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ABSTRACT

Let A'be an irreducible affine algebraic variety of dimension 2 defined over an algebraically closed field
of characteristic zero. Suppose that the normalisation A' of A' is non-singular, and the natural projection
n:X-* A'is injective. Further, suppose that A'is Cohen-Macaulay. Then the rings of differential operators
2(X) and 2{X) are Morita equivalent.

1. Introduction

In [6] it is proved that if X is an irreducible affine algebraic curve defined over an
algebraically closed field of characteristic zero, and if n: 2 -* X, the projection from
the normalisation, is injective, then the rings of differential operators 9(X) and 9(2)
are Morita equivalent. This paper is concerned with extending that result to higher
dimensional varieties.

Throughout k will be an algebraically closed field of characteristic zero, and X
denotes an irreducible affine algebraic variety over k. Denote the normalisation of X
by 2 and let n: 2 -» X be the projection. The ring of regular functions on X is written
0(X), and 9(X) denotes the ring of differential operators on A'(see [6, section 1] for
the definition). We will prove the following:

THEOREM. Let X be a surface (that is dim X = 2). Suppose that 2 is non-singular
and that n:2->X is injective. If 0(X) = f]{6(X)P| heightP = 1} (or equivalently, X
is Cohen-Macaulay) then 9(X) and 9(2) are Morita equivalent.

For background to this theorem the reader is referred to [6]. The proof of this
theorem is along the same lines as that of [6, Theorem 3.4] where the analogous result
for curves is proved. The 9(X)-9(2) bimodule giving the Morita equivalence is again
9(2, X) = {9e9(2)\D(f)€®(X) for a\\feO(2)}. When Xsatisfies the hypotheses
of the theorem then gl. dim 9(2) = 2, and so some work is required to show that
9(2, X) is a projective right ideal of 9(2). In fact, if X satisfies all the hypotheses
of the theorem except the dimension condition, we are able to show that 9(2, X) is
a reflexive right ideal of 9(X), and the requirement that dim X = 2 is made simply
to ensure that any reflexive right ideal of 9(2) is projective. The other ingredient
required to prove the theorem is to show that 9(X) = End^^) 9(2, X). This is
proved 'locally' at the height 1 primes, and the intersection condition is required to
give the global equality.

It is well-known that a Cohen-Macaulay ring satisfies the intersection condition;
suppose the intersection condition is satisfied and consider a principal ideal <xA in
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A = 0(X). If P is a height 1 prime in A, <xAP is a primary ideal in AP. Using the
intersection condition, it now follows easily that OLA is an intersection of primary ideals
for height 1 primes, so ctA is unmixed. Therefore A (being 2-dimensional) is
Cohen-Macaulay.

It is clear that large parts of the proof will work for any A'satisfying all hypotheses
of the theorem except that on dim X, and one is naturally led to conjecture that there
is a version of the theorem for X of arbitrary dimension. We leave this as a problem,
in the hope that the reader is more perceptive than the authors.

ACKNOWLEDGEMENT. The second author was supported by a British SERC
Research Assistantship, and he would like to thank the SERC for its support.

2. Proof of the Theorem

The result is proved locally. For the moment let dim X ^ 1, set A = O(X) and let
P be a height 1 prime of A. Write B = AP, and B for the integral closure of B in its
field of fractions K = Fract B. All the action takes place inside @(K), the space of
/r-linear differential operators on K. Some small modifications to the notation in [6]
are required. As in [6, §2.3], 3)(B, B) denotes the space of ̂ -linear differential operators
from B to B. Also, 9{B, B)*B denotes the set of values of functions in 9(B, B). If
F 2 k is a field contained in B we may view B as an /"-algebra, and we will write
9F(B), Q)F{B\ And @F(B, B) for the spaces of /Minear differential operators on B etc.
The key step in proving the theorem is the following (which has been independently
established by M. Chamarie, with a similar proof).

PROPOSITION 1. Let X be an irreducible affine variety with dim X ^ 1. Suppose
that 2 is smooth, and n:X-+X is injective. For any height 1 prime P of
A = 0(X), 9{AP, AP) * AP = AP.

Proof Set n = dim X. Let Q be the unique prime of <9{X) lying over P. Write
B = AP and B = AP = (A)P. Then B is a local ring with maximal ideal QB\ this
observation uses the lying-over and going-up properties of an integral extension. Let
m, M be the maximal ideals of the 1-dimensional local rings B, B. Let teMbea local
parameter for the regular local ring B.

The injectivity of n ensures that the induced morphism Spec A/Q -*• Spec A/P is
injective, and hence birational [4, Theorem 4.6]. So B/m = Fract (A/P) =
Fract ( . 4 / 0 = B/M. By Noether normalisation there is a polynomial ring
Khi •••> 'nl — A with A an integral extension. Since height P = 1, we may assume that
k[tx, ..., fB_J n P = 0. Set F= k(tlt..., ?„_!> the field of rational functions. It follows
that B/m is a separable algebraic extension off. Now consider B and 2? as F-algebras.

By [5, Theorem 58] there is an exact sequence involving the modules of Kahler
differentials:

M/AP -> QS/F ®ff(B/M) -> Q( / r / M ) / F - 0,

where d:B->Qg/F is the universal /^derivation and the first map is given by
/ -> dt ® 1. Because B/M is a separable algebraic extension of F, O.(SIM)IF = 0- It
follows that Clff/F is free on dt. Let 9 e DerF B be the F-linear derivation with 3(0 = 1;
that is, 3 = hd, where k: Q.gjF -* B is the i?-homomorphism with h(dt) = 1.

SUBLEMMA. @F(B)[d] is a simple hereditary ring.



DIFFERENTIAL OPERATORS ON SOME SINGULAR SURFACES 147

Proof of sublemma. Since Sle/F is free on dt, [2, § 16.11.12] gives 3F(B) = 5(9].
The simplicity is clear since B is a 1-dimensional regular local ring whose only ideals
are Btn, and then the global dimension is given by [3, Theorem 2.6] for example.

Since B/B is a finitely generated torsion 5-module, there exists re N with Mr £ B.
Consider B/Mr £ B/Mr. Since B/Mr is local artinian, it is a complete local ring, and
by Cohen's Theorem [5, Theorem 60] it contains a copy of its residue field. Let this
copy be L; we can assume that F^L. Then B/Mr = L@Ls® ... ©Ls1"1 where s
is the image of /. Notice that td * Mr <= Mr, so we may consider td as a derivation
on B/Mr. Furthermore, since L is a separable algebraic extension of F, and /3 is
F-linear, /8 is also L-linear. Put D = (td-\)...(td-r+\)e®F(5), and^consider D
acting on_B/Mr. Then D • (B/Mr) = L c B/Mr. Thus, lifting back to B,_D *B~czB,
and D• B $ m. Hence ®F{B, B)*B<tm and we must have ®F(B, B)*B = B. This
is true for the F-linear differential operators from B to B, so we certainly have the
Proposition true for the /c-linear operators.

COROLLARY 2. With the hypotheses of Proposition 1, and F as in the proof of
Proposition 1, 3>F(AP) and 2>F{AP) are Morita equivalent. In particular @F(AP) is a
simple hereditary ring.

Proof In the proof of Proposition 1, it was seen that Q)F{AP, AP)*AP = AP,
and that @F(AP) is a simple hereditary ring. The Morita equivalence now follows
exactly as in [6, Proposition 3.3], and hence @F(AP) has the properties stated.

COROLLARY 3. With the hypotheses of Proposition 1, 3>{AP, AP) is a projective
right ideal ofS>(AP).

Proof. Since 3>F(AP) is a simple ring by the previous Corollary, and

2>F(AP,AP)3>F(AP, AP)

is a two-sided ideal of 2)F(AP\ we must have \e2)F(AP, AP)2)F(AP, Ap); it follows
that \e@(AP, Ap)@(AP, Ap). Hence by the Dual Basis Lemma, @(AP,AP) is a
projective right Z

COROLLARY 4. Suppose that X satisfies the hypotheses of Proposition 1, and in
addition O(X) satisfies (9{X) = n {O(X)P \ height P = 1}. Then 9(X, X) is a reflexive
right ideal of

Proof Write / = ®(X, X) = ®(A, A), and regard

as a right ideal of 3>(X) containing /. Let P be a height 1 prime of A = 0(X). Note
that (7P)* = (7*)P and that IP = 2(AP, AP) is a reflexive 9( JP)-module, by Corollary
3. Thus IP = (IP)** = (7*)p = (7**)p and so (/••) *A s (/**)p *AP = IP*AP^ AP.
But by the intersection hypothesis, A = f]AP, and so (I**)*A^A, whence
/•* c @(A, A) giving the equality /** = / as required.

6-2



148 R. HART AND S. P. SMITH

The following observation was pointed out to the authors by J. T. Stafford. We
would like to thank him for allowing us to include it here and so provide the final
step in the proof of the theorem.

COROLLARY 5. Under the hypothesis of Proposition 1, and the assumption that
0(X) = f]{O(X)P | height P = 1} it follows that 9(X) = E n d ^ ^ C * , X).

Proof. Set A = 0(X), and let P be a height 1 prime. Since 9(AP, AP)*AP = AP

by Proposition 1, [6, Proposition 3.3] gives 2>(AP) = End@(jp)@(AP, AP). Since
A = f]{AP\he\ghtP = \}, we have f)htp-i@(Ap) ^ @(A) w n i l e the opposition
inclusion is trivially true. Thus <2)(A) = (~)htp-i@(Ap)- Therefore

®(A) = f] EndS(/rp)2>(AP,AP) 2 EMQ(X)Sl(A, A) 2 9(A),
htP -1

and the result follows.

Proof of the Theorem. So now dim X = 2, and 0(X) = f]{O(X)P | height P = 1}.
By Corollary 5,2)(X) = End^(^} 9{X, X). By Corollary 4,9{X, X) is a reflexive right
ideal of 2>(X). But as X is non-singular and dim X = 2 we have gl. dim 2){%) = 2 and
so @(X, X) is actually projective [1, Proposition 5.2]. Since 9{X) is simple, 0){X, X)
is certainly a generator. Hence the result.

COROLLARY 6. With the hypotheses of the Theorem. 2>(X, X) * 0(2) = 0{X).

Proof. Because 9{X) is a simple ring, 6{X) is a simple left 0(A>module. Since
, X) * 0(2) is a left S>(A>module the result follows.

REMARK. If X satisfies the hypotheses of the theorem then each irreducible
component of Sing A'is of codimension 1 in X. Recall [6, Proposition 7.2] that, if A'
is singular but regular in codimension 1 (with X smooth and n injective), then <2)(X)
is not simple.
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