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Abstract. This article discusses some of the similarities/differences 
between the theory of differential operators on (a) a non-singular variety 
in characteristic zero (b) a non-singular variety in positive 
characteristic (c) a singular variety in characteristic zero. 
St. Introduction. 

The goal is to describe some of the ring theoretic structure of the 
rings of differential operators described in the abstract. Our main 
interest will be in singular varieties in characteristic zero, and 
non-singular varieties in characteristic p > 0 . The theory for 
differential operators on non-singular varieties in characteristic zero is 
well developed. We begin by recalling some of this theory, which will 
provide the background against which the other cases will be viewed. 

Let X be a non-singular irreducible affine algebraic variety over an 
algebr~ically closed field k of characteristic zero. The ring of 
differential operators on X, denoted ~(X), may be defined as follows: 
denote by A the co-ordin~[e ring of X (i.e. A = 8(X), the ring of regular 

functions on X) and define ~(X) to be the k-subalgebra of EndkA 

generated by A (acting on A oy multiplication) and DerkA , the module 

of k-linear derivatibnson A. For example, if x~n, affine n-space, 

then ~(X) ~ k[tl,..,tn,81,..,Sn] where 8j = 8/8t], the partial derivative 

with respect to t]. The following properties hold for any such X (some 

details may be found in Biork's book [2]) 

(a) ~O(X) is a simple, noetherian, domain, finitely generated as a 
k-algebra; 

(b) ~(X) is a filtered algebra, filtered by the order of the 
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differential operators and the associated graded algebra 

is gr~(X) ~ SA(DerkA), the symmetric algebra of the 

A-module DerkA ; 

(c) The global homological dimension of ~ (X) is 

gl.dim ~(X) -- dim X. 

As yet non-commutative algebraists do not have sufficient 

techniques to penetrate the mysteries of simple, noetherian domains. For 

example, one would conjecture that if X and Y are non-isomorphic curves 

then ~(X) and .~(Y) are non-isomorphic k-algebras- but this question 

remains wide open (of course the rea[ question is to allow X and Y to be 

of any dimension, but why add insult to injury!). 

In this article we will neatly sidestep this difficulty by considering 

singular varieties over a field of characteristic zero, and non-singular 

varieties over a field of posiiive characteristic. As this conference is 

primarily for ring theorists, we hope to convince the audience/reader that 

the rings of differential operators on such varieties are worthy of their 

interest. 

§2. Singular Varieties. 
The results on singular varieties in this section are joint work with 

J.T. Stafford [8]. Many of these results have .~lso been obtained independ- 

ently by J. Muhasky and will appear in his Ph.D. Thesis. 

The definition of ~(X) given in §I for X non-singular, char k -- 0 is 

not the appropriate dJinition when X is singular, or when char k = p > 0. 

We begin by giving the appropriate definition (for any commutative 

k-algebra A) of ~(A), the ring of k-linear differential operators 

onA. Not surprisingly if X is as in §I, and A--6(X) then ~(A)--~(X). 

Let k be any commutative ring, A any commutative k-algebra. For 

M,N any A-modules, give HOmk(M,N ) an A ~k A-module structure by 

(a ~ b)e(m)=3$(bm) for a,b~ A,$~ HOmk(M,N),m~ M. Denote by 
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the multiplication map p:A ~ k  A ~ A , p(a ~ b) = ab . This is a 

k-algebra homomorphism so the kernel, J say, is an ideal. It is easily 

shown that J is generated as an ideal by {1 ~) a - a ~ 1 la E A} .  

l ) e f i n i l i on  1. For n z -1 define ~)An(M,N) , the space o! 

k-Mneer differenliel operelors from M to N of order _< n, by 

~An(M,N) : {9 E HOmk(M,N) I jn+l .e = O] . 

Write ~A(M,N):= Unzo ~An(M,N) , for the space of differential operators 

from M to N. 

We shall drop the subscript A from ~A whenever convenient. It is 

clear that ~n(M,N) c ~)n+I(M,N), and ~-I(M,N) : 0 . Observe that 

e ~ ~O(M,N), If and only if, (1 ~ a - a (~) 1)e = 0 for" all a E A (as J Is 

generated by such elements). This is equivalent to 

(1 ~) a - a (~ 1)@(m) = 0 for at1 m E M, and from the definition of the 

A ~ k A  action this is saying that ae(m)=e(am) for all a E A , m E M ;  

that is, ~)O(M,N) ;- HomA(M,N ) . 

In the special case where M = N , wr i te ~}(M):= ~(M,M) . It is 

straightforward to check that this is a k-subalgebra of EndkM, and that 

~(M,N) becomes a ~(N) - ~(M) bimodule. The module action comes from 

the fact that HOmk(M,N) is a EndkN - EndkM bimodule. 

Some work is involved in proving the following: 

THEOREM 2.1 ([5], [9]) Le! k be en elgebreiceMy closed field of 

cherecLerisMc zero, end let X be e non-singular irreducible effin~. 

veriely over k . Le! A be e loceliselion of O(X) . Then ~(A) is 

generetedby A end DerkA. 

It was shown above that ~O(A,A) = A, and it is an easy exercise to 

prove that ~)I(A,A) = A (~ DerkA ; so one sees that the subalgebra of 

EndkA generated by A and DerkA lies in ~(A) for any k, any A. 

BOTAT[ON. For the remainder of this section, k will be an 
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algebraically Closed field of characteristic zero, and X an irreducible 

affine variety over k. 

Define ~(X), the differential operators on X to be ~(8(X)), where 

8(X) is the ring of regular functions on X , and ~)(~(X)) is obtained 

through Definition i in the case M = N -- (3(X) = A . By Theorem 2.1 this 

agrees for X non-singular with th~ definition given in §1. 

Fieca[l that for X non-singular ~)(X) is a (right and left) noetherian 

finitely generated k-algebra, but this is not necessarily true for X 

singular. In [l] it is shown that if X is the z~roes over ~ of 

Xi 3 + X23 + ×33 then ~(X) is neither noetherian nor Mnitely generated. 

In this example dim X = 2, however, we have 

THEOREM 2.2 [8] Let X bee curve. Then 

(a) ~(X) m ¢~igh/ end lefl) n~ethePien~ end e finMely genereled 

k- elge.bre; 

(b) ~(X) has e unique minimal non-~.~.~'o two sided idee~ J(X) 

say. end H(X):-- ~(X)IJ(X) m e finite dimen~onel k- algebra. 

This theorem is proved by rel~ting ~)(X) and ~(~ where "~ 

denotes the normalisation of X. The morphism ~:~-~ X corresponds to 

the k-algebra homomorphism ~(X)-~ 8(~') , where ~(~') is the integral 

closure of (~(X) in its field of fractions. Viewing ~3(X) and 8(~) as 

6(X)-modules, the definition above a11ows us to construct ~)(~X):- 

~(X)(8(~'),(~(X)) . More concretely, one may show ~('~,X) -- [D E ~(~)ID(f) e 

(~(X) for all f E 8(~)}. There is a natural ~(X) - ~(~') bimodule structure 

on ~(~',X), where the module action is iust composition of maps. Thus, 

there is a functor ~(~,X) (~(~)- : ~('X')-Mod -~ ~(X)-Mod. The following 

holds: 

THEOREM 2.3 [8] Let X be. e curve. The functor ~(~,X)~ll(~)- 

gives en equivalence between the ceLegorie.~ ~l(~)-Mod end ~(X)-Mod (i.e. 

~) end .It(X) ere IdorMe e.quivelenl), if end only if.. ~:~ ~ X is 

in/eclive. 
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Remark.  In fact a l i t t le more is true, fnthat, i f  ~ is notiniective 

then ~)(X) is not a simple ring (so cannot be Morita equivalent to ~ )  

which is a simple ring). 

One step in the proof of Theorem 2.3 is to show that the functor 

induces an equivalence of categories, i f  and only if, thp natural map 

~(~,X) (~ 6(~) -, 8(X) is surjective, or (what is the same thh,y) that there 

exist differential operators D X e ~ , X )  and regular functions f x  e ~ )  

such that ~--X Dx(fx) = 1. 

Example. This gives an easy case where finding the D and f 
>. X 

y2 '~' is child's play. Consider the curve X - A 2 given by = x 3 . Then X = ~ 

A I and ~:A I-~ X is given by ~:t-~ (t2,t 3) . This is iniective so such 

Dx,f X exist. Consider ~) = k[t] = 6(X) = k[t2,t 3] . Put D = (iS/at-l) 

~(~,X) and observe that D(-1)= .I . In this case, .i)(~') and .It(X) are 

Morita equivalent. 

One consequence of Theorem 2.3 is that one loses information about 

the existence of singularities when p~ssing from X , or (~(X)-Mod to 

~l(X)-Mod. A natural question is whether .It(X) still retains this 

information - one would at least like to know that if '~ X then ~(~) and 

~(X) are not isomorphic. Suppose this is the case; then what structural 

aspects of ~(X) refl.ect the existence of singularit ies on X ? Of course, 

one can recognise the existence of singularit ies on X from 6(X) just by 

determining the global dimension of 8(X) ; that is, X is non-singular, i f  

and only if, gl.dim(X) < co (this is not a sensible way to see i f  X has 

singularit ies but at least shows how the geometric information is 

reflected in the algebraic structure of 6(X)) . Of course, the global 

dimension of ~(X) does not retain the necessary information since i f  'n:'~' 

X is in]ective then gt.dim ,l)(X) = .1 (by Theorem 2.3 and (c) of §.1). 

Returning to Theorem 2.2 an obvious question is to determine the 

structure of the f ini te dimensional algebra H(X). First, we remark that 

J(X) = Ann~(x)(6(X)/,~,X)*6~)) where ~(~',X)*6(~ denotes the image of 
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the natural map ,1)t,~,X) ~ ( ' ~ ) 6 ( ~ )  ~ 6(X), D ~ f --, D(f) .  In part icular,  i f  

X is non-singular then ~)(X) is simple so H(X)= O.  But also after 

Theorem 2.3, i f  "r[:'~'~ X is injective then H(X) = 0 . In fact, as 

(implicitly) remarked earlier, H(X) = 0, if and only if, "n is injective. 

During the meeting A. Schofield asked whether H(X) was a direct 

sum of algebras, one for each singular point. This is the case (as is 

proved in [8]), and thus we wr i te  H(X) = (:~ H x ; i t  can be shov,,'n that 

xeSingX 

if 6X, x is the local ring at x, and ~X,x = ~)(6X,x), then ~X,x has a 

unique minimal non-zero ideal Jx and ~X,x/Jx - H x, The point is that 

determining H(X) is alocalpr'nblern, and the questinn is to determine how 

the structure of H x depends on the nature of the singularity at x . The 

results in [8] are a long way from answering this question completely and 
we just mention two examples. 

Example 1. Let ~ = A 1 , and 6~) = k[t] . Let X be the curve 

with 6(X)= k[ t2, t ( t2-X1). . . ( t2-kn) ] where XI,..,X n are dist inct non-zero 

elements of k .  In this case H(X)= k ~ . . . ~  k a direct sum of n copies 

of k. 

Example 2. Let ~ =  A 1 , and 8,~') = k [ t ] .  Let X be the curve 

with 6(X) = k [ t ( t -1 ) ( t -2) , t2 ( t - l ) ( t -2 ) ]  = k + kf + ktf + f2k[t ]  where f = 

t ( t -1 ) ( t -2 ) "  Then (after much c°mputati°n) °ne has H ( X ) ~ ( k  kk~') 'O 

Another interest ing aspect of Theorem 2.2 is that although ~(X) is 

f in i te ly  generated gr~(X) need not be. I n [  8 ] i t  is proved that gr ~(X) 

is f in i te ly  generated i f  and only i f  ~:&t_, X is in]ective. The proof is 

somewhat tr icky, but in the special case where ~:~'-, X is unramif ied at 

al l  points it is easy to prove the! gr ~(X) is not noetherian (and hence not 

finitely generated). To start, when fT is ur~ramified then ~(X)_c ~)(~ by 

[3]. Hence ~(~,X) becomes a two-sided ideal of ~(X) ; however, the 
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endomorphism ring of any ~(~)-module of finite length is finite 

dimensional over k by Quillen's Lemma, and hence dimk~(X)l~(.'~,X) < co. 

Consider R= gr ~) ~ S = gr ~(X) ~ J = gr ~,X), inside the commutative 

k-algebra gr ~('~). It is an easy exercise to show that because dimk(R/J) 

= co and dimk(SIJ) < oo, then S cannot be noetherian. We do not have 

an explicit description of gr~(X) in terms of (~(X) - it would be 

interesting to have such a description. 

Recall that when X is non-singular, then gr~(X) ~ 6(T'X) where 

T*X is the cotangent bundle. As we have just said, gr~(X) need not be the 

co-ordinate ring of any affine variety when X is singular, hencoitis not 

possible io give a similar geometric definition of what it means for a 

module to be hotonomic. Is there some "suitabi~" algebraic definition? If 

X is non-singular then for 0 ~ f e ~(X), 6(X)f is a ~(X)-module of finite 

length. Is this true when X is singular? 

To end we state a result  for higher dimensional var iet ies. 

THEOREM 2.4 Let X be ~, .~inguler verieiy of dimension z 2 ; 

suppose lhe! /he normeliselinn ~ , is non-singuler, end lhe, I Sing X i5 

finite°  Then ~(X) is e finMe~y genereled k- elge#c.~ which is rJgh! bu! not 

lef ! noeL~.rien. 

§3. Positive Characteristic. 

The differences between the characteristic zero and positive 

characteristic theories are striking. Yet so are the similarities. Let us 

exptain by giving two theorems. In this section k denotes an algebraicatly 

closed field of characteristic p > 0 , and X denotes a non-singular, 

irreducibteaffine variety ov~ k. Write A =6(X) and for each r_> 0 

define A r = {aPrl a ~ A}. This is a k-subalgebra of A isomorphic to A. 

THEOREM 3.1 ([4], [7]) ~(X) = U n=l EndA~A" 

Nolatio, Write Dn:= EndA A . 
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THEOREM 3.2 [7] gl.dim ~)(X) = dim X . 

Certainly Theorem 3.1 has no analogue in characteristic zuro and 

illustrates a substantial difference. A good example to keep in mind is X = 

A S in which case A = k i t ]  and A r = k[tP r ]  . Thus EndAA ~ M~(k[tPV']) 

as k i t ]  is a f ree k[t ] -module of rank pr More exp l ic i t l y ,  i f  p = 2 , 

then D O = k [ t ] ,  D 1 -- M2(k[t2]) , D 2 ~ H4(k[ t4])  etc., and the inclusions 

D O c D l c  D 2 c , .  are easy to descr ibe in terms of basis elements viz. 

o , o o  

O0 ~ t 2 0 0 

O0 ! 0 etc. 

Some of the differences from the characteristic zero theory (which are 

immediate from Theorem 3.1) are that ~(X) is no longer a domain, ~)(X) 

is not finitely generated, ~(X) is not noetherian (all for dim X > 1) . 

For example, ~(X) Is not finitely generated because any finite set of 

elements can at best generated some D n , but it is an easy matter to see 

that Dn# Dn+ I. If K = Fract A , then ~)(K) is a Iocalisation of ~(X) and 

similarly H(K)= U n= 1 EndK K where K n ={~P~Io:EK}. As K isa 

free Kn-module of rank pn EndK~, K ~ ~n(Kn) so ~(K) is not a domain, 

hence neither is ~(X) . Also the argument of [ IS , Corollary 2.2 (4)] 

shows that ~(K) is not noetherian, hence neither is ~(X). 

Theorem 3.2 illustrates one of the similarities with the 

characteristic zero theory. The characteristic zero proof.makes use of 

grH(X). In characteristic p, gr ~)(X) appears to be of little help in 

understanding H(X) (for examplu gl.dim ~)(A 1) = oo ). instead one makes 

use of the description of ~(X) given in Theorem 3.1. The following 

summarises some of the good properties of the D n . 

PROPOSITION 3.3 [7] For ell n E ~ , /he fol,~;~wing hold. 
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(a) D n is Morile e.quivelen/ to A n , theproge.neretor being the Dn-A n 

bimodule A [4] ; 

(b) Dn+ I is e finitely genereted pro]e,,~tive {'>:iy~}/ or lef/) D n- moduts 

end D n m e direct summendof Dn+ i es e D n- modulR; 

(c) ~(X) is e prl~iective ?>i~)~' or lefl) D n -moo?~le~ 

(d) If m z n, then I-IOmD, ~(Dm,Dn) is e.~enk J protective mg,~t 

D m- moo?lie; 

(e ) If M is e simple left Dn-module then .~(X) (~)DviI~1 .C~" e sLmple 

/eft ~(X)- module. 

One further similarity with the characteristic zero theory is that 

~(X) is a simple ring, and (~(X) isa simple ~(X)-module. Before proving 

ihisnote that if O~ ! is an ideal of ~(A) then A n! :~ O. To see this 

choose 0:~ DEI of lowesl urder" i if a E A, then [a,D]E I is of lower 

order, hence zero by choice of D ; but [a,D] = 0 for' all a E A implies 

thai D is a multiplication operator. 

Proposition 3.4 If X m non-.c::aguler then &'(X) is e simple ring. 

P r o o f .  in [B] this is proved for X ~ A 'I . Since ~i(A n) -~ 

~(AJ') ~)n it is easy to see that ~(A n) is also simple. 

As ~X is a quasi-coherenl (~X-mOdule it is enough to SIIow that 

each stalk ~X,x = 8X,x ~) 8(X) ~(X) is a simple ring for x ~ X. As (~X,x is 

regular local, there is a local system of parameters tl,..,t n (n = dim X) 

(which we may choose to be e~ements of (~(X)) such thal ~ , the 

module of Kahlerdiffereniialsisfree on dtl,..,dt n. Henceby [ 5 ,§IS] 

~)X,x is generated by 8X, x and a set of differential operators {D I I = 

(il,...,i n) o _< i < co] which satisfy DI(t J) = (J)t J-[ where J = (il .... in) 

and we are using standard mu!.ti-index notation. The point is that ~X,x 

contains a copy of .~(A n) , namely the subalgebra generated by k[t I ..... t n] 
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and al l  the D! . 

Let O ~ l  be an ideal of ~X,x • Then (as argued above) l n 6 x , x  ~ 0 "  

Hence I n 6(X) ,  0 ,  and consequently [ n k [ t l , . . . , t n ] ,  0 . In part icular  

!n~(A n)~0, so by the simplicity of ~(A n) it foltows thaI 1el. Hence 

"~X,x is simple as required. D 

£8ROLLAR¥ 3.5 6(X) is e .~imple ,~(X)- module. 

Proof. If not then any proper submodute would be an ideal of 6(X) 

as 6(X) ~ ,I)(X) ; if l c 6(X) were the proper submodute then 

0 ~ I ~(X) c_ Ann~(x)(6(X)/]) would be a proper ideal of the simple ring 

~(X). Contradiction. [] 

Remark. Of course the above proof works for any commutative 

k-algebra A; VlZ. ~)(A) slmple, Implles A Is a slmple .~(A)-modUle. Is 

the converse true? 

Questions. 

5ome probtems/questlons have already been mentioned above. Let 

us give a few more which relate to the characteristic p theory - so In 

what follows X,k are as in §3. 

I. What is the appropriate definition of a holonomic module? It is 

tempting to hope that an algebraic rather than a geometric definition 

is possible viz. N is holonomic if ExtI~(x)(M,~(X))--0 for all 

0 < i < dim X. In characteristic zero this is equivalent to the 

geometric definition in terms of the dimension of the associated 

variety!2], As Biork pointed out during the meeting, this 

definition would lead to a "good" theory if question (2) has a positive 

answer. 

2. Is ~(X) a Gorenstein ring? That is, i f  N is a (r ight)  ~(X)-sub- 

module of Ext]~(X)(N,~(X)) for some left ~)(X)-module N, is 

Extil)(x)(NJ)(X)) = 0 for al.l 0 _< i < j ? 
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. 

4. 

Does a version of Quillen's Lemma hold? That is, i f  M is a simple 

~(X)-module, is End l)(x)M = k ? 

If 0 =~ f e O(X), is 8(X)f of f inite length as a ~(X)-module? This 

may well require an answer to question (3) as a preliminary. 

A c u r i o s i t y .  Take A : k [ t j / ( tn) .  Then ~(A) ~ Mn(k), the ring of n!n 

matrices over k .  To see this observe that EndkA ~ Mn(k) so we only need 

show for $~EndkA,  that j r $ = o  for r > > O .  As J is generated by 

1 ~ t - t ~ 1, and 1 ~ t ,  t (~ 1 are both nilpotent elements in A ~)k A 

it fol lows that J is a nilpotent ideal. Hence j r  = 0 for r >> 0 and the 

result follows. 

Another curiosity. The Steenrod Algebra acts as differential 

operators. This observation was made with J.D.S. Jones, and ] am grateful 

for his allowing me to include it here. 

Let F 2 denote the field of two elements, and wr i te 

S = F2[sql,sq 2 .... ] for the Steenrod algebra - for brevity wri te sj = SqJ. 

The co-product A:S : ,  S (~)k S is given by A(S n) = ,,.i=OSn_i ~ s i where 

s O = 1.  For x E S, adopt Sweedler's notation and wr i te  

A(x) = ~-(x) x(1) ~ x(2) • Suppose that A is a commutative F2-algebra 

which is an S-module, such that for all x E S,  a ~ A,  b E A on~ has 

x(ab) - Z(x)  x(1)(a) x(2)(b) Then we claim that the algebra 

homomorphism S-+ End F A,  actually has its image inside ~)(A). 

To prove this notice f i rs t  that A(Sl) = s I ~ 1 + 1 ~ s I , and thus 

Sl(ab)= s l ( a )b+as l ( b ) ,  hence s I is a derivation on A.  By induction 

on n, show s n E ~)n(A). Notice that Sn(ab) = ~..i~='~ Sn_i(a)si(b) + asn(b), 
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whence [a,Sn](b) = - ~.. i .osn_i(a)si(b).  That is, for all a E A ,  [a,s n] = 

~--i=O Sn-i(a)si ; by induction this element is in ~ n - l ( A ) ,  and hence 

s n ~ ~)n(A). 

As concrete examples take the action of S on H*(~PC°,F2) -- F2[u] ,  

the polynomial ring in u. The action of S is given by 

s n Sq n :um -m,um+n - ~ (~,~ , and it is immediate that this action coincides 

with that of u2n(I/nOsnlsu n This explicitly describes the algebra 

homomorphism, S -~ ~(F2[u]). 

The action of S on H*(X,F 2) where X is a product of countably 

many copies of ~pCO, is a faithful representation of S. In this case 

H*(X,F 2) = F2[ul,u2 .... ] . the polunomial ring on count:~bly manet 

indeterminates. Here the a~gubf a homomorphism is given by 

sqn-~ ~-IIl=n u218I, where I = ( i l , i  2 .... ) ,  and u 2I = Ul 2i~ u22iL . . . . .  

and I l l - -  i 1 + i 2 + ... , and 81 = (1/ i1! i2!  ... ) 8 i~+i~+'" /3ul i ,su2iL.. .  
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