UIFFERENTIAL OPERATORS ON THE AFFINE AND PROJECTIVE LINES
 IN CHARACTERISTIC $p>0$

by
S.P. SMITH

Let k be a field, and denote by A^{1} (or A_{k}^{1}) and P^{1} (or P_{k}^{1}) the affine and projective lines over k. When k is of characteristic 0 the rings of differential operators on \mathbf{A}^{1} and P^{1} (which we denote $D\left(\boldsymbol{A}_{0}^{1}\right)$ and $D\left(\mathrm{P}_{0}^{1}\right)$) have been extensively studied, and are considered to be well understood. In contrast, if char $k=p>0$, the rings of differential operators on A^{1} and P^{1} (which we denote $D\left(A_{p}^{1}\right)$ and $D\left(P_{p}^{1}\right)$) have not been studied at all. The purpose of this note is to begin an investigation into $D\left(\mathbb{N}_{p}^{1}\right)$ and $D\left(\mathbf{P}_{p}^{1}\right)$.

Before we outline some of our results, we give a brief account of the wider context in which $D\left(A_{0}^{1}\right)$ and $D\left(P_{0}^{2}\right)$ appear (and which accounts for their significance). First, if one is to study differential operators on any affine or projective variety then $D\left(\mathbf{A}^{1}\right)$ and $D\left(\mathbf{P}^{1}\right)$ are the first cases to examine. However, another important motivation is the connection of $D\left(A_{0}^{1}\right)$ and $D\left(P_{o}^{1}\right)$ with the representation theory of finite dimensional Lie algebras in characteristic zero. The recent history of $D\left(\mathbf{A}_{0}\right)$ (known as the Weyl algebra) begins with Dixmier's papers [3] and [4]. He showed that if g is a finite dimensional nilpotent Lie algebra over \mathbb{C}, then the primitive factor rings of $U(g)$, the enve loping algebra of g, are of the form $D\left(\boldsymbol{A}_{\mathbb{C}}^{n}\right) \cong D\left(\boldsymbol{A}_{\mathbb{C}}^{d}\right) \otimes_{\mathbb{C}} \ldots$ $\otimes_{\mathbb{C}} D\left(A_{\mathbb{C}}^{1}\right)$. Hence, the irreducible representations of $\underset{\sim}{g}$ are precisely the simple modules over $D\left(A_{\mathbb{C}}^{n}\right)$ for various n. For example, if $\underset{\sim}{g}$ is the 3 -dimensional Heisenberg Lie algebra then the infinite dimensional irreducible representations of $\underset{\sim}{g}$ are precisely the simple modules over $D\left(A_{\mathbb{C}}\right)$.

The ring $D\left(\mathbf{P}_{\mathbf{C}}^{\mathbf{1}}\right)$ arises in a similar way. Let G be a connected complex semisimple Lie group with Borel subgroup B; then G / B is a complex projective algebraic variety $\left(P_{\mathbb{C}}^{1}\right.$ arises as $\left.S L(2) / B\right)$, and the ring of global regular differential operators on $G / B, D(G / B)$, is isomorphic to a primitive factor ring of $U(\underset{\sim}{g})$ where $\underset{\sim}{g}$ is the Lie algebra of G. See [1] where this idea is exploited to verify the

Kazhdan-Lusztig conjectures on Verma modules.
The corresponding connections between representations of characteristic p Lie algebras and modules over $D\left(A_{p}^{1}\right)$ and $D\left(P_{p}^{1}\right)$ are not studied here. Rather, we concern ourselves with the ring theoretic properties of $D\left(A_{p}^{L}\right)$ and $D\left(P_{p}^{1}\right)$ and examine to what extent their structure parallels or diverges from $D\left(\boldsymbol{A}_{0}^{1}\right)$ and $D\left(\mathbf{P}_{0}^{1}\right)$. It is largely a matter of taking a result in characteristic zero and asking whether the same result holds in characteristic p, and if not, in what sense is it false.

In Table 1, below, the properties of $D\left(\mathbf{A}^{1}\right)$ in characteristics zero and p are set out side by side. Let us mention just a few of them. $D\left(\mathbb{A}_{0}^{1}\right)$ is finitely generated and Noetherian - both these are false for $D\left(A_{p}^{1}\right)$. Much of the "bad" behaviour of $D\left(A_{p}^{1}\right)$ can be attributed to the lack of some sort of finiteness condition (in particular, the question of whether every endomorphism of a simple $D\left(A_{p}^{l}\right)$-module is algebraic over k, is difficult because one has no finiteness condition which might allow a result concerning generic flatness of the associated graded algebra to be established). For a similar reason Gelfand-Kirillov dimension, which is an effective tool for $D\left(A_{0}^{2}\right)$, does not seem to be useful for $D\left(A_{p}^{2}\right)$. But, all is not lost. For example, if $k[t]$ denotes the co-ordinate ring of \mathbf{A}^{1}, and if $0 \notin f \in k[t]$ then $k\left[t, f^{-1}\right]$ is a $D\left(\mathbb{A}^{1}\right)$-module. In characteristic zero, $k\left[t, f^{-1}\right]$ is an Artinian module, and the usual proof involves Gelfand-Kirillov dimension. Nevertheless, in characteristic $p, k\left[t, f^{-1}\right]$ is also an Artinian $D\left(A_{p}^{1}\right)$-module, and the proof makes use of one
 $\underbrace{\infty}_{n=0} E_{k\left[t^{p}\right]^{n}}{ }^{k} t]$, is a union of matrix algebras over commutative rings (whereas $D\left(A_{0}^{l}\right)$ is a domain). One question which appears in [3] and remains unanswered to date, is whether $D\left(A_{0}^{1}\right)$ has a proper subring isomorphic to $D\left(A_{0}^{d}\right)$. It is quite easy to construct a proper subring of $D\left(A_{p}^{2}\right)$ which is isomorphic to $D\left(\mathbf{A}_{p}^{1}\right)$.

Although $D\left(P_{\mathbb{C}}^{1}\right)$ is a primitive factor ring of $\left.U(s)(2, \mathbb{C})\right)$, the natural map from $\operatorname{Hyp}(s l(2, k))$, the hyperalgebra of $s l(2, k)$, to $D\left(P_{k}\right)$ is not surjective if char $k=p>0$.
$D\left(P_{0}^{1}\right)$ has a unique two sided ideal (apart from 0 and $D\left(\mathbb{P}_{0}^{1}\right)$) and this ideal is of codimension 1 ; the analogous statement for $D\left(P_{p}^{1}\right)$ is also true. Whereas $K_{0}\left(D\left(\mathbb{P}_{0}^{1}\right)\right)=$ $\mathbb{Z} \oplus \mathbb{Z}, K_{0}\left(D\left(P_{p}^{1}\right)\right)=\mathbb{Z} \oplus \mathbb{Z}[1 / p]$; the lattice of order ideals in $K_{0}\left(D\left(P_{p}^{1}\right)\right)$ is isomorphic to the lattice of two sided ideals in $D\left(\mathbf{P}_{\mathrm{p}}^{1}\right)$.

TABLE 1
Properties of $D\left(\mathbf{A}_{k}^{1}\right)$

Characteristic zero	Characteristic $p>0$
finitely generated	not finitely generated
Noetherian	not Noetherian
simple ring	simple ring
domain	not a domain
gl. dim. $=1$	gl.dim. $=1$
K.dim. $=1$	K.dim. does not exist
GK.dim. $=2$	GK. dim. $=1$.
centre $=k$	centre $=k$
$K_{0}=\mathbf{Z}$	$K_{0}=Z[1 / p]$
Every derivation is inner	There exists a non-inner derivation
If I is a left ideal with $I n k[t] \neq 0$ and $I n k[d / d t] \neq 0$, then $I=D\left(A^{l}\right)$	If char $k=2$ then $D t+D x_{1} \neq D\left(A^{3}\right)$
If $0 \neq f \in k[t]$ then $k\left[t, f^{-1}\right]$ is Artinian	If $0 \neq f \in k[t]$ then $k\left[t, f^{-1}\right]$ is of finite length
$k[t]$ is a simple module	$k[t]$ is a simple module
D/Dt is a simple module	D/Dt is a simple module
Open question whether $D\left(A^{2}\right)$ has a proper subalgebra isomorphic to $D\left(A^{1}\right)$	$O\left(\mathbb{A}^{1}\right)$ contains a proper subalgebra isomorphic to $D\left(A^{1}\right)$ viz $k\left[t^{p}, x_{p}, x_{2 p}, x_{3 p}, \ldots l\right.$
If M is a simple module $E_{D d_{D}} M$ is algebraic over k	Not known

My initial interest in these ideas was aroused during conversations and correspondence with Ken Goodearl. I am indebted to him for his generous comments and assistance, especially relating to matters concerning K-theory. My thanks also go to C.R. Hajarnavis for many useful conversations during the preparation of these notes.
§1. DIFFERENTIAL OPERATORS
Let k be any commutative ring, and A any conmutative $k-a l g e b r a$. Then End A may be made into an $A \otimes_{k} A$-module by defining $((a \otimes b) \theta)(c)=a \theta(b c)$ for $\theta \in E n d_{k} A$ and $a, b, c \in A$. We write $[a, \theta]$ for $(a \otimes 1-1 \otimes a) \theta$, so $[a, \theta](b)=a \theta(b)-\theta(a b)$.

DEFINITION 1.1 The space of k-Zineos differential operators of order $\leq n$ on A, Diff ${\underset{k}{n}}_{n} A$, is defined inductively by $\operatorname{Diff}_{k}^{-1} A=0$, and for $n \geq 0$, $\operatorname{Diff}_{k}^{n} A=\left\{\theta \in \operatorname{End}_{k} A \mid[a, \theta] \epsilon \operatorname{Diff}_{k}^{n-1} A\right.$ for all a $\left.\in A\right\}$. The ring of $k-$ inear differential operators on A is $D(A)=\bigcup_{n=0}^{\infty} \operatorname{Diff}_{k}^{n} A$. If X is an affine algebraic variety over the field k with ring of regular functions A, we write $D(X)=D(A)$.

REMARK 1.2 (1) Diff $\mathrm{n}_{\mathrm{A}}^{\mathrm{A}} \mathrm{A}$ is an $A \otimes A$-submodule of $E n d_{k} A$
(2) If $\theta \in \operatorname{End}_{k} A$, then $\theta \in \operatorname{Diff}_{k} A_{A}$, if and only if, $\left[a_{0}\left[a_{1} \ldots\left[a_{n}, \theta\right] \ldots\right]\right]=0$ for all $a_{0}, a_{1}, \ldots, a_{n} \in A$.
(3) We refer the reader to [10] for a more comprehensive introduction to rings of differential operators on commutative rings.
(4) It is an easy exercise to verify that if k is a field of characteristic zero, and $k[t]$ is the ring of regular functions on \boldsymbol{A}_{k}^{1}, then $D\left(A_{k}^{l}\right)=k[t, d / d t]$ where $d / d t$ is the usual differentiation operator acting on the polynomial ring $k[t]$. As elements of End $k[t]$ one has $(d / d t) t-t(d / d t)=1$.

DEFINITION 1.3 Denote by $\mu: A \otimes_{k} A \rightarrow A$ the multiplication map $\mu(a \otimes b)=a b$. This is a k-algebra map (also an A-module map for either the right or left A-module structure on $A \otimes_{k} A$. . Put $I=$ ker μ.

THEOREM 1.4 (Heynemann-Sweedler [9], Grothendieck [8]). Let $\theta \in$ End $_{k} A$. Then $\theta \in \operatorname{Diff}_{k}^{n} A$, if and on ly if, $I^{n+1} \cdot \theta=0$.
92. PROPERTIES OF D $\left(A_{p}^{1}\right)$

Write $D=D\left(A_{p}^{1}\right)$, and consider D as the ring of k-linear differential operators on $k[t]$, the polynomial ring in t, over the field k of characteristic $p>0$.

The following result was arrived at during conversation and correspondence with

Ken Goodearl, and I am grateful for his allowing me to include it here.

Froof Let $\theta \in$ End $_{k} k[t]$. Notice that $I=\operatorname{ker}\left(\mu: k[t] \otimes_{k} k[t] \rightarrow k[t]\right)$ is generated as an ideal by $1 \otimes t-t \otimes 1$. Hence $I^{p^{n}}$ is generated by $(1 \otimes t-t \otimes 1)^{p^{n}}=1 \otimes t^{p^{n}}-$ $t^{p^{n}} \otimes 1$. So $\theta \in \operatorname{Diff} f^{n-1} k[t]$, if and only if, $I^{p^{n}} \cdot \theta=0$. That is, if and only if, $0=\left(1 \otimes t^{p^{n}}-t^{p^{n}} \otimes 1\right) \cdot \theta=\theta t^{p^{n}}-t^{p^{n}} \theta$. So θ is a differential operator of order $\leq p^{n}-1$, if and only if $\left.\theta \in E n d{ }_{k[t} p^{n}\right]^{k[t]}$. This proves the result. \quad

We shall write $D_{n}=\operatorname{Diff} f^{n}-1 k[t]$. So we have just shown that $D_{n} \cong M_{p} n\left(k\left[t^{p^{n}}\right]\right)$, the $p^{n} \times p^{n}$ matrix ring over $k\left[t^{n}\right]$.

COROLLARY 2.2 (1) D is not a finitely generated k-algebra;
(2) D does not contain cony primitive idempotents; in fact if
$0 \neq e \in D$ is idemotent then there exists a set of p mutually
orthogonal idempotents e_{1}, \ldots, e_{p} such that $e=e_{1}+\ldots+e_{p}$;
(3) D contains an infinite direct sum of non-zero left ideals;
(4) D is not Noetherion;
(5) D does not have Krull dimension (in the sense of Gabriel and Rentschlex).

Proof (3), (4), (5) are immedtate consequences of (2), and (1) is obvious, since any finite set of elements of D lies in some D_{n}, and so can at best generate D_{n} which is a proper subalgebra of D.

To prove (2), let $0 \neq e \in D$ be an idempotent. Suppose $e \in D_{n}=E n d{ }_{k}\left[t^{n}\right]^{k[t]}$. Write $k[t]=U \oplus V$, a direct sum of $k\left[t^{p^{n}}\right]$-submodules, where $\left.e\right|_{U}=\left.I d\right|_{U}$ and $e(V)=0$. As $e \neq 0, U$ is non-zero, and as a $k\left[t^{n+1}\right]$-module, $u=U_{1} \oplus \ldots \oplus u_{p}$ is a direct sum of p non-zero $k\left[t^{p^{n+1}}\right]$-modules. Now $e=e_{1}+\ldots+e_{p}$ where e_{j} is the projection of $k[t]$ onto U_{j} with kernel $V \oplus U_{1} \oplus \ldots \oplus \hat{U}_{j} \oplus \ldots \oplus U_{p}$ (omit U_{j} from the sum). One checks that each e_{j} is a $k\left[t^{n+1}\right]$-module map, hence an element of D_{n+1}, and that the e_{j} are mutually orthogonal idempotents.

A concrete illustration of (2) above, is the following: if $e_{n}: k[t]+k[t]$ is the
$k\left[t^{n}\right]-1$ inear map defined by $e_{n}\left(t^{i}\right)=\delta_{i, p} n-1 t^{i}$ for $0 \leq i \leq p^{n}$, then $\left\{e_{1}, e_{2}, \ldots\right\}$ is an infinite set of mutually orthogonal idempotents.

PROPOSITION $2.3 \quad K_{0}(D) \cong \mathbb{Z}[1 / p]$
Proof $D_{n} \cong{\underset{p}{n}}^{M_{n}}\left(k\left[t p^{n}\right]\right)$ and one has that $K_{0}\left(D_{n}\right)=K_{0}\left(k\left[t p^{n}\right]\right)$ (as K_{0} is defined in terms of the category of modules over $\left.D_{n}\right)$ and it is known that $K_{0}\left(k\left[t^{n}\right]\right)=\mathbb{Z}$. The inclusions $D_{1}+D_{2} \rightarrow D_{3} \rightarrow \ldots$ induce maps on the K_{0} groups $\mathbb{Z}^{P} \rightarrow \mathbb{Z}{ }^{P}+\mathbb{Z}+\ldots$. The maps are multiplication by p. As K_{0} commutes with direct limits [7] we get $K_{0}(D)=\mathbf{Z}[1 / p]$.

An order unit is $1=[R]$, and the order relation is the usual order relation on $\mathbf{Z}[I / \mathrm{p}]$.

PROPOSITION 2.4 Not every derivation of D is inner.
Proof Define $\Delta: D+D$ by $\Delta(d)=\left[t+t^{p}+t^{p^{2}}+\ldots, d\right]$. This actually makes sense: for $n \gg 0, d \in D_{n+1}$ and so d commutes with $t^{p^{n+1}}$, and hence with $t^{p^{m}}$ for all $m>n$; therefore $\Delta(d)=\left[t+t^{p}+\ldots t p^{n}, d\right]$ for $d \in D_{n+1}$.

Suppose Δ is inner, say $\Delta=a d(y)$ for some $y \in D$. Let $y \in D_{n}$. As $\Delta(t)=0$, y commutes with $k[t]$, hence $y \in k[t]$. For all n we have $\Delta-\left.\operatorname{ady}\right|_{D_{n+1}}=0$ but we have just seen that $\left.\Delta\right|_{D_{n+1}}=a d\left(t+t+\ldots+t^{p^{n}}\right)$. Hence $\left.a d\left(t+t^{p}+\ldots+t^{p^{n}}-y\right)\right|_{D_{n+1}}=0$, and so $t+t^{p}+\ldots t^{p^{n}}-y$ belongs to the centre of $D_{n+1}\left(=k\left[t^{p^{n+1}}\right]\right)$ for all n; this is impossible.

PROPOSITION 2.5 Centre (D) $=k$.
Proof Centre $\left(D_{n}\right)=k\left[t p^{n}\right]$ and $n_{n=0}^{\infty} k\left[t p^{n}\right]=k$. The proposition is an imediate consequence.

Another description of D is also useful. For each $i \in \mathbb{N}$, let x_{i} be the k-linear map on $k[t]$ given by $x_{i}\left(t^{m}\right)=\binom{m}{i} t^{m-i}$ where the binomial coefficient $\binom{m}{i}$ is evaluated $(\bmod p)$. One should think of x_{i} as acting like ($\left.1 / i!\right) \partial^{i} / \partial t^{i}$; even though $1 / i!$ does not make sense in k. if $i \geq p$, this analogy can be made rigorous, as in Theorem 2.7 below. The analogy is useful in noticing relationships such as $x_{i} x_{j}=\binom{i+j}{i} x_{i+j}$.

THEOREM $2.6 D_{n}=k\left[t, x_{1}, x_{2}, \ldots, x_{p^{n-1}}\right]$ and $D=k\left[t, x_{1}, x_{2}, \ldots\right]$.
Proof To see that x_{m} is a differential operator of order $\leq m$, notice that $x_{0}=1 \in D_{\sigma}$ and $\left[x_{m}, t\right]=x_{m-1}$ then use the inductive Definition 1.1. Thus $k\left[t, x_{1}, \ldots, x_{p} n_{-1}\right] \subset D_{n}$.

Viewing $\left.D_{n} \cong M_{p} n^{n}\left(t^{p^{n}}\right]\right)$, there is a basis for D_{n} as a $k\left[t p^{n}\right]$-module given by the maps $\theta_{i j}: k[t]+k[t]$ for $0 \leq i, j<p^{n}$ where $\theta_{i j}$ is the $k\left[t^{p^{n}}\right]$-module map defined by $\theta_{i j}\left(t^{m}\right)=\delta_{j m} i^{m+i-j}$ for $0 \leq m<p^{n}$. The $\theta_{i j}$ are just the matrix units (for the basis $1, t, \ldots, t^{p^{n}-1}$ of $k[t]$ as a $k\left[t^{p^{n}}\right]$-module $)$.

One computes that $\theta_{i j}=t^{i} x_{p^{n}-1} t^{p-1-j}$ (the point being that $\left({ }_{p}^{n}{ }^{\ell}\right)$ is zero for all $\ell \in \mathbb{N}$ unless $\left.\ell=p^{n}-1\right)$. Thus $\theta_{i j} \in k\left[t, x_{1}, \ldots, x_{p} n_{-1}\right]$. This completes the proof.

Recall that $D(\mathbb{Q}[t])=\mathbb{Q}[t, \partial / \partial t]$. One can easily check that the \mathbf{Z}-module spanned by all elements of the form $t^{j}(1 / i!) \partial^{i} / \partial t^{i}$ is in fact a \mathbb{Z}-subalgebra; write $S=\mathbb{Z}\left[t, \partial / \partial t,(1 / 2!) \partial^{2} / \partial t^{2}, \ldots\right]$. Of course $S=D(\mathbf{Z}[t])$, the ring of Z-linear differential operators on $\mathbf{Z}[\mathrm{t}]$. The following is straightforward.

THEOREM 2.7 $D(k[t]) \stackrel{\Upsilon}{=} k \otimes_{\mathbb{Z}} S$ where the isomorphism is given by $x_{i} \rightarrow 1(1 / i!) \partial^{i} / \partial_{t}^{i}$ and $t \rightarrow t$.

The proof that D is a simple ring is inevitably a little more complicated than the proof in the characteristic zero case - if one recalls the characteristic zero proof, one part of it is the observation that if I is a non-zero ideal and $0 \neq a \in I$ then for some n, $a d^{n}(\partial / \partial t)(a) \in k[\partial / \partial t] 10$, so there exists $0 \neq b \in I$ with $b \in k\left[\partial / \partial_{t}\right]$ and then for some $m a d^{m}(t)(b) \in k \backslash\{0\}$, so I contains a scalar. However, if char $k=2, a d(\partial / \partial t)\left(t^{2}\right)=0$.

Hence we require the following technical result. LEMMA $2.8\left[x, t^{m}\right]=\sum_{j=1}^{\ell}(-1)^{j+1}\left(\frac{m}{j}\right) x_{l-j} t^{m-j}$ for al2 m, ℓ.

Proof Evaluate both sides at t^{n}, and the lemma reduces to checking the identity

$$
\binom{m+n}{\ell}-\binom{n}{\ell}=\sum_{j=1}^{\ell}(-1)^{j+1}\binom{m}{j}\binom{m+n-j}{\ell-j} \text { for all } m, n, \ell
$$

This is standard.

PROPOSITION 2.9 Dis a simple ring.

Proof Let $0 \neq 1$ be a two-sided ideal of D. For some $n, I \cap D_{n} \neq 0$, A non-zero two sided ideal of a matrix ring over a ring R contains a non-zero ideal of R. Hence, for some $n, I \cap k\left[t p^{n}\right] \neq 0$.

Choose $0 \neq f \in I \cap k[t]$, of lowest degree in t. Write $f=\alpha+g$ with $g \in t k[t]$, $\alpha \in k$. If $g=0$ then $I n k \neq 0$, hence $I=D$, and the proof is complete. Suppose then, that $g \neq 0$, and let t^{r} be the lowest degree term appearing in g. Pick n, with $p^{n} \leq r<p^{n+1}$. Consider $\left[x_{p_{n}}, f\right]=\left[x_{p} n, g\right] \in I$.

If $m \geq p^{n}$, then by Lemma 2.8, $\left[x_{p} n, t^{m}\right]=\sum_{j=1}^{p^{n}}(-1)^{j+1}(\underset{j}{m}) x_{p^{n}}{ }_{-j} t^{m-j}=(-1)^{p^{n}+1}$ $\binom{m}{p^{n}} t^{m-p^{n}}$ since $\binom{m}{j}=0(\bmod p)$ for $j<p^{n} \leq m$. Al so notice that as $p^{n} \leq r<p^{n+1}$ $\binom{r}{p n} \neq 0(\bmod p)$. So in particular $\left[x_{p} n, t^{r}\right] \neq 0$; thus $\left[x_{p} n, g\right]$ is of lower degree than f and is non-zero. This contradicts the choice of f. Thus $g=0$, and the proof is complete.

PROPOSITION 2.10 D contains a proper subalgebra isomorphic to D, namely $k\left[t^{p}, x_{p}, x_{2 p}, x_{3 p}, \cdots\right]$

Proof Notice that for all $i, j \quad x_{i p}\left(t^{j p}\right)=\left(\sum_{i p}^{j p}\right) t^{(j-i) p}$ and that $\left(\begin{array}{l}j p \\ i p\end{array}=\left(\begin{array}{l}j\end{array}\right)(\bmod p)\right.$. Hence the natural action of $x_{i p}$ on $k[t]$ maps $k\left[t^{p}\right]$ into $k\left[t^{p}\right]$, and so each $x_{i p}$ is a differential operator on $k\left[t^{p}\right]$. After Theorem $2.6 D\left(k\left[t^{P}\right]\right)=k\left[t^{p}, y_{1}, y_{2}, \ldots\right]$ where $y_{i}\left(t^{j p}\right)=\left({ }_{i}^{j}\right)\left(t^{p}\right)^{j-1}$. As each $x_{i p}$ acts as does y_{i}, we conclude that $D\left(k\left[t^{p}\right]\right) \cong k\left[t^{p}, x_{p}, x_{2 p}, \ldots\right]$; of course $D(k[t]) \cong D\left(k\left[t^{p}\right]\right)$ so we have shown that $D \cong k\left[t^{p}, x_{p}, x_{2 p}, \cdots\right]$.

That $k\left[t^{p}, x_{p}, x_{2 p}, \cdots\right]$ is a proper subalgebra of D is obvious from the fact that $D=k[t] \oplus k[t] x_{1} \oplus k[t] x_{2} \oplus \ldots$ (this follows from Theorem 2.7) and $k\left[t^{p}, x_{p}, x_{2 p}, \ldots\right]$ $=k\left[t^{p}\right] \oplus k\left[t^{p}\right] x_{p} \oplus \ldots . \quad \square$

The next example illustrates that one useful technique for studying the Weyl al gebra in characteristic zero, is not avaitable in characteristic p. If k is a field with char $k=0$, then $D\left(A_{k}^{1}\right) \approx k[x, y]$ with $x y-y x=1 ; D\left(A_{k}^{1}\right)$ can be localised at the non-zero elements of $k[x]$ and $k[y]$ respectively. The diagonal embedding of $D\left(A_{k}^{1}\right)$ into the direct sum of the localisations, $D\left(A_{k}^{2}\right) \rightarrow k(x)[y] \oplus k(y)[x]$, is a faithfully flat embedding; the "faithfulness" comes from the fact that if I is a left ideal of $D\left(\boldsymbol{A}_{k}^{1}\right)$ with $I \cap k[x] \neq 0$ and $I \cap k[y] \neq 0$ then, in fact, $I=D\left(\mathbb{A}_{k}^{1}\right)$.

EXAMPLE There is a left ideal I of $D, I \neq D$ such that $I \cap k[t] \neq 0$ and I $n k\left[x_{1}, x_{2}, \ldots\right] \neq 0$.

We construct our example for char $k=2$, but a similar example exists for any characteristic.

So, assume $p=2$, put $I=D t^{2}+D x_{1}$. Recall, from Theorem 2.7 that D is a free left $k[t]$-module with basis $1, x_{1}, x_{2}, \ldots$, so $D=\underset{n=0}{\infty} k[t] x_{n}$. Now $x_{n} x_{1}=\binom{n+1}{1} x_{n+1}=\left\{\begin{array}{l}0 \\ n \text { odd } \\ x_{n+1} n \text { even }\end{array}\right.$, and thus $D x_{1}=\underset{n \text { odd }}{\oplus} k[t] x_{n} . \quad$ As $p=2,\left[t^{2}, x_{1}\right]=0$, thus $\left(k[t]+k[t] x_{1}\right) t^{2} \subseteq k[t] t^{2}+k[t] x_{1}$. If $n \geq 2$, then $x_{n} t^{2}=t^{2} x_{n}+x_{n-2}$, so $k[t] x_{n} t^{2}=k[t]\left(t^{2} x_{n}+x_{n-2}\right)$. Consequently,

$$
\begin{aligned}
& I \subseteq \sum_{n \text { odd }} k[t] x_{n}+k[t] t^{2}+\sum_{\substack{n \text { even } \\
n \geq 2}}^{\sum} k[t]\left(t^{2} x_{n}+x_{n-2}\right)= \\
& \quad k[t] t^{2}+k[t] x_{1}+k[t]\left(t^{2} x_{2}+1\right)+k[t] x_{3}+k[t]\left(t^{2} x_{4}+x_{2}\right)+\ldots
\end{aligned}
$$

and it is easy to see that $1 \notin \mathrm{I}$.

PROPOSITION $2.11 \mathrm{k}[\mathrm{t}]$ is a simple D-module.

Proof Let $0 \neq N$ be a submodule of $k[t]$. We will show $N \cap k \neq 0$ from which the result follows. Suppose $N n k=0$, and choose $f \in N$ of least degree. Let t^{r} be the highest degree term appearing in f. Choose n such that $p^{n} \leq r<p^{n+1}$. Then Then $x_{p} n\left(t^{r}\right)=\binom{r}{p^{n}} t^{r-p^{n}}$, and $\binom{r}{p_{n}} \neq 0(\bmod p)$. Hence $x_{p} n^{(f)} \neq 0$ and is of lower degree than f. This contradicts the choice of f.

Recall that if k is of characteristic zero then the natural action of $k[t, \partial / \partial t]$ on $k[t]$ extends to an action of $k[t, \partial / \partial t]$ on $k\left[t, f^{-1}\right]$ for any $0 \neq f \in k[t]$, and that $k\left[t, f^{-1}\right]$ is of finite length as a $k[t, \partial / \partial t]$ module. The usual proof of this [2] uses Gelfand-Kirillov dimension. Although the same tool is no longer available in characteristic $p>0$, the same result is true (Theorem 2.13). In order to prove this a few preliminary observations are required.

As $D_{n} \tilde{=} M_{p}\left(k\left[t p^{n}\right]\right)$, any non-zero D_{n}-module has dimension (over k) at least p^{n}. After Theorem 2.6 (and $i t s$ proof) we have $D_{n}=k[t] \theta x_{1} k[t] \oplus \ldots x_{p n^{n}} k[t]$ If $0 \neq f \in k[t]$ with $\operatorname{deg}(f)=F$ then $D_{n} / D_{n} f \cong S \oplus x_{1} S \oplus \ldots \oplus x_{p} n_{-1}^{S}$ where, $\quad S=k[t] /(f)$, as a right $k[t]$-module. As $\operatorname{dim} S=F, \operatorname{dim}\left(O_{n} / 0_{n} f\right)=p^{n} F$, and hence by our first observation length $D_{n}\left(D_{n} f\right) \leq F$.

LEMMA 2.12 Let M be a left D-module, with a chain of finite dimensionat subspaces $M_{0} \subset M_{1} \subset M_{2} \subset \ldots$ such that
(a) each M_{n} is a D_{n}-module,
(b) for large n, length $D_{n}\left(M_{n}\right) \leq F($ fixed F for all $n \gg 0)$,
(c) $M=\bigcup_{n=0}^{\infty} M_{n}$.

Then, as a D-module, length ${ }_{D}(M) \leq F$.
Proof Suppose $F=1$. We must show that M is a simple D-module. Choose $0 \neq m \in M$ and choose any $m^{\prime} \in M$. For all sufficiently large n, m and m^{\prime} belong to M_{n}, which is a simple D_{n}-module by (b). Thus $m^{\prime} \in D_{n} m \subset D m$. Thus M is a simple D-module.

We now prove the result by induction on F. Suppose $F \geq 2$, and that the lemma is true for all numbers less than F. If M is simple as a D-module the proof is finished. If not, choose $0 \neq N$ a proper D-submodule of M. Put $N_{n}=N \quad n M_{n}$; notice that $N=\bigcup_{n=0}^{\infty} N_{n}$, and each N_{n} is a D_{n}-module. We show that for all large n, length $_{D_{n}}\left(N_{n}\right) \leq F-1$. To see this, pick $m \in M, m \notin N$. There exists n_{0} such that $m \in M_{n}$ for all $n \geq n_{0}$, but $m \& N_{n}$. Hence, if $n \geq n_{0}, N_{n} \frac{\varsigma}{7} M_{n}$. Thus length D_{n} (N_{n}) $\leq F-1$ for all large n. By the induction hypotheses length ${ }_{D}(N) \leq F-1$.

We have shown that any proper submodule of M has length at most $F-1$. Hence,
length $_{D}(M) \leq F$.
THEOREM 2.13 Let $0 \neq f \in k[t]$. Then the $D-m o c u l e ~ k\left[t, f^{-1}\right]$ is of finite length (in fact, of length $\leq \operatorname{deg}(f)+1$).

Proof As $k[t]$ is a simple D-submodule of $k\left[t, f^{-1}\right]$, it is enough to show that $M=k\left[t, f^{-1}\right] / k[t]$ is of length $\leq \operatorname{deg}(f)$.

For each n, let M_{n} be the D_{n}-submodule of M generated by the image of $f^{-p^{n}}$. If $\mathrm{gf}^{-m} \in M$ with $g \in k[t]$, there exists an n, with $m<p^{n}$; then $g f^{-m}=g f^{p^{n}-m_{f}-p^{n}} \epsilon$ M_{n}. Hence $M=\bigcup_{n=0}^{\infty} M_{n}$.

Put $F=\operatorname{deg}(f)$. We will show that length $D_{n}\left(M_{n}\right) \leq F$, and the theorem will follow from Lemma 2.12. Recall that a non-zero D_{n}-module has dimension at least p^{n}, so it will suffice to show that $\operatorname{dim}_{k} M_{n} \leq F p^{n}$.

Recall that $D_{n}=k[t] \oplus k[t] x_{1} \oplus \ldots \oplus k[t] x_{p} n_{-1}$, so if one has $x_{j}\left(f^{-p n}\right)=0$ for $1 \leq j<p^{n}$, then $M_{n}=D_{n} \cdot f^{-p^{n}}=k[t] \cdot f^{-p^{n}}$, and as $f p^{n} \cdot f^{-p^{n}}=0$ (remember $\left.M=k\left[t, f^{-1}\right] / k[t]\right)$, it would follow that $\left.\operatorname{dim}_{k}\left(M_{n}\right)=\operatorname{dim} m_{k}(t] /<f^{p^{n}}>\right)=F p^{n}$.

So the theorem is complete if $x_{j}\left(f^{-p^{n}}\right)=0$ for $l \leq j<p^{n}$. However, $f^{p^{n}} \in k\left[t^{p^{n}}\right]$, and as $x_{j} \in D_{n}$, x_{j} commutes with multiplication by $f^{p^{n}}$. Thus $x_{j}\left(f^{-p^{n}}\right)=f^{-p^{n}} x_{j}(1)=0$, for $1 \leq j<p^{n}$.

The following is well known and is useful in deciding whether $x_{i} x_{j}$ is zero or not.

LEMMA 2.14 If $a, b \in N$ and the p-adic expansions are $a=a_{0}+a_{1} p+a_{2} p^{2}+\ldots$, $b=b_{0}+b_{1} p+b_{2} p^{2}+\ldots$ then $\binom{a}{b} \equiv \prod_{j=1}\left(b_{j}^{a_{j}}\right)(\bmod p)$.
LEMM 2.15 For $m \geq n, D_{m}$ is free as a D_{n}-module (on either the right or the left) of rank p^{m-n}. A basis for D_{m} as a D_{n}-module is given by $1, x_{p} n, x_{2 p} n, \ldots, x\left(p^{m}-1\right) p^{n}$. Proof Recall the description of D_{n} and D_{m} given in Theorem 2.6. If $0 \leq j \leq p^{n}-1$, and $0 \leq i \leq p^{m}-1$ then $x_{j} x_{i p^{n}}=\left({ }_{j}^{j+i p^{n}}\right) x_{j+i p} n$. However, writing j and $i p^{m}$ in their p -adic form, Lemma 2.14 ensures that $\mathrm{x}_{\mathrm{j}} \mathrm{x}_{\mathrm{i} \mathrm{p}^{\mathrm{n}}} \neq 0$. The Lemma follows. \square

The following consequence of Lemma 2.12 is useful,

LEMMA 2.16 If N is a D_{n}-module of finite length, then $D \otimes_{D_{n}} N$ is of finite length as a D-modute.

Proof If N were a faithful D_{n}-module then D_{n} would be artinian (which it is not). So $I=\operatorname{ann}_{D_{n}}(N) \neq 0$. But a non-zero ideal of $D_{n}=M_{p n}\left(k\left[t{ }^{p^{n}}\right]\right)$ intersects $k\left[t^{p^{n}}\right]$ in a non-zero ideal. Thus N is a finitely generated module over the finite dimensional algebra $M_{p^{n}}\left(k\left[t^{p^{n}}\right] / I \cap k\left[t^{p^{n}}\right]\right)=D_{n} / I$. Thus $\operatorname{dim}_{k} N<\infty$.

Let $m \geq n$. As D_{m} is a free D_{n}-module of rank $p^{m-n}, D_{m} \otimes_{D_{n}} N$ is of dimension $\leq p^{m-n} \operatorname{dim}_{k} N$. As a non-zero D_{m}-module has dimension $\geq p^{m}$, length $D_{m}\left(D_{m} \otimes_{D_{n}} N\right) \leq$ $p^{-n} d i m_{k} N$. The lemma follows from Lemma 2.12 dy observing that $D \otimes_{D_{n}} N=m \leqq n D_{m} D_{n} N$.

We next show that gl.dim. $D=1$. As the corments and example following Proposition 2.10 indicate, the proof that $g 1 . \operatorname{dim} .\left(D\left(A_{k}^{1}\right)\right)=1$ when k is of characteristic zero cannot be used. The following preparatory lerma is required (and allows us in the proof of Theorem 2.18 to make frequent use of the fact that for a finitely generated D_{n}-module the concepts of torsion submodule coincide whether we consider torsion with respect to the regular elements of D_{n}, or with respect to the non-zero elements of $k[t]$ when the D_{n}-module is viewed as a $k[t]$ module).

LEMMA 2.17 Let M be a finitely generated D_{n}-module. Let M_{1} be the torsion submodule of M with respect to the regular elements of D_{n}; let M_{2} be the torsion submodule of M with respect to $k\left[t^{n}\right]$; let M_{3} be the torsion submodule of M with respect to $k[t]$. Then $M_{1}=M_{2}=M_{3}$.

Proof $A s k[t] \subset D_{n}$ and D_{n} is a free $k[t]-m o d u l e, k[t] \backslash\{0\}$ consists of regular elements in D_{n}. Hence $M_{3} \subset M_{1}$. Similarly $M_{2} \subset M_{3} \subset M_{1}$.

Write Q_{n} for the ring of fractions of D_{n}. That is, $Q_{n}=M_{p}\left(k\left(t^{p^{n}}\right)\right)=$ $\left.k\left(t^{p^{n}}\right) \otimes_{k[t} p^{n}\right] D_{n}$, where $k\left(t^{p^{n}}\right)$ denotes the field of rational functions in $t^{p^{n}}$. Now $Q_{n} \otimes_{D} M_{1}=0$. Hence $k\left(t^{p^{n}}\right) \otimes_{k\left[t p^{n}\right]} M_{1}=0$, and it follows that $M_{1} \subset M_{2}$. THEOREM 2.18 gl.dim. $D=1$.

Proof As D is not semi-simple artinian, gl.dim. $D \geq 1$. So it is enough to show that every left ideal of D is projective. Let I be a left ideal.

Put $I_{n}=I \cap D_{n}$, and define I_{n}^{\prime} to be the left ideal of D_{n} containing I_{n} such that I_{n}^{\prime} / I_{n} is the torsion submodule of the D_{n}-module D_{n} / I_{n}. Put $T_{n}=D I_{n}^{1} n I$.

We claim that $T_{n} \subset T_{n+1}$. To see this it is enough to check that $I_{n}^{\prime} \subset I_{n+1}^{\prime}$. But $I_{n}^{\prime}+I_{n+1} / I_{n+1} \cong I_{n}^{\prime} / I_{n}^{\prime} n I_{n+1}$ which is a homomorphic image of I_{n}^{\prime} / I_{n}. As I_{n}^{\prime} / I_{n} is $k[t]$-torsion so is $I_{n}^{\prime}+I_{n+1} / I_{n+1}$. Thus $I_{n}^{\prime} \subset I_{n+1}^{\prime}$.

We claim that T_{n} is a finitely generated left ideal. Notice that $T_{n} / D I_{n} \subseteq D I_{n}^{1} / D I_{n} \cong D \otimes_{D_{n}}\left(I_{n}^{1} / I_{n}\right)$. By Lemma 2.16 this latter D-moduTe is of finite length since I_{n} / I_{n} is of finite length as a D_{n}-module. The truth of the claim follows from the fact that $D I_{n}$ is finitely generated, and that $T_{n} / D I_{n}$ is of finite length.

Consider T_{n+1} / T_{n}. As both these left ideals are finitely generated there exists $m \in N$ with $T_{n+1} / T_{n}=D\left(T_{n+1} \cap D_{m}\right) / D\left(T_{n} \cap D_{m}\right)$. Now $T_{n+1} \cap D_{m} / T_{n} \cap D_{m} \cong$ $T_{n}+\left(T_{n+1} \cap D_{m}\right) / T_{n}$ which is a submodule of $I / T_{n}=I / I \cap D I_{n}^{1} \cong I+D I_{n}^{\prime} / D I_{n}^{1}$ which is a submodule of $D / D I_{n}^{\prime} \cong D \otimes_{D_{n}}\left(D_{n} / I_{n}^{\prime}\right)$. However, as a $k[t]$-module D_{n} / I_{n}^{\prime} is torsion-free, hence so is $D / D I_{n}^{1}$. Thus $T_{n+1} \cap D_{m} / T_{n} \cap D_{m}$ is torsion-free as a D_{m}-module. But D_{m} is a hereditary Noetherian prime ring, so by [5, Theorem 2.1] a torsion-free D_{m}-module is projective. Hence there is a left ideal J of D_{m} with $T_{n+1} \cap D_{m}=T_{n} \cap D_{m} \& J$. Thus (as D is free as a D_{m}-module) $D\left(T_{n+1} \cap D_{m}\right)=$ $D\left(T_{n} \cap D_{m}\right) \oplus O J$. In particular, there is a finitely generated left ideal S_{n} with $T_{n+1}=T_{n} \oplus S_{n}$.
 is finitely generated hence projective (because $S_{n} \cong 0 \theta_{D_{m}}\left(D_{m} \cap S_{n}\right)$, and $D_{m} \cap S_{n}$ is a projective D_{m}-moduie). Thus I is projective.

Goodearl has pointed out the following way of viewing D. Let B denote the subring $k\left[x_{1}, x_{2}, \ldots\right]$ of $D ; B$ is isomorphic to the factor ring of a commutative polynomial ring $k\left[X_{1}, X_{2}, \ldots\right]$ modulo the i deal generated by $X_{i} X_{j}-\binom{i+j}{i} x_{i+j}$. The
inner derivation $\operatorname{ad}(t)=[t,-]$ of D maps B into i tself, so ad($t)$ acts as aderivation on B, and D may be viewed as $B[t]$, the extension of B by the derivation ad($t)$. Now it is easy to see gl.dim. $B=\infty$ because there exist non-split exact sequences:

$$
\begin{aligned}
& 0 \rightarrow x_{1} B+B \rightarrow x_{p-1} B \rightarrow 0 \\
& 0 \rightarrow x_{p-1} B \rightarrow B \rightarrow x_{1} B \rightarrow 0 .
\end{aligned}
$$

Hence this gives an example of a commutative ring of infinite global dimension such that an extension by a derivation has finite global dimension (the first such example appears in [6]).

As D is a ring of differential operators it has a filtration given by the order of the operators. As x_{n} is of order n, the filtration is given by $F_{n} D=$ $k[t] \oplus k[t] x_{1} \oplus \ldots \oplus k[t] x_{n}$, and the associated graded algebra grD is isomorphic to $B[s]$ where s is a commuting indeterminate. Hence although gl.dim $D=1$, gl $\operatorname{dim}(g r D)=\infty$.

Notice that the exact sequences over D corresponding to those for B given above are split. This is because $D x_{p-1}$ is projective (being generated by the idempotent $t^{p-1} x_{p-1}$).

We now briefly turn our attention to the ring of fractions of D. As D is a free $k[t]$-module, $k[t] \backslash\{0\}$ consists of regular elements of D. Hence Fract D contains $k(t)$. As $D_{n} \cong M_{p n}\left(k\left[t^{p^{n}}\right]\right)$, Fract $D_{n} \cong M_{p}\left(k\left(t^{p^{n}}\right)\right)$. Thus we have

THEOREM 2.19 The ring of fractions Q, of D, is equal to $k(t)\left[x_{1}, x_{2}, \ldots\right]$ and

In particular Q is a union of simple artinian rings, so is von Neumann regular. As Q is flat as a D-module, gl.dim. $Q \leq g l$ dim. D. But Q is not semisimple artinian, so gl. dim. $Q=1$.

PROPOSITION 2.20 Q is not self-injective.
Proof It is sufficient to find a left ideal J of Q, and a Q-module map $\phi: J \rightarrow Q$ which is not the restriction of a Q-module map $\psi: Q \rightarrow Q$.

Put $J=Q x_{1}+Q x_{2}+\ldots$; consider the formal sum $y=\sum_{j=0}^{\infty} X_{p j-1}$, and define $\phi: J \rightarrow Q$ by $\phi(r)=r y$. This does make sense: notice that $x_{i} x_{p j-1}=0$ if i is fixed and j is sufficiently large, thus $r y$ is actually a finite sum for $r \in J$. So ϕ is a bona-fide Q-module homomorphism.

Suppose that $\psi: Q \rightarrow Q$ is a left Q-module map. Then ψ is just rightmultiplication by $z=\psi(1)$. So if $\phi=\left.\psi\right|_{J}$ then, in particular, $x_{i}(y-z)=0$ for all $i \geq 1$. Suppose $z=a_{0}+x_{1} a_{1}+\ldots+x_{n} a_{n}$ with each $a_{j} \in k[t]$, and $a_{n} \neq 0$. Suppose $p^{m}-1>n$. Then $x_{p m} \cdot y=\sum_{j=0} x_{p m} \cdot x_{p}{ }^{j-1}$, and $x_{p^{m}} \cdot x_{p^{m}-1} \neq 0$, but $x_{p^{m}}{ }^{-z}$ cannot contain a term involving $x_{2 p m-1}$ since $n<p^{m}-1$. Hence $x_{p^{m}} \cdot y \neq x_{p^{m}}$, and thus $\phi \neq\left.\psi\right|_{J}$.

§3. PROPERTIES OF $D\left(P_{p}^{\prime}\right)$

We begin by defining $D\left(\mathbb{P}_{p}^{1}\right)$. Let D be the sheaf of differential operators on P^{1}, and define $D\left(\mathbf{P}^{2}\right)=\Gamma\left(\mathbb{P}^{1}, D\right)$. As D is the unique quasi-coherent sheaf of $O_{\mathbf{P}^{\prime}}{ }^{-}$ modules such that for every open affine $U \subset P^{\prime}, \Gamma(U, D)$ is the ring of differential operators on $O(U)$ (the ring of regular functions on U) to compute the global sections of D we may proceed as follows. Let U_{+}, U_{-}be two copies of A^{\prime} covering p^{1} such that $O\left(U_{+}\right)=k[t], O\left(U_{-}\right)=k\left[t^{-1}\right]$ and let D^{+}, D^{-}denote the rings of differential operators on U^{+}and U^{-}respectively. If D^{+}and D^{-}are considered as subalgebras of $D(k(t))$, we have $D\left(P^{1}\right)=D^{+} \cap D^{-}$. As $D^{+}=\{\theta \in D(k(t)) \mid \theta(k[t]) \subset k[t]\}$ and $D^{-}=\left\{\theta \in D(k(t)) \mid \theta\left(k\left[t^{-1}\right]\right) \subset k\left[t^{-1}\right]\right\}$ we have $D\left(P^{1}\right)=\{\theta \in D(k(t)) \mid \theta(k[t]) \subset k[t]$ and $\theta\left(k\left[t^{-1}\right]\right)=k\left[t^{-1}\right] k$. Thus we obtain (for k a field of characteristic $p>0$)

LEMMA 3.1 Fix n, put $q=\mathrm{p}^{\mathrm{n}}$ and let $\theta \in \mathrm{D}_{\mathrm{n}}^{+}$(using the notation of $\S 2$). Then $\theta \in D\left(\mathbf{P}_{k}^{1}\right)$, if and only if
(1) $\theta(1) \in k$
(2) $\theta\left(t^{j}\right) \in$ lin.span $<1, t, t^{2}, \ldots, t^{q}>$ for $\alpha l l j, 0<j<q$.

Proof Suppose θ satisfies the conditions. First observe that θ extends to a $k\left[t^{9}\right]$-linear differential operator on $k(t)\left(\right.$ since $\left.\theta \in D_{n}^{+}\right)$. Pick $i>0$; we show that $\theta\left(t^{-i}\right) \in k\left[t^{-1}\right]$.

Pick m such that $m q<i \leq(m+1) q$. Then $0 \leq(m+1) q-i<q$, so by (2), $\theta\left(t^{(m+1) q-i}\right) \in$ lin.span $\left\langle 1, t, t^{2}, \ldots, t^{q}\right\rangle$. But $\theta\left(t^{(m+1) q-i}\right)=t^{(m+1) q} \theta\left(t^{-i}\right)$, hence $\theta\left(t^{-i}\right) \in$ in. span $t^{-(m+1) q}<1, t, \ldots, t^{q}>\subset k\left[t^{-1}\right]$. This and (1) ensure that $\left.d k\left[t^{-1}\right]\right) \subset k\left[t^{-1}\right]$, and so $\theta \in D\left(\boldsymbol{P}_{k}^{1}\right)$. The conditions are therefore sufficient.

On the other hand, if $\theta \in D\left(P_{k}^{1}\right)$, then certainly $\theta\left(k[t] \cap k\left[t^{-1}\right]\right) \subset k[t] \cap k\left[t^{-1}\right]$, so (1) is necessary. Also if $0<j<q$, then $\theta\left(t^{-j}\right) \in k\left[t^{-1}\right]$, and hence $\theta\left(t^{q-j}\right)=t^{q} \theta\left(t^{-j}\right) \in t^{q} k\left[t^{-1}\right] \cap k[t]=$ lin.span. $\left\langle 1, t, \ldots, t^{q}\right\rangle$. So (2) is necessary. $\quad]$

Put $D\left(\mathbf{P}^{1}\right)_{n}=D\left(\mathbf{P}^{1}\right) \cap D_{n}^{+}$; that is, $D\left(\mathbb{P}^{1}\right)_{n}$ is the differential operators in $D\left(\mathbb{P}^{1}\right)$ of order $\leq n$. Notice that after the lemma, dim $D\left(\mathbb{P}^{\prime}\right)_{n}=1+\left(p^{n}-1\right)\left(p^{n}+1\right)=p^{2 n}$, so $D\left(P^{2}\right)$ is a union of finite dimensional subalgebras.

LEMMA 3.2 The nilpotent radical of $\mathrm{D}\left(\mathbf{P}^{1}\right)_{\mathrm{n}}$ is the span of those θ which satisfy
(1) $\theta(1)=0$
(2) $\theta\left(t^{j}\right) \in$ lin. span $<1, t^{p^{n}}>$ for all $0<j<p^{n}$.

Proof
Put $q=p^{n}$. First the span of such θ is an ideal of $D\left(\mathbb{P}^{1}\right)_{n}$. If $\psi \in D\left(\mathbf{P}^{1}\right)_{n}$, then $\psi \theta(1)=\theta \psi(1)=0$; and for $0<j<q$, one has $\psi \theta\left(t^{j}\right) \subset \operatorname{lin} . \operatorname{span}\left\langle\psi(1), \psi\left(t^{q}\right)>=\right.$ lin.span $\left\langle\psi(1), t^{q} \psi(1)\right\rangle c$ lin.span $\left\langle 1, t^{q}\right\rangle$ by Lemma $3.1(1)$; also $\sigma \psi\left(t^{j}\right)$ c lin.span $\left.<\theta(1), \theta(t), \ldots, \theta\left(t^{q}\right)\right\rangle c$ lin.span $\left\langle 1, t^{q}\right\rangle$ as $\theta\left(t^{q}\right)=t^{q} \theta(1)=0$. We have shown that if θ satisfies (1) and (2), so do $\theta \psi$ and $\psi \theta$. Hence the span of such θ is an ideal.

The square of this ideal is zero: if θ and ψ satisfy (1) and (2) then $\psi \theta(1)=0$ and for $0<j<q, \psi \theta\left(t^{j}\right)$ c lin.span $\left\langle\psi(1), \psi\left(t^{q}\right)\right\rangle=0$.

The factor by this ideal is semi-simple artinian: the factor may be identified with those θ such that $\theta(1) \in k$ and $\theta\left(t^{j}\right) \in$ lin.span $<t, t^{2}, \ldots, t^{q-1}>$ for $1 \leq j<q$; but this algebra is isomorphic to (End k) $\otimes\left(\right.$ End $\left._{k} k^{q-1}\right)$.

Put $N_{n}=$ nilpotent radical of $D\left(P^{1}\right)_{n}$; notice that dim $N_{n}=2\left(p^{n}-1\right)$.
LEMMA 3.3 $N_{n} \cap N_{n+1}=0$.
Proof Pick $0 \neq \theta \in N_{n}$. Then $\theta\left(t^{j}\right) \neq 0$ for some $0<j<p^{n}$. Hence, if $\theta \in N_{n+1}$,
then $\theta\left(t^{j}\right) \in$ lin. span $<1, t^{n+1}>n$ lin.span $<1, t^{p^{n}}>=k$. But $0<j+p^{n}<p^{n+1}$ and $\theta\left(t^{j+p^{n}}\right)=t^{p^{n}} \theta\left(t^{j}\right) \in k t^{p^{n}}$. But by applying Lemma $3,2(2)$ for $n+1$, one must have $\theta\left(t^{j+p^{n}}\right) \in \operatorname{lin} . \operatorname{span}<1, t^{n+1}>$. Thus $\theta\left(t^{j+p^{n}}\right)=0$, whence $\theta\left(t^{j}\right)=0$. This contradiction gives the result.

PROPOSITION 3.4 $D\left(\mathbf{P}^{2}\right)$ contains no non-zero nilpotent ideal.

Proof Suppose $N \neq 0$, is a nilpotent ideal. Then $N \cap D\left(P_{1}\right)_{n} \neq 0$ for some n. Thus $N \cap D\left(P^{1}\right)_{n}$ is a nilpotent ideal of D_{n}. Similarly $N \cap D\left(\mathbb{P}^{1}\right)_{n+1}$ is a nilpotent ideal of $D\left(P^{1}\right)_{n+1}$. Hence $0 \neq N \cap D\left(P^{1}\right)_{n} \subset N_{n} \cap N_{n+1}$. This contradicts Lemma 3.3. PROPOSITION $3.5 D\left(\mathbb{P}^{1}\right)$ is not von Neimann regular.

Proof Consider $x_{1} \in D^{+}$(the notation is that of $£ 2$). One sees that $x_{1}=\partial / \partial t \in D\left(P^{\prime}\right)$. Suppose there exists $a \in D\left(\mathbb{P}^{\prime}\right)$ with $x_{1} a x_{1}=x_{1}$. Then in particular, as $x_{1}(t)=1$, one has $x_{1} a(1)=1$. But if $a \in D\left(P^{\prime}\right)$ then $a(1)=1$. However, $x_{1}(k)=0$, so there exists no $a \in D\left(\mathbb{P}^{\prime}\right)$ with $x_{1} a(1)=1$. Hence the result.

PROPOSITION $3.6 \mathrm{D}\left(\mathbf{P}^{2}\right)$ is its own ring of fractions.

Proof This is true of any algebra which is a union of finite dimensional algebras over a field (since an artinian ring is its own ring of fractions). $\quad \square$

PROPOSITION 3.7 (1) $D\left(P^{1}\right)_{n}$ is the sum of the two-sided ideats $J_{n}=\left\{\theta \in D\left(P^{2}\right)_{n} \mid\right.$ $\theta\left(\mathrm{t}^{j}\right) \in \mathrm{k}$ for all $\left.0 \leq j<\mathrm{p}^{n}\right\}$ and $Q_{n}=\left\{\theta \in D\left(P^{1}\right)_{n} \mid \theta(1)=0\right\}$. (2) $\operatorname{dim}_{k}\left(D\left(P^{1}\right)_{n} / Q_{n}\right)=1$
(3) $U_{n} \cap Q_{n}=N_{n}$. (4) For $n \geq 1, J_{n} / N_{n}$ and Q_{n} / N_{n} are minimal ideals of $D\left(P^{1}\right)_{n} / N_{n}$. (5) Let $\alpha \in D\left(\mathbb{P}^{1}\right)_{n}$. The two sided ideal of $D\left(\mathbb{P}^{1}\right)_{n}$ generated by α equals $D\left(\mathbb{P}^{1}\right)_{n}$ if and only if α can be written in the form $\alpha=\beta+\gamma$ with $\beta \in J_{n} \backslash N_{n}$ and $\gamma \in Q_{n} \backslash N_{n}$.

Proof After Lemmas 3.1 and 3.2 the proposition is straightforward.
PROPOSITION 3.8 (Notation as in (3.7)). Put $Q=\bigcup_{n=0}^{\infty} Q_{n}$. Then Q is the unique proper ideal of $D\left(\mathbf{P}^{1}\right)$, and $D\left(\mathbf{P}^{1}\right) / Q \cong k$.

Proof As each $Q_{n} \subset Q_{n+1}$, and Q_{n} is an ideal of $D\left(P^{1}\right)_{n}, Q$ is a two sided ideal of
$\mathrm{D}\left(\mathrm{F}^{\mathrm{d}}\right)$.
Suppose $\theta \in D\left(\mathbb{P}^{2}\right)_{n}$ and $\theta \notin Q_{n}$. Then $D\left(P^{1}\right) \theta D\left(P^{1}\right)=D\left(P^{1}\right)$. To prove this it is enough to show that $D\left(\mathbb{P}^{1}\right)_{n+1} \theta D\left(\mathbf{P}^{1}\right)_{n+1}=D\left(P^{1}\right)_{n+1}$. As $\theta \notin Q_{n}, \theta(1) \neq 0$. Hence, without loss of generality $\theta(1)=1$. As θ is $k\left[t p^{n}\right]$-linear, $\theta\left(t^{p^{n}}\right)=t^{p^{n}}$, and it follows that $\theta \notin J_{n+1}$, and $\theta \not \equiv Q_{n+1}$. Hence by Proposition $3.7(5)$, the two sided ideal of $D\left(P^{1}\right)_{n+1}$ generated by θ is $D\left(P^{1}\right)_{n+1}$ itself.

It follows that any two sided ideal of $D\left(\mathbf{P}^{1}\right)$ not equal to $D\left(\mathbf{P}^{1}\right)$ must be contained in Q .

Suppose now that $\theta \in Q, \theta \neq 0$. We show θ generates Q. Suppose $\theta \in D\left(P^{1}\right)_{n}$. Hence $\theta(1)=0$, and as $\theta \neq 0, \theta\left(t^{j}\right) \neq 0$ for some $j, 0<j<p^{n}$. Hence $\theta\left(t^{j+p^{n}}\right)=$ $t^{p^{n}} e\left(t^{j}\right) \notin k$. Thus $\theta \notin J_{n+1}$. It follows that $D\left(P^{\prime}\right)_{n+1} \theta D\left(P^{\prime}\right)_{n+1}=Q_{n+1}$. This is true for all $n \gg 0$, so $D\left(P^{2}\right) \theta D\left(P^{1}\right)=Q$.

Thus Q is the unique proper ideal of $D\left(\mathbb{P}^{2}\right)$. Finally as $\operatorname{dim}_{k}\left(D\left(P^{2}\right)_{n} / Q_{n}\right)=1$ for all $n, \operatorname{dim}_{k}\left(D\left(P^{1}\right) / Q\right)=1$.

PROPOSITION $3.9 \mathrm{D}\left(\mathrm{P}^{1}\right)$ is a primitive ring, and $\mathrm{k}[\mathrm{t}]$ is a faithful module of length 2, the submodule being k.

Proof This is an immediate consequence of Lemma 3.1. \square
We now compute $K_{0}\left(D\left(P^{2}\right)\right)$. As K_{0} commutes with direct limits, one has $K_{0}\left(D\left(\mathbf{P}^{2}\right)\right)=\xrightarrow{\lim } K_{0}\left(D\left(P^{2}\right)_{n}\right)$. We need only consider $n \geq 1$, so henceforth assume $n \geq 1$.

Recall that $D\left(P^{1}\right) / N_{n}=J_{n} / N_{n} \oplus Q_{n} / N_{n}$ and $J_{n} / N_{n} \cong k$ while $Q_{n} / N_{n} \cong M_{p} n_{-1}\left(k^{p^{n}-1}\right)$ (this is implicit in the proof of Lemma 3.2). Hence $K_{o}\left(D\left(P^{1}\right)_{n}\right)=\mathbf{Z} \oplus \mathbf{Z}$ with $\left[D\left(P^{2}\right)_{n}\right]=\left(1, p^{n}-1\right)$. The positive cone in $K_{0}\left(D\left(\mathbb{P}^{2}\right)_{n}\right)$ is $K_{0}^{+}\left(D\left(P^{i}\right)_{n}\right)=\{(a, b) \in$ $\mathbf{Z} \oplus \mathbb{Z} \mid a \geq 0, b \geq 0\}$.

The embedding $D\left(\mathbb{P}^{1}\right)_{n} \rightarrow D\left(\mathbb{P}^{1}\right)_{n+1}$ induces maps $\phi_{n}: K_{0}\left(D\left(\mathbb{P}^{1}\right)_{n}\right) \rightarrow K_{0}\left(D\left(\mathbb{P}^{1}\right)_{n+1}\right)$ given by $\phi_{n}(1,0)=(1, p-1)$ and $\phi_{n}(0,1)=(0, p)$.

Define $G_{n}=Z \oplus Z$ and let $\psi_{n}: G_{n}+G_{n+1}$ be the group homomorphism $\psi_{n}(1,0)=(1,0)$, $\psi_{n}(0,1)=(0, p)$. Define $\delta: \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ by $\delta(1,0)=(1,1), \delta(0,1)=(0,1)$, and extend δ to a group isomorphism. Then $\delta:\left(K_{0}\left(D\left(P^{2}\right)_{n}, \phi_{n}\right) \rightarrow\left(G_{n}, \psi_{n}\right)\right.$ is a chain
isomorphism, so $K_{0}\left(O\left(P^{1}\right)\right)=\underline{\longrightarrow}\left(G_{n}, \psi_{n}\right)$. As ψ_{n} is just the multiplication map $(a, b) \xrightarrow{(1, p)}(a, b p)$ one sees that this direct limit is $\mathbb{Z} \in \mathbb{Z}[1 / p]$, and that $\left[D\left(P^{\prime}\right)\right]=(1, p)$.

By chasing the positive cones $K_{0}^{+}\left(D\left(P^{1}\right)_{n}\right)$, one obtains $K_{0}^{+}\left(D\left(\mathbb{P}^{1}\right)\right)=$ $\{(a, b) \in \mathbb{Z} \oplus \mathbb{Z}[1 / p] \mid a \geq 0$ and $b>0$ or $(a, b)=(0,0)\}$. It is an easy matter now to see that the only order ideal in $K_{0}\left(D\left(P^{2}\right)\right)$ apart from 0 and $K_{0}\left(D\left(P^{1}\right)\right)$ is $\mathbf{Z}[1 / p]$.

Hence the lattice of order ideals is isomorphic to the lattice of two sided ideals of $D\left(\mathbf{P}^{2}\right)$. We summarise the above.

THEQREM $3.10 K_{0}\left(D\left(P^{1}\right)\right) \cong \mathbb{Z} \oplus \mathbb{Z}[1 / p]$, with $\left[D\left(P^{1}\right)\right]=(1, p)$. The tattice of order ideals in $\mathrm{K}_{0}\left(\mathrm{D}\left(\mathrm{P}^{1}\right)\right)$ is isomorphic to the lattice of two sided ideals in $\mathrm{D}\left(\mathbb{P}^{1}\right)$; this Zattice is:

Remark In [7, Corollary 15.21] it is proved that if R is a unit-regular ring there is an isomorphism between the lattice of two sided ideals of R, and the order ideals of $K_{0}(R)$. Of course after Proposition $3.5, D\left(\mathbb{P}^{1}\right)$ is not unit-regular.

Recall that if k is a field of characteristic zero, then there is a surjective $\operatorname{map} U(s l(2, k)) \rightarrow D\left(\mathbf{P}_{k}^{1}\right)$. This map is given by $e \rightarrow t^{2} \partial / \partial t, f \rightarrow-\partial / \partial t, h \rightarrow 2 t \partial / \partial t$ where $e=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), f=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right), h=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ is the usual basis for $s l(2, k)$. The surjectivity is seen from the fact that $D\left(\mathbf{F}_{k}\right)=k\left[\partial / \partial t, t \partial / \partial t, t^{2} \partial / \partial t\right]$, and this equality can be proved by elementary arguments. We snow below that, if chark $=p>0$, then the analogous map does not give a surjection from U_{k}, the hyperalgebra of $s l(2, k)$, to $D\left(P_{k}^{1}\right)$.

So k is once again a field of characteristic $p>0$. Denote the Z-span of the elements $\frac{f^{a}}{a!}\left(\frac{h}{b}\right) \frac{e^{c}}{c!}$ with $a, b, c \in N$, in $\left.U(s)(2, \mathbb{C})\right)$ by U_{Z}; this is the Kostant \mathbb{Z}-form and is a Z-subalgebra of $U(S \mathbf{l}(2, \mathbb{C}))$. The hyperalgebra U_{k} is defined to be $U_{k}=k Q_{Z} U_{Z}$.
$D\left(P_{\mathbf{Z}}^{1}\right)$ is equal to $D(\mathbf{Z}[t]) \cap D\left(Z\left[t^{-1}\right]\right)$, the intersection being taken inside $D\left(\mathbb{Z}\left[t, t^{-1}\right]\right)$. Hence $D\left(P_{\mathbb{Z}}^{1}\right)$ is precisely those elements of $D\left(P_{\mathbb{C}}^{1}\right)$ which, when acting on $\mathbb{C}[t]$ and $\mathbb{C}\left[t^{-1}\right]$, map $\mathbb{Z}[t]$ into $\mathbb{Z}[t]$ and $\mathbb{Z}\left[t^{-1}\right]$ into $\mathbb{Z}\left[t^{-1}\right]$. The image of $\frac{f^{a}}{a!}\binom{h}{b} \frac{e^{c}}{c!}$ in $D\left(P_{c}^{1}\right)$ is of course $\left(-\frac{\partial / \partial t)^{a}}{a!}(2 t \partial / \partial t) \frac{\left(t^{2} \partial / \partial t\right)^{c}}{c!}\right.$, and it is easy to
check that this differential operator sends $\mathbb{Z}[t]$ to $\mathbb{Z}[t]$ and $\mathbb{Z}\left[t^{-1}\right]$ to $\mathbb{Z}\left[t^{-1}\right]$. Hence this element belongs to $D\left(\mathbf{P}_{\mathbf{Z}}^{1}\right)$. Thus the map $U(s l(2, \mathbb{C})) \rightarrow D\left(P_{\mathbf{C}}^{1}\right)$ restricts to give a map $U_{\mathbf{Z}} \rightarrow D\left(P_{\mathbf{Z}}^{1}\right)$. This in turn induces a map $\phi: U_{k} \rightarrow D\left(\mathbf{P}_{k}^{1}\right)$ since $D\left(\mathbf{P}_{k}^{1}\right)=$ $k \otimes_{\mathbf{Z}} \mathrm{D}\left(\mathbb{P}_{\mathbf{Z}}^{2}\right)$. This last equality derives from Theorem 2.7.

THEOREM 3.11 The map $\phi: U_{k} \rightarrow D\left(P_{k}^{1}\right)$ is not surjective.
Proof Give $k\left[t, t^{-1}\right]$ the grading where t is of degree 1 ; define $D\left(\mathbb{P}_{k}^{1}\right)(j)=$ $\left\{\theta \in D\left(\boldsymbol{P}_{k}^{1}\right) \mid \theta\left(k t^{i}\right) \subset k t^{i+j}\right.$ for all $\left.i \in \mathbb{Z}\right\}$. Then $D\left(\mathbf{P}_{k}^{1}\right)=\underset{j \in \mathbb{Z}}{\oplus} D\left(\mathbf{P}_{k}^{1}\right)(j)$ and this gives a grading on $D\left(\mathbb{P}_{k}^{1}\right)$. Notice that $\phi(e) \in D\left(P_{k}^{1}\right)(1), \phi(f) \in D\left(\mathbb{P}_{k}^{1}\right)(-1), \phi(h) \in D\left(\mathbb{P}_{k}^{1}\right)(0)$. Likewise, $\phi\left(\frac{f^{a}}{a!}\binom{h}{b} \frac{e^{c}}{c!}\right) \in D\left(P_{k}^{1}\right)(c-a)$.

Consider the element $t^{p-1} \frac{(\partial / \partial t)^{p}}{p!}$ which belongs to $D\left(\mathbb{P}_{k}^{1}\right)(1)$. We will show this is not in the image of ϕ. If it were in the image of ϕ, then it would be a linear combination of the image of elements $\frac{f^{a}}{a!}\left(\frac{h}{b}\right) \frac{e^{c}}{c!}$ with $c-a=1$. Notice that $t^{p-1} \frac{(\partial / \partial t)^{p}}{p!}$ acts on $k[t]$ sending t^{p} to t^{p-1}. The action of $\frac{(\partial / \partial t)^{a}}{a!}(2 \operatorname{ta} \partial \partial t) \frac{\left(t^{2} \partial / \partial t\right)^{a+1}}{(a+1)!}$ sends t^{p} to $\binom{p+a}{p-1}\binom{2 p+2 a+2}{b}\binom{p+a+1}{p-1} t^{p-1}$. However, for all
$a \in N,\binom{p+a}{p-1}\binom{p+a+1}{p-1} \equiv 0(\bmod p)$. Hence $\phi\left(\frac{f^{a}}{a!}\binom{h}{b}\left(\frac{e^{a+1}}{a+1)!}\right)\right.$ sends t^{p} to zero. Consequently, no linear combination of these elements can equal $t^{p-1} \frac{(\partial / \partial t)^{p}}{p!}$ which sends t^{p} to t^{p-1}.

REFERENCES

[1] A. Beilinson and J.N. Bernstein, Localisation de g-modules, C.R. Acad. Sci. 292 (1981) 15-18.
[2] J.N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Funkciona 2. Anal. i. Prilozen 6 (1972) 26-40.
[3] J. Dixmier, Sur les algèbres de Weyl, Bull. Soc. Math. Fr. 96 (1968) 209-242.
[4] J. Dixmier, Sur les algèbres de Weyl II, Bull. Sci. Math. 94 (1970) 289-301.
[5] D. Eisenbud and J.C. Robson, Modules over Dedekind prime rings, J. Algebra 16 (1970) 67-85.
[6] K. Goodearl, Global dimension of differential operator rings, Proc. A.M.S. 45 (1974) 315-322.
[7] K. Goodearl, Von Neumarm Regulow rings, Pitman (1979).
[8] A. Grothendieck, Eléments de Geometrie Algèbrique IV, Inst. des Hautes Etudes Sci., Publ. Math. No. 32 (1967).
[9] R.G. Heynemann and M. Sweedler, Affine Hopf Algebras, J. Algebra 13 (1969) 192-241.
[10] T. Levasseur, Anneaux d'optrateurs differentiels, Seminaire M.P. Malliavin, Lecture Notes in Mathematics, No. 867, Springer-Verlag (1980).

