras in [3],
set X = TailsA, and Y = TailsA/(g) where g ∈ A3 is the cubic normal element
vanishing on the point modules (equivalently, cutting out the point scheme). By [3],
Y is a commutative scheme, isomorphic to a cubic divisor, E say, in P(A∗

1)
∼= P2.

Thus our results apply. It follows from the previous result that pσ = p(−3). (Thus
σ is not the same as the automorphism labelled σ in [4]; our σ is their σ−3.)
Consider a line moduleM, and letM be its image in TailsA. ThenM meets Y at

3 points counted with multiplicity, say p1, p2, p3. If there are no equalities among
the various {pi(3j) | 1 ! i ! 3, j ∈ Z}, thenM is in good position, thus giving a
curve isomorphic to V1

3. This cannot happen if σ has finite order.
Recall that line modulesM correspond bijectively to lines ! in P2, the points of

πM lying on Y being given by the points of !∩E. Thus a general line module will
be in good position. Those not in good position are, up to shifting by i ∈ Z3, those
which fail to meet E at three distinct points.
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The next lemma shows that for quasi-schemes having a certain duality, the auto-
equivalence σ has another interpretation.

LEMMA 7.6. Suppose that gldimX = 2, that i: Y → X is a regularly embedded
hypersurface and that Y is commutative. Further, suppose that for every point p ∈
Y there is a point p′ ∈ Y such that Ext2−i

X (p,−)∗ ∼= ExtiX(−, p′) for 0 ! i ! d. If
p = pσ or p $= pσ 2 , then p′ = pσ . Otherwise p′ ∈ {p,pσ }.

Proof. We have Ext1X(p, q) ∼= Ext1X(q, p′)∗ for all q ∈ Y . Since 0 $=
Ext1X(p′, p′)∗ ∼= Ext1X(p, p′), p′ ∈ {p,pσ } by Proposition 4.5. If p = pσ the
result follows, so suppose that p $= pσ . Thus 0 $= Ext1X(p, pσ ) ∼= Ext1X(pσ , p′)∗,
so p′ ∈ {pσ , pσ 2}. Therefore p′ ∈ {p,pσ } ∩ {pσ , pσ 2}. If p $= pσ 2 , it follows that
p′ = pσ .

The lemma does not explain the relationship between p′ and pσ when p =
pσ 2 $= pσ . But this case does not arise for points on a curve in good position.
Lemma 7.6 applies to the three examples just considered, either as an inefficient

tool to compute σ , or as an alternative interpretation of σ showing its fundamental
nature. For example, if U is the enveloping algebra in Example 7.2, and X =
ModU , then there is a duality Ext2−i

X (p,−)∗ ∼= ExtiX(−, p′). Since gldimU = 2,
the contravariant functor Ext2X(p,−)∗ is left exact, so is equivalent to HomX(−, p′)
where p′ = Ext2X(p,U)∗. There is a projective resolution

0 → U → U 2 → U → p = U/(y, x − λ) → 0,

where the first map is r (→ ((x − λ + 1)r,−yr), and the second is (a, b) (→
ya + (x − λ)b. Thus Ext2X(p,U) ∼= U/(x − λ + 1, y) as a left U -module, so
p′ ∼= U/(x − λ + 1, y) as a right U -module. In particular, p′ $= p, so p′ = pσ .

EXAMPLE 7.7. Let A denote the four-dimensional Sklyanin algebra, A =
A(E, τ ) where E is an elliptic curve and τ is a translation on E. We assume that
τ is not of finite order. Thus the center of A is a polynomial ring k[01,02] on two
degree two elements. We will denote by0 a nonzero linear combination of 01 and
02. Let X = TailsA/(0) and Y = TailsA/(01,02). Then Y is a regularly embed-
ded hypersurface in X (and σ = (−2)), and Y is isomorphic to E, a commutative
scheme so our results apply. For example, ifM is a line module annihilated by 0,
let M denote the X-module associated to it. If the two point modules which M
maps onto correspond to points p, q ∈ E which are not in the same τ -orbit, then
M is in good position, so the corresponding quasi-scheme C is isomorphic to V1

2.
Not only is every line module annihilated by a nonzero central element, but so

is every graded module of GK-dimension two [22]. Thus, if M is a critical graded
module of GK-dimension two, thenM is annihilated by a central 0 of degree two
(because the annihilator of a critical module is prime). Geometrically, this says that
every irreducible curve in the Sklyanin P3 lies on one of the quadric hypersurfaces
containing E. Thus, M yields a curve module lying on X for a suitable choice of
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0, and if this curve module is in good position with respect to E, it determines a
curve isomorphic to some V1

n. If e is the multiplicity ofM, thenM/01M + 02M
is of GK-dimension one and multiplicity 2e, so its image in TailsA/(0) has length
2e; thus n = 2e.

There are further applications of our results to other quantum P3’s, namely
those containing a commutative quadric hypersurface as a regularly embedded
hypersurface [23–25], and [26].

8. Properties of V1n
This section discusses the ways in which the quasi-schemes V1

n defined in Ex-
ample 3.1 are similar to, and differ from, the projective line P1. Recall, the con-
struction: let S = k[X1, . . . , Xn] be the commutative polynomial ring with the Zn

grading defined by degXs = εs . Define

ModV1
n := GrModS/{Kdim ! n − 2}

to be the category of Zn-graded modules modulo the full subcategory of modules
having Krull dimension ! n − 2. We write O for the image of S in ModV1

n.
By Corollary 3.6, the Krull dimension and global dimension of V1

n is one, as for
ModP1.
The shifts O(i), i ∈ Zn, are like line bundles on V1

n. The morphisms between
them are similar to the P1 case: by Theorem 5.6, there is a monomorphism O(i) →
O(j) exactly when i ! j , and the images give all nonzero submodules of O(j).
A V1

n-module is torsion if it is a direct limit of Artinian modules. The torsion-
free Noetherian V1

n-modules are analogous to vector bundles. By Corollary 6.4,
every vector bundle has a filtration by line bundles, and by Proposition 6.5, every
Noetherian module is a direct sum of its torsion submodule and a vector bundle.
Over P1 every vector bundle is a direct sum of line bundles. We show in Proposi-
tion 8.2 below that this is true for V1

n if n is one or two but, as the next example
shows, this is not true if n " 3.

EXAMPLE 8.1. Let n = 3. Define L = Sx1+Sx2+Sx3/Sx3. Consider the exact
sequence

0 → K → S(−ε1) ⊕ S(−ε2)
θ→ L → 0,

where θ is the obvious surjection. Applying the quotient functor π produces an
exact sequence in the quotient category, and then applying the right adjoint ω to π
produces an exact sequence

0 → ωπK → S(−ε1) ⊕ S(−ε2) → ωπL

in GrModS. Since projdimK = 1, depthK = 2 by the Auslander–Buchsbaum for-
mula. Hence ωπK ∼= K. If πK, which is a submodule of O(−ε1)⊕O(−ε2), were
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isomorphic to a direct sum of shifts of O, then K would be free, so projdimL =
1. However, by computing the Hilbert series of L, we see that projdimL > 1.
Therefore πK is not a direct sum of line bundles.

PROPOSITION 8.2. If n ∈ {1, 2}, then every vector bundle on V1
n is a direct sum

of line bundles.
Proof. This is a triviality if n = 1 because it just says that every finitely gen-

erated torsion-free Noetherian k[x]-module is free. So suppose that n = 2. Let
M = πM be a torsion-free Noetherian module, where M is a finitely generated
S-module. We may assume thatM has no submodule of Krull dimension ! 1. Let
K = Fract S. Then the natural mapM → K ⊗S M is injective, so M embeds in a
free S-module. Hence, we have an exact sequence 0 → M → ⊕

O(i) → N → 0
for some collection of i’s in Zn. Applying ω, the right adjoint to π , we get an exact
sequence 0 → M

θ→ ⊕
S(i) → ωN . The cokernel of θ is a submodule of N ,

so has no finite-dimensional submodule. Hence, by the Auslander–Buchsbaum for-
mula for S, the projective dimension of coker θ is! 1. It follows that projdimM =
0, whenceM is a sum of shifts of S; henceM is a sum of shifts of O.

The cohomology groups H 1(V1
n,O(j)) = Ext1V1n(O,O(j)) were computed in

Proposition 6.8. Now we give a proof of this using a result which has wider ap-
plicability.

LEMMA 8.3. Let A be a G-graded k-algebra. Make A[t] = A ⊗k k[t] a G × Z-
graded algebra through the tensor product grading. View k[t−1] as a k[t]-module
via the vector space isomorphism k[t−1] ∼= k[t, t−1]/tk[t].

If E is an (indecomposable) injective in GrModGA, then E ⊗k k[t, t−1], and
E ⊗k k[t−1] are (indecomposable) injectives in GrModA[t]. Every (indecompos-
able) injective in GrModA[t] is isomorphic to one of these up to shifting by degree.

Proof. Let I be the injective envelope of E ⊗ k[t, t−1] in GrModA[t]. Since
E ⊗ k[t, t−1] is t-torsion-free, so is I . Hence, t acts bijectively on I , and I ∼=
I∗,0⊗ k[t, t−1]. Since E is injective, the inclusion E → I∗,0 splits as an A-module;
hence the inclusion E ⊗ k[t, t−1] → I∗,0⊗ k[t, t−1] splits as an A[t]-module. This
implies that E = I∗,0, and that I = E ⊗ k[t, t−1].
Let J denote the injective envelope of E ⊗ k[t−1] in GrModA[t]. Since (E ⊗

k[t−1])∗, 0 = 0, so too is J∗,>0 = 0. Thus J is t-torsion. We now prove by induction
that J∗,n = E ⊗ tn for all n ! 0. If E $= J0,∗, then as A-modules, J0,∗ = E ⊕ M;
however, t annihilates J∗,0, so M is an A[t]-module, whence E ⊗ k[t−1] is not
essential in J , a contradiction. Now suppose that n < 0, and the result is true for
n+1. Suppose thatM is a nonzero A-submodule of J∗,n such thatM∩Etn = 0. By
the induction hypothesis,Mt ⊂ Etn+1. Since the map t : Etn → Etn+1 is bijective,
there is a homogeneous element m ∈ J∗,n\Etn such that mt = 0. Then mA is an
A[t]-submodule of J which has zero intersection with E ⊗ k[t−1], contradicting
the fact that E ⊗ k[t−1] is essential in J . Hence E ⊗ k[t−1] = J .
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Now let I be a nonzero indecomposable injective in GrModA[t]. Notice that
t : I → I is surjective.
If I has no t-torsion, then t : I → I is bijective, whence I ∼= I∗,0 ⊗ k[t, t−1]. If

I∗,0 is not injective inGrModA, letE be its injective envelope. ThenE⊗k[t, t−1] =
I ⊕ I ′. Since I ′ is t-torsion-free, I ′ = I ′

∗,0 ⊗ k[t, t−1], whence E = I∗,0 ⊕ I ′
∗,0, a

contradiction.
The other case is that I has t-torsion. Choose 0 $= m ∈ Ig,n such that mt = 0.

ThenAm is an A[t] submodule of I . Since I is indecomposable, Am is an essential
submodule, whence the submodule I∗,>n is zero. The same argument shows that
I∗,<n is t-torsion-free, whence t : I∗,<n → I = I∗,"n is bijective. Thus I ∼= I∗,n ⊗
k[t−1]. It is also immediate that I∗,n is an idecomposable injective A-module.

PROPOSITION 8.4. Let S = k[x1, . . . , xn] be the polynomial ring with the Zn-
grading given by deg xi = εi . Let e = (e1, . . . , en) be an n-tuple, where each ej is
either ±1 or −1, and define the graded S-module

Me = k[xe1
1 ] ⊗ · · · ⊗ k[xen

n ],

where k[x±1
r ] = k[xr, x

−1
r ], and k[x−1

r ] = k[xr, x
−1
r ]/xrk[xr ]. Define |e| to be the

number of ers equal to −1.
(1) Every indecomposable injective inGrModS is isomorphic to a shift of someMe.
(2) The minimal injective resolution of S in GrModS is

0 → S → M(±1,±1,...,±1) →
⊕

|e|=1
Me → · · ·

→
⊕

|e|=n−1
Me → M(−1,...,−1) ∼= S∗ → 0. (8.1)

Proof. (1) This follows from the lemma by induction on n, the case n = 0
reducing to the field k.
(2) By (1), every term in the resolution is injective. Now take the tensor product

of the deleted injective resolutions

0 → k[xr ] → k[xr, x
−1
r ] → k[x−1

r ](1) → 0.

COROLLARY 8.5. InModV1
n, Ext1(O,O)∗ is isomorphic to the kernel of the map

n⊕

r=1
S[x−1

1 , . . . , x−1
r−1, x

−1
r+1, . . . , x

−1
n ]xr → S[x−1

1 , . . . , x−1
n ], (8.2)

where the individual maps are inclusions. In particular, the dimension of each
homogeneous component is

dimk Ext1(O,O)∗
(i1,...,in) = max{0, |{s | is > 0}| − 1}.
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Proof. Let π : GrModZnS → ModV1
n be the quotient functor. Applying π to

(8.1) gives the injective resolution of O in ModV1
n. Since gldimV1

n = 1, we can
truncate the resolution after the first step. Applying HomS(S,−) to the truncated
resolution, we see that

Ext1(O,O) = coker
(

S[x−1
1 , . . . , x−1

n ] →
⊕

|e|=1
Me

)
.

Thus Ext1(O,O)∗ is the kernel of the Homk(−, k) dual of this. This is precisely
the statement of the corollary. The dimensions of the homogeneous components
may be computed by observing that the components of S[x−1

1 , . . . , x−1
n ] are all

one-dimensional. Hence, the dimension of the degree i component of the kernel
is one less than the dimension of the degree i component of the left hand term in
(8.2). Details are left to the reader.

We now consider Serre duality. For P1 there are functorial isomorphisms
Hi(P1,F )∗ ∼= Ext1−i(F ,ω◦),

where ω◦ ∼= O(−2). Recall that O(−2) is the image under π of Ext1(O,O)∗ ∼=
A(−2). For allV1

n, we set ω◦ = πExt1(O,O)∗. This module is described in the pre-
vious corollary; for n = 2, it is isomorphic toA(−1,−1), so ω◦ ∼= O(−1,−1), and
the same sort of proof as in [13] or [28] will show there is a functorial isomorphism
Hi(V1

2,F )∗ ∼= Ext1−i(F ,ω◦).
Now suppose that n " 3. The first thing to observe is that Ext1(O,O) is not a

finitely generated S-module because it is not concentrated in degree " j for any
j ∈ Zn. Nevertheless, the arguments in [13] and [28] show that H 1(V1

n,F )∗ ∼=
Hom(F ,ω◦).
The following result on the K-theory of V1

n was prompted by questions of Idun
Reiten. We thank her for her interest.

PROPOSITION 8.6. Let K0(V1
n) denote the Grothendieck group of modV1

n, and
let Pic denote the Picard group as defined in [15]. Then

(1) K0(V1
n)

∼= Z[T ±1
1 , . . . , T ±1

n ]/(q) where q = (1− T1) · · · (1− Tn), and
(2) Pic(V1

n) = m/m2 ∼= Zn where m = (1− T1, . . . , 1− Tn).

Proof. The Hilbert series of k[X1, . . . , Xn] with its Zn-grading is
∏n

i=1(1 −
Ti)

−1, so the argument in [15, Theorem 2.4] gives K0(V1
n). The proof of (2) is

straightforward because the Krull dimension of an S-module can be read off from
its Hilbert series (see [15] where this idea is used).

9. An Equivalence of Categories

The main result in this section can be used to give an alternative proof of Theorem
6.9. The result is analogous to [5, Theorem 4.5(1)]. That result concerns a k-linear
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Abelian category C, an object O ∈ C, and an auto-equivalence σ of C; it is sup-
posed, among other things, that {snO | n < 0} is a set of generators for C. Section 6
shows the need for a version of this result which assumes somewhat less: in Section
6 we have a set of generators {O(i) | i ∈ Zn} and we must prove an equivalence of
categories result similar to [5, Theorem 4.5(1)] before we can conclude that each
(i) extends to an auto-equivalence of ModC.
We consider the following situation. Let C be a k-linear Noetherian category,

with a generating set O = {O(g) | g ∈ G} of Noetherian objects indexed by a
group G. Let

SumO = the full subcategory of C consisting of
finite direct sums of the O(g)s.

A shift on O is a set S = {sg | g ∈ G} of k-linear automorphisms of SumO
satisfying

(i) se = id where e is the identity in G;
(ii) sgsh = shg for all g, h ∈ G;
(iii) sg(O(h)) = O(hg) for all g, h ∈ G.

Given such data, we may associate to eachM ∈ C a graded k-space

1(M) := Hom(O,M) :=
⊕

g∈G

Hom(O(g−1),M).

We may make

A := 1(O) = Hom(O,O) =
⊕

g∈G

Hom(O(g−1),O);

a G-graded k-algebra with multiplication

x · y = xsg−1(y),

where x ∈ Hom(O(g−1),O) and y ∈ Hom(O(h−1),O). We may define a right
graded A-module action on 1(M) by m ·y = msg−1(y), where m ∈ Hom(O(g−1),
M) and y ∈ Hom(O(h−1),O). A morphism M → N gives a morphism of G-
graded A-modules 1(M) → 1(N ). Thus, we have a functor 1 = Hom(O,−): C
→ GrModA. Our goal is a generalization of [5, Theorem 4.5(1)] which shows
that 1 induces an equivalence between C and an appropriate quotient category of
GrModA.
Aiming for generality, but still following the ideas in [5], we let B be a graded

subalgebra of A. The restriction functor GrModA → GrModB is exact, so its
composition with 1 gives a functor F : C → GrModB. Since F is built from Hom-
functors it is left exact. We denote the right derived functors of F by Exti(O,−);
for M ∈ C, we may view Exti(O,M) as a graded right A-module or B-module.
We can compute these right derived functors via injective resolutions because C
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consists of the Noetherian objects in the locally Noetherian Grothendieck category
C = Lex(Cop,Modk) (Proposition 1.3).
Recall that a dense subcategory T ⊂ GrModB is localizing if the quotient func-

tor π : GrModB → GrModB/T has a right adjoint; we denote the right adjoint by
ω, and note that πω ∼= id. Given such a T, objects in it are called torsion, and
objects having no nonzero torsion subobjects are said to be torsion-free.
We denote by grmodB the full subcategory of GrModB consisting of the Noeth-

erian modules.

THEOREM 9.1. Let C be a Noetherian k-linear category with a generating set
O = {O(g)|g ∈ G} and shifts S = {sg} on O. Let A = Hom(O,O) and let B be a
G-graded subalgebra of A. Suppose that T ⊂ GrModB is a localizing subcategory
such that

(1) every A(g)/B(g) is torsion;
(2) each Ext1(O,M) is torsion;
(3) if 0 $= M ∈ C, then Hom(O,M) is not torsion;
(4) the torsion submodule of B/XB is Noetherian for every finite set of homoge-

neous elements X ⊂ B.

Then B is right Noetherian, and there is an equivalence of categories

C ∼= grmodB/T ∩ grmodB.

Proof. Our proof is follows that in [5, Theorem 4.5(1)].
Let π : GrModB → GrModB/T be the quotient functor. It is exact. We want to

prove that πF : C → grmodB/T ∩ grmodB is an equivalence.

Step 1. πF is exact.
Since 1 is defined in terms of Hom(O(g),−), it is left exact. If 0 → M →

N → L → 0 is exact, there is an exact sequence

0 → FM → FN → FL → Ext1(O,M). (9.1)

By hypothesis Ext1(O,M) is torsion, so πF is exact.

Step 2. πF is faithful.
Since πF is exact, we must show that πF(M) $= 0 if
M $= 0. This follows from the hypothesis that Hom(O,M) is not torsion if

M $= 0.

Step 3. If M ⊂ N , then FN /FM is torsionfree. In particular, FN is torsion-
free.
By (9.1), FN /FM is a submodule of FL, so it suffices to show FL is torsion-

free. Suppose x ∈ Hom(O(g),L) ⊂ FL is such that xB is torsion. Since xA/xB
is a homomorphic image of a torsion module A(g)/B(g), xA is torsion. The image
of F(x): F(O(g)) → F(L) is xA, which is torsion, so πF(x) = 0. The map
x: O(g) → L factors as an epimorphism followed by a monomorphism, say
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O(g) → I → L. By Step 1, πF(x) is a composition of an epimorphism followed
by a monomorphism πF(O(g)) → πFI → πFL. Therefore πF(I) = 0 so, by
Step 2, I = 0, whence x = 0.

Step 4. B is right Noetherian as a G-graded B-module.
Let N be a G-graded right ideal of B. A homogeneous element x ∈ Ng is map

O(g) → O. For a finite subset X ⊂ N , there is a map from PX := ⊕
x∈X O(gx) to

O; writeNX for its image. The image of FPX → FO isXAwhich is a submodule
of F(NX). Since O is Noetherian, there is a finite set X such that NX is maximal
among such subobjects. Set N = NX and P = PX.
Applying F to the factorization P → N → O where the first map is epic

and the second monic, we see that FN /XA is torsion. Since N is maximal, N ⊂
FN . ButXA/XB is torsion, hence N/XB ⊂ FN /XB is torsion. By hypothesis,
N/XB ⊂ B/XB is Noetherian, whence N is finitely generated.

Step 5. For each M there is an epimorphism (xi):
⊕

O(g) → M, such that
FM/(

∑
i xiB) is torsion.

There is an epimorphism (xi) because O is a set of generators. Because πF is
exact, applying F to this epimorphism gives a map

⊕
A(g) → FM which is an

epimorphism up to torsion; that is, FM/
∑

xiA is torsion. But each A(g)/B(g) is
torsion, so FM/

∑
xiB is torsion.

Nowwe define a functor C → grmodB/T∩ grmodB by sendingM to πF(M) =
π(

∑
i xiB), where the xi are as in Step 5. This functor is well-defined, and πF is

the composition of it with the inclusion grmodB/T ∩ grmodB → GrModB/T.

Step 6. For every finitely generated G-graded right B-module M, there isM ∈
C such that πF(M) ∼= πM.
Choose finite sums P1, P0 of shifts of B and an exact sequence

P1 → P0 → M → 0.
Let Pi be the sum of shifts of O corresponding to Pi . Since the map P1 → P0 is
determined by elements in B, which are also elements in A, there is a correspond-
ing map P1 → P0. By definition, πF(Pi) ∼= π(Pi) for i = 0, 1. Let M be the
cokernel of the map P1 → P0. Then the sequence P1 → P0 → M → 0 yields an
exact sequence πP1 → πP0 → πF(M) → 0. Therefore πF(M) ∼= πM.

Step 7. Let M = FM and let M → M ′ be an injective B-module homomor-
phism. IfM ′ is torsionfree, thenM ′/M is torsionfree.
Let x ∈ M ′

g be such that xB + M/M is torsion. We can view x as a map
B(g) → M ′. Let L = {b ∈ B | xb ∈ M}. Then (B/L)(g) is torsion. Applying π
to the exact sequence P1 → P0 → L(g) → 0 where Pi are finite sums of shifts of
B, we obtain an exact sequence

πP1 → πP0 → πB(g) → 0 (9.2)
inGrModB/T, because π(L(g)) = πB(g). Let (fij ) and (gi) denote the maps from
P1 → P0 and P0 → L(g) ⊂ B(g) respectively. Then

∑
i gifij = 0 for all j . We
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can lift (9.2) to an exact sequence P1 → P0 → O(g) → 0 because πF is full
on the objects and morphisms in (9.2); we denote the lifted maps by (fij ) and (gi)
also.
Let h: P0 → M be the composition of (gi) and x. Then we can lift the sequence

P1 → P0 → M to P1 → P0 → M. Hence the map P0 → M factors through
(gi): P0 → O(g). Now we have a sequence FP1 → FP0 → M and Pi ⊂ FPi

for i = 0, 1. Therefore h factors through (gi): P0 → B(g); thus there is a map
y: B → M such that (gi)x = h = (gi)y, and it follows that (gi)(x − y) = 0.
Since the image of (gi) is L(g) and B(g)/L(g) is torsion, the image of x − y is
torsion. But M ′ is torsionfree, so x = y and xB = yB ⊂ M. Therefore M ′/M is
torsionfree.

Step 8. πF is an equivalence C → grmodB/T ∩ grmodB.
By Steps 1, 2, and 6, it suffices to show that the functor is full on morphisms.

Since T is localizing, π has a right adjoint ω: GrModB/T → GrModB and πω ∼=
id. Since O is a generating set, it suffices to show that

πF : HomC(O(g),M) → HomGrModB/T(πF(O(g)),πF(M))

is an isomorphism for allM ∈ C and all g ∈ G. If we setM = FM, then

M =
⊕

g∈G

HomC(O(g),M).

However, by Step 7, ωπM ∼= M, so
⊕

g∈G

HomC(O(g),M) ∼= ωπM

∼=
⊕

g∈G

HomGrModB(B(g),ωπM)

∼=
⊕

g∈G

HomGrModB/T(π(B(g)),πM).

=
⊕

g∈G

HomGrModB/T(πF(O(g)),πF(M))

as required.

The next result shows that the conditions on T are unavoidable if one seeks a
result of this type. A localizing category is stable if it is closed under injective
envelopes in the ambient category.

PROPOSITION 9.2. Let T be a stable localizing subcategory of GrModA. Then
for every nonzero object M in GrModA/T, Hom(A,M) is nonzero and torsionfree
and Exti(A,M) is torsion for all i > 0.

Proof. Compare the minimal injective resolutions ofM and ωM.
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In the situation of Theorem 9.1, there is at most one localizing subcategory T
with properties (1)–(4). Moreover, by Step 3 in the proof Hom(O,M) is torsionfree
for all 0 $= M ∈ C. If, in the situation of Theorem 9.1, T is sent to itself by the
degree shift functors (g) on GrModB, then the shifts sg on O can be extended to C.
Often, as in the earlier part of this paper, the subcategory T may be defined by

using a dimension function. Let ∂ be an exact dimension function on GrModB.
Suppose that

(a) ∂(FM) > d for all 0 $= M ∈ C, and
(b) ∂(Ext1(O,M)) ! d for allM in C,
(c) ∂(A(g)/B(g)) ! d.

Then the full subcategory of GrModB consisting of modules M such that ∂M ! d
is a localizing subcategory satisfying conditions (2) and (3) in Theorem 9.1.
We record some useful consequences of Theorem 9.1.

COROLLARY 9.3. Let C be a Noetherian k-linear category with a generating set
O = {O(g) | g ∈ G}, and shifts S = {sg} on SumO. Let A = Hom(O,O). If each
O(g) is projective, then A is right Noetherian, and C ∼= grmodA.

Proof. By hypothesis, Ext1(O(g),−) = 0, so T is zero. Now take B = A, and
apply the theorem. In this case the shifts sg can be extended from O to the whole
category C.

COROLLARY 9.4. Let B be a graded Noetherian algebra. Let T ⊂ GrModB be a
stable localizing category, and set C = grmodB/T ∩ grmodB. Write B(g) for the
image of B(g) in C. Suppose there is a shift on Sum{B(g) | g ∈ G}. If each B(g)
is projective, then grmodB/T ∩ grmodB ∼= grmodA, where A = Hom(B,B).

If A = B is right Noetherian, we then have the following.

COROLLARY 9.5. Let C be a Noetherian k-linear category with a generating set
O = {O(g) | g ∈ G}, and shifts S = {sg} of SumO. LetA = Hom(O,O). Suppose
that T ⊂ GrModA is a stable localizing subcategory satisfying conditions (2)–(3)
of Theorem 9.1. If A is right Noetherian, then C ∼= grmodA/T ∩ grmodA.

EXAMPLE 9.6. Let R be a right Noetherian connected graded ring of global di-
mension n < ∞. Let s be the degree shift functor on GrModR. Let O = ⊕l−1

i=0 siR
andO(i) = sli(O). Then B = ⊕

i∈ZHom(O(−i),O) is right Noetherian of global
dimension n because B is locally finite and GrModB ∼= GrModR.
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