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CAN THE WEYL ALGEBRA BE A FIXED RING?

S. P. SMITH

(Communicated by Donald S. Passman)

Abstract. If a finite soluble group acts as automorphisms of a domain, then

the invariant subring is not isomorphic to the first Weyl algebra C[r, d/dt] .

Let R = C[t ,d/dt] be the first Weyl algebra. We prove the following result.

Theorem. Let G be a finite solvable group. Let S d R be a C-algebra such that

(a) SR and RS are finitely generated,

(b) S is a domain,

(c) G acts as automorphisms of S, and S   = R.

Then S = R.

We will prove a rather more general result, from which the theorem follows.

The original proof was improved by comments of T. J. Hodges. I would like

to thank him for his interest, and for allowing his improvements to be included

here.

Let B bean R- /?-bimodule. We call B an invertible bimodule, if there exists

another bimodule, C say, such that B®RC is isomorphic to R as a bimodule.

The invertible bimodules form a group under the operation of tensor product

®R ; this group is called the Picard group, denoted Pic(/Î). If o, x G A.ut(R)

are C-linear algebra automorphisms of R, then we write aRT for the invertible

bimodule which is R as an abelian group, and for which the right A-module

action is given by

b-x = bx(x)       for x G R,b e aRT

and the left A-module action is given by

x-b = o(x)b       for x G R,b e aRT.

There is a map Aut(/?) -* Pic(R) given by a >-*  Rx . This is a group homo-

morphism. A key point in our analysis is the following result of J. T. Stafford.
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Theorem [3, Corollary 4.5]. The map Aut(/?) —► Pie(R) is an isomorphism.

Hence if B is an invertible .R-bimodule, there exists e G B and a G Aut(jR)

such that x • e = e • a(x) for all x e R (just take e to be the image of 1 under

the isomorphism aRx —> B ).

Proposition. Let S D R be a C-algebra satisfying conditions (a) and (b) of the

theorem. Then the only invertible R-bimodule contained in S is R itself.

Proof. Let B c S be an invertible bimodule. Choose e G B and a G Aut(Z?)

such that B = Re = eR and x-e = e-a(x) for all x G R (here • denotes multi-

plication in S). The multiplication in S is an .R-bimodule map, so Bn =a„ /?, .

If a has infinite order (or equivalently, if B has infinite order in Pic/? ), then

all the bimodules Bn are non-isomorphic, and their sum in S would be direct.

However, since SR is finitely generated, S has finite length as an .R-bimodule.

Therefore, a" = 1 for some « . Hence for all x G R, xe" = e"a"(x) = e"x .

Therefore there is a surjective algebra homomorphism R <g>c C[X] —» R[e"],

with X i-» e" , where X is an indeterminate commuting with R . By [1, 4.5.1],

the ideals of R ®c C[X] are of the form R ®c / where / is an ideal of C[X].

For /?[<?"] = R ®c C[X]//Î ®CI = R®c C[X]/I to be a domain it is necessary

that / = (X - a) for some a E C. Thus e" = a . But C[e] c S is a domain,

so « = 1. Therefore B = R .      ■

If M is a left .R-module, then the rank of M is the dimension of

Fract R®RM as a left Fract R-module. It is clear that an invertible bimodule

is of rank 1.

Proof of the theorem. First we prove it for G abelian. In that case write S =

0 S where the sum is over the irreducible characters of G, and S is the CG-

submodule of S which is the sum of the /-isotypical components. Therefore

Sx = R, S S, = S ,, and each S   is an R-bimodule.

Suppose that x£ = 1 > and let 0 / a e 5,. Then S a c R, and is isomorphic

to S   as a left .R-module since S is a domain. In particular, S   is of rank

1 as a left .R-module. Similarly, S is of rank 1 as a right .R-module. The

multiplication map on S gives an .R-bimodule homomorphism S ®R S, —>

5' S.. The image is a non-zero subbimodule of /?, hence equals R. Because

all the ranks are 1, the map is injective. Therefore S is an invertible bimodule.

By the proposition, this forces S  = R . Hence S = R as required.

Now let G be any finite solvable group, and set H = [G, G]. Then there

is an action of G/H as automorphisms of S , and R = S = (S ) . But

G/H is abelian, and the first part of the argument applied to S shows that

S   = R. Now by induction on \G\, the theorem follows.    ■

Remarks. 1. It would be very nice to have the same result for an arbitrary finite

group G, but a new idea is necessary. Not much is known about finitely gener-

ated .R-bimodules which are not invertible, and that is probably a prerequisite.
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2. I do not know of any domain S 2 R such that (a) and (b) hold. It would

be very interesting to know whether or not such an 51 could exist. I expect not.

3. More generally I think it would be an interesting question to look at some

other well understood non-commutative algebras, and ask if they can occur

as the fixed ring of some reasonable extension ring. See [2] for an example

concerning primitive factor rings of U(sl(2)).
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