DIFFERENTIAL OPERATORS ON THE AFFINE AND PROJECTIVE LINES

IN CHARACTERISTIC p > 0

by

S.P. SMITH

Let k be a field, and denote by \mathbb{A}^1 (or \mathbb{A}^1_k) and \mathbb{P}^1 (or \mathbb{P}^1_k) the affine and projective lines over k. When k is of characteristic 0 the rings of differential operators on \mathbb{A}^1 and \mathbb{P}^1 (which we denote $\mathbb{D}(\mathbb{A}^1_0)$ and $\mathbb{D}(\mathbb{P}^1_0)$) have been extensively studied, and are considered to be well understood. In contrast, if char k = p > 0, the rings of differential operators on \mathbb{A}^1 and \mathbb{P}^1 (which we denote $\mathbb{D}(\mathbb{A}^1_p)$) have been studied at all. The purpose of this note is to begin an investigation into $\mathbb{D}(\mathbb{A}^1_p)$ and $\mathbb{D}(\mathbb{P}^1_p)$.

Before we outline some of our results, we give a brief account of the wider context in which $D(A_0^1)$ and $D(P_0^1)$ appear (and which accounts for their significance). First, if one is to study differential operators on any affine or projective variety then $D(A^1)$ and $D(P^1)$ are the first cases to examine. However, another important motivation is the connection of $D(A_0^1)$ and $D(P_0^1)$ with the representation theory of finite dimensional Lie algebras in characteristic zero. The recent history of $D(A_0^1)$ (known as the Weyl algebra) begins with Dixmier's papers [3] and [4]. He showed that if g is a finite dimensional nilpotent Lie algebra over C, then the primitive factor rings of U(g), the enveloping algebra of g, are of the form $D(A_0^n) \cong D(A_0^1) \otimes_{\mathbb{C}} \dots$ $\otimes_{\mathbb{C}} D(A_{\mathbb{C}}^1)$. Hence, the irreducible representations of g are precisely the simple modules over $D(A_{\mathbb{C}}^n)$ for various n. For example, if g is the 3-dimensional Heisenberg Lie algebra then the infinite dimensional irreducible representations of g are precisely the simple modules over $D(A_{\mathbb{C}}^1)$.

The ring $D(\mathbf{P}_{\mathbb{C}}^{1})$ arises in a similar way. Let G be a connected complex semisimple Lie group with Borel subgroup B; then G/B is a complex projective algebraic variety $(P_{\mathbb{C}}^{1}$ arises as SL(2)/B), and the ring of global regular differential operators on G/B, D(G/B), is isomorphic to a primitive factor ring of U(g) where g is the Lie algebra of G. See [1] where this idea is exploited to verify the Kazhdan-Lusztig conjectures on Verma modules.

The corresponding connections between representations of characteristic p Lie algebras and modules over $D(\mathbf{A}_p^1)$ and $D(\mathbf{P}_p^1)$ are not studied here. Rather, we concern ourselves with the ring theoretic properties of $D(\mathbf{A}_p^1)$ and $D(\mathbf{P}_p^1)$ and examine to what extent their structure parallels or diverges from $D(\mathbf{A}_0^1)$ and $D(\mathbf{P}_0^1)$. It is largely a matter of taking a result in characteristic zero and asking whether the same result holds in characteristic p, and if not, in what sense is it false.

In Table 1, below, the properties of $D(A^1)$ in characteristics zero and p are set out side by side. Let us mention just a few of them. $D(\mathbb{A}^1_0)$ is finitely generated and Noetherian - both these are false for $D(A_n^1)$. Much of the "bad" behaviour of $D(\mathbf{A}_{D}^{1})$ can be attributed to the lack of some sort of finiteness condition (in particular, the question of whether every endomorphism of a simple $D(\boldsymbol{A}_{D}^{1})$ -module is algebraic over k, is difficult because one has no finiteness condition which might allow a result concerning generic flatness of the associated graded algebra to be established). For a similar reason Gelfand-Kirillov dimension, which is an effective tool for $D(A_0^1)$, does not seem to be useful for $D(A_D^1)$. But, all is not lost. For example, if k[t] denotes the co-ordinate ring of \mathbf{A}^1 , and if $0 \neq f \in k[t]$ then $k[t,f^{-1}]$ is a D(A¹)-module. In characteristic zero, $k[t,f^{-1}]$ is an Artinian module, and the usual proof involves Gelfand-Kirillov dimension. Nevertheless, in characteristic p, k[t,f⁻¹] is also an Artinian $D(\boldsymbol{A}_p^1)$ -module, and the proof makes use of one structural feature of $D(\bm{A}_p^1)$ that has no analogue in $D(\bm{A}_0^1)$. Namely that $D(\bm{A}_p^1)$ = U End $k[t^{p^n}]k[t]$, is a union of matrix algebras over commutative rings (whereas n=0 $D(A_0^1)$ is a domain). One question which appears in [3] and remains unanswered to date, is whether $D(\mathbf{A}_{0}^{1})$ has a proper subring isomorphic to $D(\mathbf{A}_{0}^{1})$. It is quite easy to construct a proper subring of $\mathsf{D}(\boldsymbol{A}_D^1)$ which is isomorphic to $\mathsf{D}(\boldsymbol{A}_D^1)$.

Although $D(P_{\mathbb{C}}^1)$ is a primitive factor ring of $U(sl(2,\mathbb{C}))$, the natural map from Hyp(sl(2,k)), the hyperalgebra of sl(2,k), to $D(P_k)$ is not surjective if char $k = p^{>0}$.

 $D(P_0^1)$ has a unique two sided ideal (apart from 0 and $D(\mathbb{P}_0^1)$) and this ideal is of codimension 1; the analogous statement for $D(P_p^1)$ is also true. Whereas $K_0(D(\mathbb{P}_0^1)) = \mathbb{Z} \oplus \mathbb{Z}$, $K_0(D(\mathbb{P}_p^1)) = \mathbb{Z} \oplus \mathbb{Z}[1/p]$; the lattice of order ideals in $K_0(D(\mathbb{P}_p^1))$ is isomorphic to the lattice of two sided ideals in $D(\mathbb{P}_p^1)$.

TABLE 1

Properties of $D(\mathbf{A}_{k}^{1})$

Characteristic zero	Characteristic p > 0
finitely generated	not finitely generated
Noetherian	not Noetherian
simple ring	simple ring
domain	not a domain
gl.dim. = 1	gl.dim. = l
K.dim. = 1	K.dim. does not exist
GK.dim. = 2	GK. dim. = 1.
centre = k	centre = k
κ _o = Ζ	$K_{o} = Z[1/p]$
Every derivation is inner	There exists a non-inner derivation
If I is a left ideal with $I \cap k[t] \neq 0$ and $I \cap k[d/dt] \neq 0$, then $I = D(\mathbf{A}^1)$	If char k = 2 then $Dt + Dx_1 \neq D(\mathbb{A}^1)$
If $0 \neq f \in k[t]$ then $k[t,f^{-1}]$ is Artinian	If $0 \neq f \in k[t]$ then $k[t, f^{-1}]$ is of finite length
k[t] is a simple module	k[t] is a simple module
D/Dt is a simple module	D/Dt is a simple module
Open question whether $D(\mathbf{A}^1)$ has a proper subalgebra isomorphic to $D(\mathbf{A}^1)$	$D(\mathbf{A}^{1})$ contains a proper subalgebra iso- morphic to $D(\mathbf{A}^{1})$ viz k[$t^{p}, x_{p}, x_{2p}, x_{3p},$]
If M is a simple module End_{D}^{M} is algebraic over k	Not known

My initial interest in these ideas was aroused during conversations and correspondence with Ken Goodearl. I am indebted to him for his generous comments and assistance, especially relating to matters concerning K-theory. My thanks also go to C.R. Hajarnavis for many useful conversations during the preparation of these notes.

§1. DIFFERENTIAL OPERATORS

Let k be any commutative ring, and A any commutative k-algebra. Then $\operatorname{End}_k A$ may be made into an A $\otimes_k A$ -module by defining $((a \otimes b)\theta)(c) = a\theta(bc)$ for $\theta \in \operatorname{End}_k A$ and a,b,c ϵ A. We write $[a,\theta]$ for $(a \otimes 1-1 \otimes a)\theta$, so $[a,\theta](b) = a\theta(b) - \theta(ab)$.

<u>DEFINITION 1.1</u> The space of k-linear differential operators of order $\leq n$ on A, Diffⁿ_kA, is defined inductively by Diff⁻¹_kA = 0, and for $n \geq 0$, Diffⁿ_kA = { $\theta \in End_kA | [a, \theta] \in Diff^{n-1}_kA$ for all $a \in A$ }. The ring of k-linear differential operators on A is $D(A) = \bigcup_{n=0}^{\infty} Diff^n_kA$. If X is an affine algebraic variety over the n=0field k with ring of regular functions A, we write D(X) = D(A).

<u>REMARK 1.2</u> (1) Diffⁿ_{ν}A is an A \otimes A-submodule of End_{ν}A

(2) If $\theta \in \text{End}_k A$, then $\theta \in \text{Diff}_k^n A$, if and only if,

 $[a_0[a_1 \dots [a_n, 0], \dots]] = 0$ for all $a_0, a_1, \dots, a_n \in A$.

(3) We refer the reader to [10] for a more comprehensive introduction to rings of differential operators on commutative rings.

(4) It is an easy exercise to verify that if k is a field of characteristic zero, and k[t] is the ring of regular functions on \mathbf{A}_k^1 , then $D(\mathbf{A}_k^1) = k[t,d/dt]$ where d/dt is the usual differentiation operator acting on the polynomial ring k[t]. As elements of End_kk[t] one has (d/dt)t - t(d/dt) = 1.

<u>DEFINITION 1.3</u> Denote by $\mu: A \otimes_k A \rightarrow A$ the multiplication map $\mu(a \otimes b) = ab$. This is a k-algebra map (also an A-module map for either the right or left A-module structure on A $\otimes_k A$). Put I = ker μ .

<u>THEOREM 1.4</u> (Heynemann-Sweedler [9], Grothendieck [8]). Let $\theta \in \text{End}_k A$. Then $\theta \in \text{Diff}_k^n A$, if and only if, $I^{n+1} \cdot \theta = 0$.

§2. PROPERTIES OF $D(\mathbf{A}_{p}^{1})$

Write D = D(A_p^1), and consider D as the ring of k-linear differential operators on k[t], the polynomial ring in t, over the field k of characteristic p > 0.

The following result was arrived at during conversation and correspondence with

Ken Goodearl, and I am grateful for his allowing me to include it here.

PROPOSITION 2.1 D =
$$\bigcup_{n=0}^{\infty}$$
 End_{k[tpn]}k[t] and Diff_k^{pn-1} k[t] = End_{k[tpn]}k[t].

<u>Proof</u> Let $\theta \in \operatorname{End}_{k}k[t]$. Notice that $I = \ker(\mu:k[t] \otimes_{k}k[t] \rightarrow k[t])$ is generated as an ideal by $1 \otimes t - t \otimes 1$. Hence $I^{p^{n}}$ is generated by $(1 \otimes t - t \otimes 1)^{p^{n}} = 1 \otimes t^{p^{n}} - t^{p^{n}} \otimes 1$. So $\theta \in \operatorname{Diff}_{k}^{p^{n-1}} k[t]$, if and only if, $I^{p^{n}} \cdot \theta = 0$. That is, if and only if, $0 = (1 \otimes t^{p^{n}} - t^{p^{n}} \otimes 1)$. $\theta = \theta t^{p^{n}} - t^{p^{n}} \theta$. So θ is a differential operator of order $\leq p^{n}$ -1, if and only if $\theta \in \operatorname{End}_{k \lceil t p^{n} \rceil} k[t]$. This proves the result. \Box

We shall write $D_n = \text{Diff}_k^{p^n-1} k[t]$. So we have just shown that $D_n \cong M_{p^n}(k[t^{p^n}])$, the $p^n \times p^n$ matrix ring over $k[t^{p^n}]$.

COROLLARY 2.2 (1) D is not a finitely generated k-algebra;

- (2) D does not contain any primitive idempotents; in fact if $0 \neq e \in D$ is idempotent then there exists a set of p mutually orthogonal idempotents e_1, \ldots, e_p such that $e = e_1 + \ldots + e_p$;
- (3) D contains an infinite direct sum of non-zero left ideals;
- (4) D is not Noetherian;
- (5) D does not have Krull dimension (in the sense of Gabriel and Rentschler).

<u>Proof</u> (3), (4), (5) are immediate consequences of (2), and (1) is obvious, since any finite set of elements of D lies in some D_n , and so can at best generate D_n which is a proper subalgebra of D.

To prove (2), let $0 \neq e \in D$ be an idempotent. Suppose $e \in D_n = \operatorname{End}_{k[tp^n]}k[t]$. Write $k[t] = U \oplus V$, a direct sum of $k[tp^n]$ -submodules, where $e|_U = \operatorname{Id}|_U$ and e(V) = 0. As $e \neq 0$, U is non-zero, and as a $k[t^{p^{n+1}}]$ -module, $U = U_1 \oplus \ldots \oplus U_p$ is a direct sum of p non-zero $k[t^{p^{n+1}}]$ -modules. Now $e = e_1 + \ldots + e_p$ where e_j is the projection of k[t] onto U_j with kernel $V \oplus U_1 \oplus \ldots \oplus \hat{U}_j \oplus \ldots \oplus U_p$ (omit U_j from the sum). One checks that each e_j is a $k[tp^{n+1}]$ -module map, hence an element of D_{n+1} , and that the e_j are mutually orthogonal idempotents. \Box

A concrete illustration of (2) above, is the following: if $e_n:k[t] + k[t]$ is the

 $k[t^{p^n}]$ -linear map defined by $e_n(t^i) = \delta_{i,p^{n-1}}t^i$ for $0 \le i \le p^n$, then $\{e_1, e_2, \ldots\}$ is an infinite set of mutually orthogonal idempotents.

<u>PROPOSITION 2.3</u> $K_{o}(D) \cong \mathbb{Z}[1/p]$

<u>Proof</u> $D_n \cong M_p(k[t^{p^n}])$ and one has that $K_0(D_n) = K_0(k[t^{p^n}])$ (as K_0 is defined in terms of the category of modules over D_n) and it is known that $K_0(k[t^{p^n}]) = \mathbb{Z}$. The inclusions $D_1 + D_2 + D_3 + \ldots$ induce maps on the K_0 groups $\mathbb{Z} \xrightarrow{p} \mathbb{Z} \xrightarrow{p} \mathbb{Z} + \ldots$. The maps are multiplication by p. As K_0 commutes with direct limits [7] we get $K_0(D) = \mathbb{Z}[1/p]$. \Box

An order unit is 1 = [R], and the order relation is the usual order relation on Z[1/p].

PROPOSITION 2.4 Not every derivation of D is inner.

<u>Proof</u> Define $\Delta: D \rightarrow D$ by $\Delta(d) = [t + t^p + t^{p^2} + ...,d]$. This actually makes sense: for n >> 0, d $\in D_{n+1}$ and so d commutes with $t^{p^{n+1}}$, and hence with t^{p^m} for all m > n; therefore $\Delta(d) = [t + t^p + ..., t^{p^n}, d]$ for $d \in D_{n+1}$.

Suppose \triangle is inner, say \triangle = ad(y) for some $y \in D$. Let $y \in D_n$. As $\triangle(t) = 0$, y commutes with k[t], hence $y \in k[t]$. For all n we have $\triangle - ady|_{D_{n+1}} = 0$ but we have just seen that $\triangle|_{D_{n+1}} = ad(t + t + ... + t^{p^n})$. Hence $ad(t+t^{p_+}...+t^{p^n}-y)|_{D_{n+1}} = 0$, and so $t + t^p + ... t^{p^n}$ - y belongs to the centre of D_{n+1} (= k[$t^{p^{n+1}}$]) for all n; this is impossible. \Box

PROPOSITION 2.5 Centre (D) = k.

<u>Proof</u> Centre $(D_n) = k[t^{p^n}]$ and $\bigcap_{n=0}^{\infty} k[t^{p^n}] = k$. The proposition is an immediate consequence. \Box

Another description of D is also useful. For each $i \in \mathbb{N}$, let x_i be the k-linear map on k[t] given by $x_i(t^m) = {m \choose i}t^{m-i}$ where the binomial coefficient ${m \choose i}$ is evaluated (mod p). One should think of x_i as acting like $(1/i!)\partial^i/\partial t^i$; even though 1/i! does not make sense in k if $i \ge p$, this analogy can be made rigorous, as in Theorem 2.7 below. The analogy is useful in noticing relationships such as $x_i x_j = {i+j \choose i} x_{i+j}$.

 $\underline{\text{THEOREM 2.6}} \quad \text{D}_n = k[\texttt{t},\texttt{x}_1,\texttt{x}_2,\ldots,\texttt{x}_{p^n-1}] \text{ and } \text{D} = k[\texttt{t},\texttt{x}_1,\texttt{x}_2,\ldots].$

<u>Proof</u> To see that x_m is a differential operator of order $\leq m$, notice that $x_0 = 1 \in D_{\sigma}$ and $[x_m,t] = x_{m-1}$ then use the inductive Definition 1.1. Thus $k[t,x_1,\ldots,x_nn_{-1}] \subset D_n$.

Viewing $D_n \cong M_{pn}(k[t^{p^n}])$, there is a basis for D_n as a $k[t^{p^n}]$ -module given by the maps $\theta_{ij}:k[t] \neq k[t]$ for $0 \le i, j \le p^n$ where θ_{ij} is the $k[t^{p^n}]$ -module map defined by $\theta_{ij}(t^m) = \delta_{jm} t^{m+i-j}$ for $0 \le m \le p^n$. The θ_{ij} are just the matrix units (for the basis 1,t,...,t^{p^n-1} of k[t] as a $k[t^{p^n}]$ -module).

One computes that $\theta_{ij} = t^i x p^{n-1-j}$ (the point being that $\binom{\ell}{p^{n-1}}$ is zero for all $\ell \in \mathbb{N}$ unless $\ell = p^{n-1}$). Thus $\theta_{ij} \in k[t,x_1,\ldots,x_{p^{n-1}}]$. This completes the proof. \Box

Recall that $D(Q[t]) = Q[t, \partial/\partial t]$. One can easily check that the Z-module spanned by all elements of the form $t^{j}(1/i!)\partial^{j}/\partial t^{i}$ is in fact a Z-subalgebra; write $S=Z[t, \partial/\partial t, (1/2!)\partial^{2}/\partial t^{2}, ...]$. Of course S = D(Z[t]), the ring of Z-linear differential operators on Z[t]. The following is straightforward.

<u>THEOREM 2.7</u> $D(k[t]) \stackrel{\sim}{=} k \otimes_{\mathbb{Z}} S$ where the isomorphism is given by $x_i \stackrel{\rightarrow}{\rightarrow} 1 \otimes (1/i!) \partial^i / \partial_t^i$ and $t \stackrel{\rightarrow}{\rightarrow} t$.

The proof that D is a simple ring is inevitably a little more complicated than the proof in the characteristic zero case - if one recalls the characteristic zero proof, one part of it is the observation that if I is a non-zero ideal and $0 \neq a \in I$ then for some n, $ad^{n}(\partial/\partial t)(a) \in k[\partial/\partial t] \setminus 0$, so there exists $0 \neq b \in I$ with $b \in k[\partial/\partial_{t}]$ and then for some m $ad^{m}(t)(b) \in k \setminus \{0\}$, so I contains a scalar. However, if char k = 2,ad($\partial/\partial t$)(t^{2}) = 0.

Hence we require the following technical result.

LEMMA 2.8
$$[x,t^m] = \sum_{j=1}^{\ell} (-1)^{j+1} {m \choose j} x_{\ell-j} t^{m-j}$$
 for all m, ℓ .

Proof Evaluate both sides at tⁿ, and the lemma reduces to checking the identity

$$\binom{m+n}{\ell} - \binom{n}{\ell} = \sum_{j=1}^{\ell} (-1)^{j+1} \binom{m}{j} \binom{m+n-j}{\ell-j} \text{ for all } m, n, \ell.$$

This is standard.

PROPOSITION 2.9 D is a simple ring.

<u>Proof</u> Let $0 \neq I$ be a two-sided ideal of D. For some n, $I \cap D_n \neq 0$. A non-zero two sided ideal of a matrix ring over a ring R contains a non-zero ideal of R. Hence, for some n, $I \cap k[t^{p^n}] \neq 0$.

Choose $0 \neq f \in I \cap k[t]$, of lowest degree in t. Write $f = \alpha + g$ with $g \in tk[t]$, $\alpha \in k$. If g = 0 then $I \cap k \neq 0$, hence I = D, and the proof is complete. Suppose then, that $g \neq 0$, and let t^r be the lowest degree term appearing in g. Pick n, with $p^n \leq r < p^{n+1}$. Consider $[x_{p^n}, f] = [x_{n^n}, g] \in I$.

If $m \ge p^n$, then by Lemma 2.8, $[x_{p^n}, t^m] = \sum_{j=1}^{p^n} (-1)^{j+1} {m \choose j} x_{p^n-j} t^{m-j} = (-1)^{p^n+1} {m \choose p^n} t^{m-p^n}$ since ${m \choose j} = 0 \pmod{p}$ for $j < p^n \le m$. Also notice that as $p^n \le r < p^{n+1} {p \choose p^n} \neq 0 \pmod{p}$. So in particular $[x_{p^n}, t^n] \neq 0$; thus $[x_{p^n}, g]$ is of lower degree than f and is non-zero. This contradicts the choice of f. Thus g = 0, and the proof is complete.

<u>PROPOSITION 2.10</u> D contains a proper subalgebra isomorphic to D, namely $k[t^{p},x_{p},x_{2p},x_{3p},\ldots]$

<u>Proof</u> Notice that for all i,j $x_{ip}(t^{jp}) = {jp \choose ip}t^{(j-i)p}$ and that ${jp \choose ip} = {j \choose i}(mod p)$. Hence the natural action of x_{ip} on k[t] maps k[t^p] into k[t^p], and so each x_{ip} is a differential operator on k[t^p]. After Theorem 2.6 D(k[t^p]) = k[t^p, y₁, y₂,...] where $y_i(t^{jp}) = {j \choose i}(t^p)^{j-i}$. As each x_{ip} acts as does y_i , we conclude that $D(k[t^p]) \cong k[t^p, x_p, x_{2p}, ...]$; of course $D(k[t]) \cong D(k[t^p])$ so we have shown that $D \cong k[t^p, x_p, x_{2p}, ...]$.

That $k[t^p, x_p, x_{2p}, ...]$ is a proper subalgebra of D is obvious from the fact that D = $k[t] \oplus k[t]x_1 \oplus k[t]x_2 \oplus ...$ (this follows from Theorem 2.7) and $k[t^p, x_p, x_{2p}, ...]$ = $k[t^p] \oplus k[t^p]x_n \oplus ...$ The next example illustrates that one useful technique for studying the Weyl algebra in characteristic zero, is not available in characteristic p. If k is a field with char k = 0, then $D(A_k^1) \cong k[x,y]$ with xy - yx = 1; $D(A_k^1)$ can be localised at the non-zero elements of k[x] and k[y] respectively. The diagonal embedding of $D(A_k^1)$ into the direct sum of the localisations, $D(A_k^1) \rightarrow k(x)[y] \oplus k(y)[x]$, is a faithfully flat embedding; the "faithfulness" comes from the fact that if I is a left ideal of $D(A_k^1)$ with $I \cap k[x] \neq 0$ and $I \cap k[y] \neq 0$ then, in fact, $I = D(A_k^1)$.

EXAMPLE There is a left ideal I of D, I \neq D such that I \cap k[t] \neq O and I \cap k[x₁,x₂,...] \neq O.

We construct our example for char k = 2, but a similar example exists for any characteristic.

 $\begin{array}{l} x_{n}x_{1} = \binom{n+1}{1}x_{n+1} = \{ \begin{smallmatrix} 0 & n \ \text{odd} \\ x_{n+1} & n \ \text{even} \mbox{, and thus } Dx_{1} = \oplus \\ n \ \text{odd} \mbox{, and thus } Dx_{1} = 0 \mbox{, and thus } Dx_{1} = 0 \mbox{, and thus } x_{n} \mbox{, and thus } Dx_{n} \mbox{, and thu$

$$I \subseteq \sum_{n \text{ odd}} k[t]x_{n} + k[t]t^{2} + \sum_{\substack{n \text{ even} \\ n \geq 2}} k[t](t^{2}x_{n} + x_{n-2}) =$$

$$k[t]t^{2} + k[t]x_{1} + k[t](t^{2}x_{2}+1) + k[t]x_{3} + k[t](t^{2}x_{4}+x_{2}) +$$

and it is easy to see that $1 \notin I$.

<u>**PROPOSITION 2.11**</u> k[t] is a simple D-module.

<u>Proof</u> Let $0 \neq N$ be a submodule of k[t]. We will show $N \cap k \neq 0$ from which the result follows. Suppose $N \cap k = 0$, and choose $f \in N$ of least degree. Let t^r be the highest degree term appearing in f. Choose n such that $p^n \leq r < p^{n+1}$. Then Then $x_{pn}(t^r) = \binom{r}{p^n}t^{r-p^n}$, and $\binom{r}{p^n} \neq 0 \pmod{p}$. Hence $x_{pn}(f) \neq 0$ and is of lower degree than f. This contradicts the choice of f. \Box

Recall that if k is of characteristic zero then the natural action of $k[t,\partial/\partial t]$ on k[t] extends to an action of $k[t,\partial/\partial t]$ on $k[t,f^{-1}]$ for any $0 \neq f \in k[t]$, and that $k[t,f^{-1}]$ is of finite length as a $k[t,\partial/\partial t]$ -module. The usual proof of this [2] uses Gelfand-Kirillov dimension. Although the same tool is no longer available in characteristic p > 0, the same result is true (Theorem 2.13). In order to prove this a few preliminary observations are required.

As $D_n \stackrel{\simeq}{=} M_{pn}(k[t^{pn}])$, any non-zero D_n -module has dimension (over k) at least p^n . After Theorem 2.6 (and its proof) we have $D_n = k[t] \oplus x_1 k[t] \oplus \ldots \oplus x_{p^{n-1}} k[t]$ If $0 \neq f \in k[t]$ with deg(f) = F then $D_n/D_n f \cong S \oplus x_1 S \oplus \ldots \oplus x_p n_{-1} S$ where , S = k[t]/(f), as a right k[t]-module. As dim S = F, dim $(D_n/D_n f) = p^n F$, and hence by our first observation length $D_n(D_n f) \leq F$.

<u>LEMMA 2.12</u> Let M be a left D-module, with a chain of finite dimensional subspaces $M_0 \in M_1 \in M_2 \in \ldots$ such that

- (a) each M_n is a D_n -module,
- (b) for large n, $length_{D_n}(M_n) \leq F$ (fixed F for all n >> 0),

(c)
$$M = \bigcup_{n=0}^{N} M_{n}$$
.

Then, as a D-module, $length_{D}(M) \leq F$.

<u>Proof</u> Suppose F = 1. We must show that M is a simple D-module. Choose $0 \neq m \in M$ and choose any m' \in M. For all sufficiently large n, m and m' belong to M_n, which is a simple D_n-module by (b). Thus m' \in D_nm \subset Dm. Thus M is a simple D-module.

We now prove the result by induction on F. Suppose $F \ge 2$, and that the lemma is true for all numbers less than F. If M is simple as a D-module the proof is finished. If not, choose $0 \ne N$ a proper D-submodule of M. Put $N_n = N \cap M_n$; notice that $N = \bigcup_{n=0}^{\infty} N_n$, and each N_n is a D_n -module. We show that for all large n, length $\bigcup_{n=0}^{\infty} (N_n) \le F-1$. To see this, pick $m \in M$, $m \ne N$. There exists n_0 such that $m \in M_n$ for all $n \ge n_0$, but $m \ne N_n$. Hence, if $n \ge n_0$, $N_n \le M_n$. Thus length $D_n(N_n) \le F-1$ for all large n. By the induction hypotheses length $D(N) \le F-1$.

We have shown that any proper submodule of M has length at most F-1. Hence,

 $length_{D}(M) \leq F.$

<u>THEOREM 2.13</u> Let $0 \neq f \in k[t]$. Then the D-module $k[t, f^{-1}]$ is of finite length (in fact, of length $\leq deg(f) + 1$).

<u>Proof</u> As k[t] is a simple D-submodule of k[t, f^{-1}], it is enough to show that M = k[t, f^{-1}]/k[t] is of length $\leq deg(f)$.

For each n, let M_n be the D_n -submodule of M generated by the image of f^{-p^n} . If $gf^{-m} \in M$ with $g \in k[t]$, there exists an n, with $m < p^n$; then $gf^{-m} = gfp^{n} - mf^{-p^n} \in M_n$. Hence $M = \bigcup_{n=0}^{\infty} M_n$.

Put F = deg(f). We will show that $\operatorname{length}_{D_n}(M_n) \leq F$, and the theorem will follow from Lemma 2.12. Recall that a non-zero D_n -module has dimension at least p^n , so it will suffice to show that $\dim_k M_n \leq Fp^n$.

Recall that $D_n = k[t] \oplus k[t]x_1 \oplus \ldots \oplus k[t]x_{p^{n-1}}$, so if one has $x_j(f^{-p^n}) = 0$ for $1 \le j < p^n$, then $M_n = D_n \cdot f^{-p^n} = k[t] \cdot f^{-p^n}$, and as $f^{p^n} \cdot f^{-p^n} = 0$ (remember $M = k[t, f^{-1}]/k[t]$), it would follow that $\dim_k(M_n) = \dim_k k[t]/\langle f^{p^n} \rangle) = F_p^n$.

So the theorem is complete if $x_j(f^{-p^n}) = 0$ for $1 \le j < p^n$. However, $f^{p^n} \in k[t^{p^n}]$, and as $x_j \in D_n$, x_j commutes with multiplication by f^{p^n} . Thus $x_j(f^{-p^n}) = f^{-p^n}x_j(1) = 0$, for $1 \le j < p^n$.

The following is well known and is useful in deciding whether $x_{\mathbf{j}}x_{\mathbf{j}}$ is zero or not.

<u>LEMMA 2.14</u> If $a, b \in \mathbb{N}$ and the p-adic expansions are $a = a_0 + a_1 p + a_2 p^2 + \dots$, $b = b_0 + b_1 p + b_2 p^2 + \dots$ then $\binom{a}{b} \equiv \prod_{j=1}^{n} \binom{a_j}{b_j} \pmod{p}$.

LEMMA 2.15 For $m \ge n$, D_m is free as a D_n -module (on either the right or the left) of rank p^{m-n} . A basis for D_m as a D_n -module is given by $1, x_{p^n}, x_{2p^n}, \dots, x_{(p^{m-1})p^{n-1}}$. <u>Proof</u> Recall the description of D_n and D_m given in Theorem 2.6. If $0 \le j \le p^n-1$, and $0 \le i \le p^m-1$ then $x_j x_{ip^n} = {j+ip^n \choose j} x_{j+ip^n}$. However, writing j and ip^m in their p-adic form, Lemma 2.14 ensures that $x_i x_{ip^n} \ne 0$. The Lemma follows. \Box

The following consequence of Lemma 2.12 is useful.

<u>LEMMA 2.16</u> If N is a D_n -module of finite length, then $D \otimes_{D_n} N$ is of finite length as a D-module.

<u>Proof</u> If N were a faithful D_n -module then D_n would be artinian (which it is not). So I = $ann_{D_n}(N) \neq 0$. But a non-zero ideal of $D_n = M_{p^n}(k[t^{p^n}])$ intersects $k[t^{p^n}]$ in a non-zero ideal. Thus N is a finitely generated module over the finite dimensional algebra $M_{n^n}(k[t^{p^n}]/I \cap k[t^{p^n}]) = D_n/I$. Thus $\dim_k N < \infty$.

Let $m \ge n$. As D_m is a free D_n -module of rank p^{m-n} , $D_m \otimes_{D_n} N$ is of dimension $\le p^{m-n} \dim_K N$. As a non-zero D_m -module has dimension $\ge p^m$, length $_{D_m} (D_m \otimes_{D_n} N) \le p^{-n} \dim_K N$. The lemma follows from Lemma 2.12 by observing that $D \otimes_{D_n} N = m \sum_{n=1}^{m} n D_m \otimes_{D_n} N$. \Box

We next show that gl.dim.D = 1. As the comments and example following Proposition 2.10 indicate, the proof that gl.dim. $(D(A_k^1)) = 1$ when k is of characteristic zero cannot be used. The following preparatory lemma is required (and allows us in the proof of Theorem 2.18 to make frequent use of the fact that for a finitely generated D_n -module the concepts of torsion submodule coincide whether we consider torsion with respect to the regular elements of D_n , or with respect to the non-zero elements of k[t] when the D_n -module is viewed as a k[t]module).

<u>LEMMA 2.17</u> Let M be a finitely generated D_n -module. Let M_1 be the torsion submodule of M with respect to the regular elements of D_n ; let M_2 be the torsion submodule of M with respect to $k[tp^n]$; let M_3 be the torsion submodule of M with respect to k[t]. Then $M_1 = M_2 = M_3$.

<u>Proof</u> As $k[t] \in D_n$ and D_n is a free k[t]-module, $k[t] \setminus \{0\}$ consists of regular elements in D_n . Hence $M_3 \in M_1$. Similarly $M_2 \in M_3 \in M_1$.

Write Q_n for the ring of fractions of D_n . That is, $Q_n = M_{pn}(k(t^{p''})) = k(t^{p^n}) \otimes_{k[t^{p^n}]} D_n$, where $k(t^{p^n})$ denotes the field of rational functions in t^{p^n} . Now $Q_n \otimes_{D_n} M_1 = 0$. Hence $k(t^{p^n}) \otimes_{k[t^{p^n}]} M_1 = 0$, and it follows that $M_1 = M_2$. THEOREM 2.18 gl.dim. D = 1. <u>Proof</u> As D is not semi-simple artinian, gl.dim. $D \ge 1$. So it is enough to show that every left ideal of D is projective. Let I be a left ideal.

Put $I_n = I \cap D_n$, and define I'_n to be the left ideal of D_n containing I_n such that I'_n/I_n is the torsion submodule of the D_n -module D_n/I_n . Put $T_n = DI'_n \cap I$.

We claim that $T_n \in T_{n+1}$. To see this it is enough to check that $I'_n \in I'_{n+1}$. But $I'_n + I_{n+1}/I_{n+1} \cong I'_n/I'_n \cap I_{n+1}$ which is a homomorphic image of I'_n/I_n . As I'_n/I_n is k[t]-torsion so is $I'_n + I_{n+1}/I_{n+1}$. Thus $I'_n \in I'_{n+1}$.

We claim that T_n is a finitely generated left ideal. Notice that $T_n/DI_n \subseteq DI_n^{\prime}/DI_n \cong D \otimes_{D_n} (I_n^{\prime}/I_n)$. By Lemma 2.16 this latter D-module is of finite length since I_n^{\prime}/I_n is of finite length as a D_n -module. The truth of the claim follows from the fact that DI_n is finitely generated, and that T_n/DI_n is of finite length.

Consider T_{n+1}/T_n . As both these left ideals are finitely generated there exists $m \in N$ with $T_{n+1}/T_n = D(T_{n+1} \cap D_m)/D(T_n \cap D_m)$. Now $T_{n+1} \cap D_m/T_n \cap D_m \cong T_n + (T_{n+1} \cap D_m)/T_n$ which is a submodule of $I/T_n = I/I \cap DI_n' \cong I + DI_n'/DI_n'$ which is a submodule of $D/DI_n' \cong D \otimes_{D_n} (D_n/I_n')$. However, as a k[t]-module D_n/I_n' is torsion-free, hence so is D/DI_n' . Thus $T_{n+1} \cap D_m/T_n \cap D_m$ is torsion-free as a D_m -module. But D_m is a hereditary Noetherian prime ring, so by [5, Theorem 2.1] a torsion-free D_m -module is projective. Hence there is a left ideal J of D_m with $T_{n+1} \cap D_m = T_n \cap D_m \oplus J$. Thus (as D is free as a D_m -module) $D(T_{n+1} \cap D_m) = D(T_n \cap D_m) \oplus DJ$. In particular, there is a finitely generated left ideal S_n with $T_{n+1} = T_n \oplus S_n$.

Now $I = \bigcup_{n=0}^{\infty} DI_n = \bigcup_{n=0}^{\infty} T_n = T_0 + T_1 + \dots = S_0 \oplus S_1 \oplus S_2 \oplus \dots$. But each S_n

is finitely generated hence projective (because $S_n \cong D \otimes_{D_m} (D_m \cap S_n)$, and $D_m \cap S_n$ is a projective D_m -module). Thus I is projective. \Box

Goodearl has pointed out the following way of viewing D. Let B denote the subring $k[x_1,x_2,...]$ of D; B is isomorphic to the factor ring of a commutative polynomial ring $k[X_1,X_2,...]$ modulo the ideal generated by $X_iX_j - {i+j \choose i}X_{i+j}$. The

inner derivation ad(t) = [t,-] of D maps B into itself, so ad(t) acts as a derivation on B, and D may be viewed as B[t], the extension of B by the derivation ad(t). Now it is easy to see gl.dim. B = ∞ because there exist non-split exact sequences:

$$0 \rightarrow X_1 B \rightarrow B \rightarrow X_{p-1} B \rightarrow 0$$
$$0 \rightarrow X_{p-1} B \rightarrow B \rightarrow X_1 B \rightarrow 0.$$

Hence this gives an example of a commutative ring of infinite global dimension such that an extension by a derivation has finite global dimension (the first such example appears in [6]).

As D is a ring of differential operators it has a filtration given by the order of the operators. As x_n is of order n, the filtration is given by $F_nD = k[t] \oplus k[t]x_1 \oplus \ldots \oplus k[t]x_n$, and the associated graded algebra grD is isomorphic to B[s] where s is a commuting indeterminate. Hence although gl.dim D = 1, gl.dim (grD) = ∞ .

Notice that the exact sequences over D corresponding to those for B given above are split. This is because Dx_{p-1} is projective (being generated by the idempotent $t^{p-1}x_{p-1}$).

We now briefly turn our attention to the ring of fractions of D. As D is a free k[t]-module, k[t]\{0} consists of regular elements of D. Hence Fract D contains k(t). As $D_n \cong M_{pn}(k[t^{p^n}])$, Fract $D_n \cong M_{pn}(k(t^{p^n}))$. Thus we have

<u>THEOREM 2.19</u> The ring of fractions Q, of D, is equal to $k(t)[x_1,x_2,...]$ and $Q = \bigcup_{n=0}^{\infty} Q_n$ where $Q_n = End_{k(tP^n)}k(t) = Fract D_n$.

In particular Q is a union of simple artinian rings, so is von Neumann regular. As Q is flat as a D-module, gl.dim. $Q \le gl.dim$. D. But Q is not semisimple artinian, so gl. dim. Q = 1.

PROPOSITION 2.20 Q is not self-injective.

<u>Proof</u> It is sufficient to find a left ideal J of Q, and a Q-module map $\phi: J \rightarrow Q$ which is not the restriction of a Q-module map $\psi: Q \rightarrow Q$. Put J = $Qx_1 + Qx_2 + ...$; consider the formal sum $y = \sum_{j=0}^{\infty} x_{pj-1}$, and define $\phi: J \neq Q$ by $\phi(r) = ry$. This does make sense: notice that $x_i x_{pj-1} = 0$ if i is fixed and j is sufficiently large, thus ry is actually a finite sum for $r \in J$. So ϕ is a bona-fide Q-module homomorphism.

Suppose that $\psi: Q \to Q$ is a left Q-module map. Then ψ is just right multiplication by $z = \psi(1)$. So if $\phi = \psi|_J$ then, in particular, $x_i(y-z) = 0$ for all $i \ge 1$. Suppose $z = a_0 + x_1a_1 + \ldots + x_na_n$ with each $a_j \in k[t]$, and $a_n \ne 0$. Suppose $p^m-1 > n$. Then $x_pm \cdot y = \sum_{j=0}^{m} x_pm \cdot x_{pj-1}$, and $x_pm \cdot x_{pm-1} \ne 0$, but $x_{pm}-z$ cannot contain a term involving x_{2pm-1} since $n < p^m-1$. Hence $x_{pm} \cdot y \ne x_{pm}z$, and thus $\phi \ne \psi|_J$.

§3. PROPERTIES OF $D(P_p')$

We begin by defining $D(\mathbb{P}_p^1)$. Let \mathcal{D} be the sheaf of differential operators on \mathbb{P}^1 , and define $D(\mathbb{P}^1) = \Gamma(\mathbb{P}^1, \mathcal{D})$. As \mathcal{D} is the unique quasi-coherent sheaf of $\partial_{\mathbb{P}^1}$ -modules such that for every open affine $U \in \mathbb{P}^1$, $\Gamma(U, \mathcal{D})$ is the ring of differential operators on $\mathcal{O}(U)$ (the ring of regular functions on U) to compute the global sections of \mathcal{D} we may proceed as follows. Let U_+ , U_- be two copies of \mathbb{A}^1 covering p^1 such that $\mathcal{O}(U_+)=k[t]$, $\mathcal{O}(U_-)=k[t^{-1}]$ and let D^+ , D^- denote the rings of differential operators on U^+ and U^- respectively. If D^+ and D^- are considered as subalgebras of D(k(t)), we have $D(\mathbb{P}^1) = D^+ \cap D^-$. As $D^+ = \{\Theta \in D(k(t)) | \Theta(k[t]) < k[t]\}$ and $D^- = \{\Theta \in D(k(t)) | \Theta(k[t^{-1}]) < k[t^{-1}]\}$ we have $D(\mathbb{P}^1) = \{\Theta \in D(k(t)) | \Theta(k[t]) < k[t]$ and $\Theta(k[t^{-1}]) < k[t^{-1}]\}$. Thus we obtain (for k a field of characteristic p > 0)

LEMMA 3.1 Fix n, put $q = p^n$ and let $\theta \in D_n^+$ (using the notation of §2). Then $\theta \in D(\mathbb{P}_k^1)$, if and only if

- (1) $\theta(1) \in k$
- (2) $\theta(t^j) \in \text{lin.span } <1,t,t^2,\ldots,t^q > \text{for all } j, 0 < j < q.$

<u>Proof</u> Suppose θ satisfies the conditions. First observe that θ extends to a $k[t^{q}]$ -linear differential operator on k(t) (since $\theta \in D_{n}^{+}$). Pick i > 0; we show that $\theta(t^{-i}) \in k[t^{-1}]$.

Pick m such that mq < i ≤ (m+1)q. Then 0 ≤ (m+1)q-i < q, so by (2), $\theta(t^{(m+1)q-i}) \in lin.span < 1,t,t^2,...,t^q >.$ But $\theta(t^{(m+1)q-i}) = t^{(m+1)q}\theta(t^{-i})$, hence $\theta(t^{-i}) \in lin.span t^{-(m+1)q} < 1,t,...,t^q > < k[t^{-1}]$. This and (1) ensure that $\theta(k[t^{-1}]) < k[t^{-1}]$, and so $\theta \in D(P_k^{-1})$. The conditions are therefore sufficient.

On the other hand, if $\theta \in D(\mathbf{P}_k^{-1})$, then certainly $\theta(k[t] \cap k[t^{-1}]) \subset k[t] \cap k[t^{-1}]$, so (1) is necessary. Also if 0 < j < q, then $\theta(t^{-j}) \in k[t^{-1}]$, and hence $\theta(t^{q-j}) = t^q \theta(t^{-j}) \in t^q k[t^{-1}] \cap k[t] = lin.span. <1, t, \dots, t^q >$. So (2) is necessary.

Put $D(\mathbf{P}^{1})_{n} = D(\mathbf{P}^{1}) \cap D_{n}^{+}$; that is, $D(\mathbf{P}^{1})_{n}$ is the differential operators in $D(\mathbf{P}^{1})$ of order $\leq n$. Notice that after the lemma, $\dim_{k} D(\mathbf{P}^{1})_{n} = 1 + (p^{n}-1)(p^{n}+1) = p^{2n}$, so $D(\mathbf{P}^{1})$ is a union of finite dimensional subalgebras.

LEMMA 3.2 The nilpotent radical of $D(P^1)_n$ is the span of those θ which satisfy

(1) $\theta(1) = 0$ (2) $\theta(t^j) \in \text{lin.span <1,} t^{p^n} \text{ for all } 0 < j < p^n$.

Proof

Put $q = p^n$. First the span of such θ is an ideal of $D(\mathbb{P}^1)_n$. If $\psi \in D(\mathbb{P}^1)_n$, then $\psi\theta(1) = \theta\psi(1) = 0$; and for 0 < j < q, one has $\psi\theta(t^j) < \lim span < \psi(1), \psi(t^q) > =$ lin.span $<\psi(1), t^q\psi(1) > c \lim span <1, t^q >$ by Lemma 3.1(1); also $\theta\psi(t^j) < \lim span < \theta(1), \theta(t), \dots, \theta(t^q) > c \lim span <1, t^q >$ as $\theta(t^q) = t^q\theta(1) = 0$. We have shown that if θ satisfies (1) and (2), so do $\theta\psi$ and $\psi\theta$. Hence the span of such θ is an ideal.

The square of this ideal is zero: if θ and ψ satisfy (1) and (2) then $\psi\theta(1) = 0$ and for 0 < j < q, $\psi\theta(t^j) < \text{lin.span } \langle \psi(1), \psi(t^q) \rangle = 0$.

The factor by this ideal is semi-simple artinian: the factor may be identified with those θ such that $\theta(1) \in k$ and $\theta(t^j) \in \lim \text{span} < t, t^2, \dots, t^{q-1} > \text{ for } 1 \leq j < q$; but this algebra is isomorphic to $(\text{End}_k k) \oplus (\text{End}_k k^{q-1})$.

Put $N_n = nilpotent radical of D(P^1)_n$; notice that dim $N_n = 2(p^n-1)$.

<u>LEMMA 3.3</u> $N_n \cap N_{n+1} = 0.$

<u>Proof</u> Pick $0 \neq \theta \in N_n$. Then $\theta(t^j) \neq 0$ for some $0 < j < p^n$. Hence, if $\theta \in N_{n+1}$.

then $\theta(t^j) \in \lim$ span $<1, t^{p^{n+1}} > n$ lin.span $<1, t^{p^n} > = k$. But $0 < j + p^n < p^{n+1}$ and $\theta(t^{j+p^n}) = t^{p^n} \theta(t^j) \in kt^{p^n}$. But by applying Lemma 3.2(2) for n+1, one must have $\theta(t^{j+p^n}) \in \lim$ span $<1, t^{p^{n+1}} >$. Thus $\theta(t^{j+p^n}) = 0$, whence $\theta(t^j) = 0$. This contradiction gives the result. \Box

PROPOSITION 3.4 $D(\mathbf{P}^1)$ contains no non-zero nilpotent ideal.

<u>Proof</u> Suppose $N \neq 0$, is a nilpotent ideal. Then $N \cap D(\mathbb{P}^1)_n \neq 0$ for some n. Thus $N \cap D(\mathbb{P}^1)_n$ is a nilpotent ideal of D_n . Similarly $N \cap D(\mathbb{P}^1)_{n+1}$ is a nilpotent ideal of $D(\mathbb{P}^1)_{n+1}$. Hence $0 \neq N \cap D(\mathbb{P}^1)_n \in N_n \cap N_{n+1}$. This contradicts Lemma 3.3.

PROPOSITION 3.5 $D(\mathbb{P}^1)$ is not von Neumann regular.

<u>Proof</u> Consider $x_1 \in D^+$ (the notation is that of §2). One sees that $x_1 = \partial/\partial t \in D(P^+)$. Suppose there exists a $\in D(P^+)$ with $x_1ax_1 = x_1$. Then in particular, as $x_1(t) = 1$, one has $x_1a(1) = 1$. But if a $\in D(P^+)$ then a(1) = 1. However, $x_1(k) = 0$, so there exists no a $\in D(P^+)$ with $x_1a(1) = 1$. Hence the result. \Box

PROPOSITION 3.6 $D(\mathbf{P}^1)$ is its own ring of fractions.

<u>Proof</u> This is true of any algebra which is a union of finite dimensional algebras over a field (since an artinian ring is its own ring of fractions). \Box

 $\begin{array}{l} \underline{PROPOSITION \ 3.7} & (1) \quad D(\mathbb{P}^{1})_{n} \text{ is the sum of the two-sided ideals } J_{n} = \{\theta \in D(\mathbb{P}^{1})_{n} | \\ \theta(t^{j}) \in k \text{ for all } 0 \leq j < p^{n} \} \text{ and } Q_{n} = \{\theta \in D(\mathbb{P}^{1})_{n} | \theta(1) = 0\}. (2) \quad \dim_{k} (D(\mathbb{P}^{1})_{n}/Q_{n}) = 1 \\ (3) \quad J_{n} \cap Q_{n} = N_{n}. (4) \text{ For } n \geq 1, \ J_{n}/N_{n} \text{ and } Q_{n}/N_{n} \text{ are minimal ideals of } D(\mathbb{P}^{1})_{n}/N_{n}. \\ (5) \quad Let \alpha \in D(\mathbb{P}^{1})_{n}. \text{ The two sided ideal of } D(\mathbb{P}^{1})_{n} \text{ generated by } \alpha \text{ equals } D(\mathbb{P}^{1})_{n} \text{ if and only if } \alpha \text{ can be written in the form } \alpha = \beta + \gamma \text{ with } \beta \in J_{n} \setminus N_{n} \text{ and } \gamma \in Q_{n} \setminus N_{n}. \end{array}$

Proof After Lemmas 3.1 and 3.2 the proposition is straightforward.

<u>PROPOSITION 3.8</u> (Notation as in (3.7)). Put $Q = \bigcup_{n=0}^{\infty} Q_n$. Then Q is the unique n=0 proper ideal of $D(\mathbf{P}^1)$, and $D(\mathbf{P}^1)/Q \cong k$.

<u>Proof</u> As each $Q_n \subset Q_{n+1}$, and Q_n is an ideal of $D(P^1)_n$, Q is a two sided ideal of

 $D(\mathbf{P}^1)$.

Suppose $\theta \in D(\mathbb{P}^1)_n$ and $\theta \notin Q_n$. Then $D(\mathbb{P}^1) \oplus D(\mathbb{P}^1) = D(\mathbb{P}^1)$. To prove this it is enough to show that $D(\mathbb{P}^1)_{n+1} \oplus D(\mathbb{P}^1)_{n+1} = D(\mathbb{P}^1)_{n+1}$. As $\theta \notin Q_n$, $\theta(1) \neq 0$. Hence, without loss of generality $\theta(1) = 1$. As θ is $k[t^{p^n}]$ -linear, $\theta(t^{p^n}) = t^{p^n}$, and it follows that $\theta \notin J_{n+1}$, and $\theta \notin Q_{n+1}$. Hence by Proposition 3.7(5), the two sided ideal of $D(\mathbb{P}^1)_{n+1}$ generated by θ is $D(\mathbb{P}^1)_{n+1}$ itself.

It follows that any two sided ideal of $D(P^1)$ not equal to $D(P^1)$ must be contained in Q.

Suppose now that $\theta \in Q$, $\theta \neq 0$. We show θ generates Q. Suppose $\theta \in D(P^1)_n$. Hence $\theta(1) = 0$, and as $\theta \neq 0$, $\theta(t^j) \neq 0$ for some j, $0 < j < p^n$. Hence $\theta(t^{j+p^n}) = t^{p^n} \theta(t^j) \neq k$. Thus $\theta \neq J_{n+1}$. It follows that $D(P^i)_{n+1} \theta D(P^i)_{n+1} = Q_{n+1}$. This is true for all $n \gg 0$, so $D(P^1) \theta D(P^1) = Q$.

Thus Q is the unique proper ideal of $D(\mathbb{P}^1)$. Finally as $\dim_k(D(\mathbb{P}^1)_n/\mathbb{Q}_n) = 1$ for all n, $\dim_k(D(\mathbb{P}^1)/\mathbb{Q}) = 1$. \Box

<u>PROPOSITION 3.9</u> $D(P^1)$ is a primitive ring, and k[t] is a faithful module of length 2, the submodule being k.

Proof This is an immediate consequence of Lemma 3.1.

We now compute $K_0(D(\mathbb{P}^1))$. As K_0 commutes with direct limits, one has $K_0(D(\mathbb{P}^1)) = \lim_{n \to \infty} K_0(D(\mathbb{P}^1)_n)$. We need only consider $n \ge 1$, so henceforth assume $n \ge 1$.

Recall that $D(P^1)_n/N_n = J_n/N_n \oplus Q_n/N_n$ and $J_n/N_n \cong k$ while $Q_n/N_n \cong M_{p^n-1}(k^{p^{n-1}})$ (this is implicit in the proof of Lemma 3.2). Hence $K_0(D(P^1)_n) = Z \oplus Z$ with $[D(P^1)_n] = (1,p^n-1)$. The positive cone in $K_0(D(P^1)_n)$ is $K_0^+(D(P^1)_n) = \{(a,b) \in Z \oplus Z | a \ge 0, b \ge 0\}$.

The embedding $D(\mathbb{P}^1)_n \neq D(\mathbb{P}^1)_{n+1}$ induces maps $\phi_n: K_0(D(\mathbb{P}^1)_n) \neq K_0(D(\mathbb{P}^1)_{n+1})$ given by $\phi_n(1,0) = (1,p-1)$ and $\phi_n(0,1) = (0,p)$.

Define $G_n = \mathbb{Z} \oplus \mathbb{Z}$ and let $\psi_n : G_n \neq G_{n+1}$ be the group homomorphism $\psi_n(1,0)=(1,0)$, $\psi_n(0,1) = (0,p)$. Define $\delta : \mathbb{Z} \oplus \mathbb{Z} \neq \mathbb{Z} \oplus \mathbb{Z}$ by $\delta(1,0) = (1,1)$, $\delta(0,1) = (0,1)$, and extend δ to a group isomorphism. Then $\delta : (K_0(\mathbb{D}(\mathbb{P}^1)_n, \phi_n) \neq (G_n, \psi_n))$ is a chain isomorphism, so $K_0(D(\mathbf{P}^1)) = \lim_{\longrightarrow} (G_n, \psi_n)$. As ψ_n is just the multiplication map (a,b) $\xrightarrow{(1,p)}$ (a,bp) one sees that this direct limit is $\mathbb{Z} \oplus \mathbb{Z}[1/p]$, and that $[D(\mathbf{P}^1)] = (1,p)$.

By chasing the positive cones $K_0^+(D(P^1)_n)$, one obtains $K_0^+(D(P^1)) = \{(a,b) \in \mathbb{Z} \oplus \mathbb{Z}[1/p]\}a \ge 0$ and b > 0 or $(a,b) = (0,0)\}$. It is an easy matter now to see that the only order ideal in $K_0(D(P^1))$ apart from 0 and $K_0(D(P^1))$ is $\mathbb{Z}[1/p]$.

Hence the lattice of order ideals is isomorphic to the lattice of two sided ideals of $D(\mathbf{P}^{1})$. We summarise the above.

<u>THEOREM 3.10</u> $K_0(D(P^1)) \cong Z \oplus \mathbb{Z}[1/p]$, with $[D(P^1)] = (1,p)$. The lattice of order ideals in $K_0(D(P^1))$ is isomorphic to the lattice of two sided ideals in $D(P^1)$; this lattice is:

<u>Remark</u> In [7, Corollary 15.21] it is proved that if R is a unit-regular ring there is an isomorphism between the lattice of two sided ideals of R, and the order ideals of $K_{n}(R)$. Of course after Proposition 3.5, $D(\mathbb{P}^{1})$ is not unit-regular.

Recall that if k is a field of characteristic zero, then there is a surjective map $U(sl(2,k)) \rightarrow D(\mathbf{P}_k^i)$. This map is given by $e \rightarrow t^2\partial/\partial t$, $f \rightarrow -\partial/\partial t$, $h \rightarrow 2t\partial/\partial t$ where $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ is the usual basis for sl(2,k). The surjectivity is seen from the fact that $D(\mathbf{P}_k^i) = k[\partial/\partial t, t\partial/\partial t, t^2\partial/\partial t]$, and this equality can be proved by elementary arguments. We snow below that, if chark = p > 0, then the analogous map does not give a surjection from U_k , the hyperalgebra of sl(2,k), to $D(\mathbf{P}_k^i)$.

So k is once again a field of characteristic p > 0. Denote the Z-span of the elements $\frac{f^a}{a!} {h \choose b} \frac{e^c}{c!}$ with a,b,c ϵ N, in U(sl(2, \mathfrak{c})) by U_Z; this is the Kostant Z-form and is a Z-subalgebra of U(sl(2, \mathfrak{c})). The hyperalgebra U_k is defined to be U_k = k \otimes_7 U_Z.

$$\begin{split} \mathsf{D}(\mathsf{P}^{1}_{\mathsf{Z}}) \text{ is equal to } \mathsf{D}(\mathsf{Z}[\texttt{t}]) &\cap \mathsf{D}(\mathsf{Z}[\texttt{t}^{-1}]), \text{ the intersection being taken inside} \\ \mathsf{D}(\mathsf{Z}[\texttt{t},\texttt{t}^{-1}]). & \text{Hence } \mathsf{D}(\mathsf{P}^{1}_{\mathsf{Z}}) \text{ is precisely those elements of } \mathsf{D}(\mathsf{P}^{1}_{\texttt{C}}) \text{ which, when acting} \\ \mathsf{on } \mathsf{C}[\texttt{t}] \text{ and } \mathsf{C}[\texttt{t}^{-1}], \text{ map } \mathsf{Z}[\texttt{t}] \text{ into } \mathsf{Z}[\texttt{t}] \text{ and } \mathsf{Z}[\texttt{t}^{-1}] \text{ into } \mathbb{Z}[\texttt{t}^{-1}]. \text{ The image of} \\ \frac{f^a}{a!} \binom{h}{b} \frac{e^c}{\underline{c}!} \text{ in } \mathsf{D}(\mathsf{P}^{1}_{\texttt{C}}) \text{ is of course } \begin{pmatrix} -\frac{\partial/\partial t}{a!}^a \\ b \end{pmatrix}^a \begin{pmatrix} 2t \ \partial/\partial t \\ b \end{pmatrix} \begin{pmatrix} \frac{t^2\partial/\partial t}{c!}^c \\ c! \end{pmatrix}^c, \text{ and it is easy to} \end{split}$$

check that this differential operator sends $\mathbb{Z}[t]$ to $\mathbb{Z}[t]$ and $\mathbb{Z}[t^{-1}]$ to $\mathbb{Z}[t^{-1}]$. Hence this element belongs to $\mathbb{D}(\mathbb{P}^{1}_{\mathbb{Z}})$. Thus the map $\mathbb{U}(\operatorname{sl}(2, \mathfrak{c})) + \mathbb{D}(\mathbb{P}^{1}_{\mathfrak{c}})$ restricts to give a map $\mathbb{U}_{\mathbb{Z}} + \mathbb{D}(\mathbb{P}^{1}_{\mathbb{Z}})$. This in turn induces a map $\phi: \mathbb{U}_{k} \to \mathbb{D}(\mathbb{P}^{1}_{k})$ since $\mathbb{D}(\mathbb{P}^{1}_{k}) = k \otimes_{\mathbb{Z}} \mathbb{D}(\mathbb{P}^{1}_{\mathbb{Z}})$. This last equality derives from Theorem 2.7.

<u>THEOREM 3.11</u> The map $\phi: U_k \neq D(P_k^1)$ is not surjective.

 $\begin{array}{l} \underline{\operatorname{Proof}} & \operatorname{Give} k[\mathtt{t}, \mathtt{t}^{-1}] \text{ the grading where } \mathtt{t} \text{ is of degree } 1; \text{ define } \mathsf{D}(\mathbb{P}^1_k)(\mathtt{j}) = \\ & \{ \theta \in \mathsf{D}(\mathbb{P}^1_k) | \theta(\mathtt{k} t^{\dagger}) \in \mathtt{k} t^{\dagger+j} \text{ for all } i \in \mathbb{Z} \}. \quad \operatorname{Then } \mathsf{D}(\mathbb{P}^1_k) = \underset{j \in \mathbb{Z}}{\Theta} \quad \mathsf{D}(\mathbb{P}^1_k)(\mathtt{j}) \text{ and this gives} \\ & \mathtt{a} \text{ grading on } \mathsf{D}(\mathbb{P}^1_k). \quad \operatorname{Notice } \mathtt{that} \phi(\mathtt{e}) \in \mathsf{D}(\mathbb{P}^1_k)(1), \phi(\mathtt{f}) \in \mathsf{D}(\mathbb{P}^1_k)(-1), \phi(\mathtt{h}) \in \mathsf{D}(\mathbb{P}^1_k)(0). \\ & \mathsf{Likewise}, \phi(\frac{\mathtt{f}^a}{\mathtt{a!}} \binom{\mathsf{h}}{\mathtt{b}}) \frac{\mathtt{e}^{\mathsf{C}}}{\mathtt{c!}} \in \mathsf{D}(\mathbb{P}^1_k)(\mathtt{c-a}). \end{array}$

Consider the element $t^{p-1} \frac{(\partial/\partial t)^p}{p!}$ which belongs to $D(P_k^1)(1)$. We will show this is not in the image of ϕ . If it were in the image of ϕ , then it would be a linear combination of the image of elements $\frac{f^a}{a!} {h \choose b} \frac{e^c}{c!}$ with c-a = 1. Notice that $t^{p-1} \frac{(\partial/\partial t)^p}{p!}$ acts on k[t] sending t^p to t^{p-1} . The action of $\frac{(\partial/\partial t)^a}{a!} (2t\partial/\partial t) \frac{(t^2\partial/\partial t)^{a+1}}{(a+1)!}$ sends t^p to $\binom{p+a}{p-1} (\binom{2p+2a+2}{b} \binom{p+a+1}{p-1}t^{p-1}$. However, for all $a \in N$, $\binom{p+a}{p-1} \binom{p+a+1}{p-1} \equiv 0 \pmod{p}$. Hence $\phi(\frac{f^a}{a!} \binom{h}{b} \binom{e^{a+1}}{(a+1)!}$ sends t^p to zero. Consequently, no linear combination of these elements can equal $t^{p-1} \frac{(\partial/\partial t)^p}{p!}$ which sends t^p to t^{p-1} .

REFERENCES

- [1] A. Beilinson and J.N. Bernstein, Localisation de g-modules, C.R. Acad. Sci.
 292 (1981) 15-18.
- [2] J.N. Bernstein, The analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i. Prilozen 6 (1972) 26-40.
- [3] J. Dixmier, Sur les algèbres de Weyl, Bull. Soc. Math. Fr. 96 (1968) 209-242.
- [4] J. Dixmier, Sur les algèbres de Weyl II, Bull. Sci. Math. 94 (1970) 289-301.
- [5] D. Eisenbud and J.C. Robson, Modules over Dedekind prime rings, J. Algebra 16 (1970) 67-85.

- [6] K. Goodearl, Global dimension of differential operator rings, Proc. A.M.S.45 (1974) 315-322.
- [7] K. Goodearl, Von Neumann Regular rings, Pitman (1979).
- [8] A. Grothendieck, Eléments de Geometrie Algèbrique IV, Inst. des Hautes Études Sci., Publ. Math. No. 32 (1967).
- [9] R.G. Heynemann and M. Sweedler, Affine Hopf Algebras, J. Algebra 13 (1969) 192-241.
- [10] T. Levasseur, Anneaux d'opérateurs differentiels, Seminaire M.P. Malliavin, Lecture Notes in Mathematics, No. 867, Springer-Verlag (1980).