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A non-commutative space X is a Grothendieck category ModX. We say X
is integral if there is an indecomposable injective X-module !X such that its
endomorphism ring is a division ring and every X-module is a subquotient of a
direct sum of copies of !X . A noetherian scheme is integral in this sense if and only
if it is integral in the usual sense. We show that several classes of non-commutative
spaces are integral. We also define the function field and generic point of an inte-
gral space and show that these notions behave as one might expect.  2001 Elsevier

Science

1. INTRODUCTION

We follow Rosenberg and Van den Bergh in taking a Grothendieck
category as our basic non-commutative geometric object. We think of a
Grothendieck category ModX as “the quasi-coherent sheaves on an imag-
inary non-commutative space X.” The commutative model is the category
QcohX of quasi-coherent sheaves on a quasi-separated, quasi-compact
scheme X. The two non-commutative models are ModR, the category
of right modules over a ring, and ProjA, the non-commutative projective
spaces defined by Verevkin [13] and Artin and Zhang [2].
This paper defines X to be integral if ModX is locally noetherian and

there is an indecomposable injective X-module !X such that End !X is a
division ring and every X-module is a subquotient of a direct sum of copies
of !X (Definition 3.1). If X is integral, then up to isomorphism there is
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only one indecomposable injective with these properties. The function field
of an integral space is the division ring End !X . We also define the generic
point of an integral space. Corollary 4.2 shows that a noetherian scheme is
integral in the usual sense if and only if QcohX is integral in our sense. In
that case !X is the constant sheaf with sections equal to the function field
of X, and the function field in our sense coincides with the usual function
field of X.
Goldie’s theorem implies that an affine space having a prime right

noetherian coordinate ring is integral. However, we give a categorical def-
inition of integrality so that it can be applied to those non-commutative
spaces that are not defined in terms of a ringed space. The non-
commutative projective planes defined by Artin et al. [1] are integral. The
non-commutative analogues of "n associated with enveloping algebras of
Lie algebras [6], and the analogues of "n arising from the Sklyanin algebras
[11] are integral. The exceptional fiber in Van den Bergh’s blowup of a
non-commutative surface at a point [12] is always integral.
Section 5 shows that non-commutative integral spaces enjoy some of the

properties of integral schemes.

2. PRELIMINARIES

Throughout we work over a fixed commutative base ring k. All categories
are assumed to be k-linear, and so are all functors between them.
We adopt the framework for non-commutative algebraic geometry orig-

inated by Rosenberg [8] and further developed by Van den Bergh [12].
Definitions of terms we do not define can be found in [12].

Definition 2.1. A non-commutative space X is a Grothendieck cate-
gory ModX. Objects in ModX are called X-modules. We say X is locally
noetherian if ModX is locally noetherian (that is, if it has a set of noethe-
rian generators).

Definition 2.2. If X and Y are non-commutative spaces, a weak
map f ! Y → X is a natural equivalence class of left exact functors
f∗! ModY → ModX. A weak map f ! Y → X is a map if f∗ has a left
adjoint. A left adjoint to f∗ will be denoted by f ∗, and a right adjoint will
be denoted by f ! if it exists.

We say X is affine if ModX has a progenerator, and in this case any ring
R for which ModX is equivalent to ModR is called a coordinate ring of X.

If $X!#X% is a scheme then the category Mod#X of all sheaves of #X -
modules is a Grothendieck category. If X is quasi-compact and quasi-
separated (for example, if X is a noetherian scheme) the full subcategory
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of Mod#X consisting of the quasi-coherent #X -modules is a Grothendieck
category [5, p. 186]. We denote this category by QcohX. Whenever X is
a quasi-compact and quasi-separated scheme we will speak of it as a space
in our sense with the tacit understanding that ModX is synonymous with
QcohX.

3. INTEGRAL SPACES, GENERIC POINTS,
AND FUNCTION FIELDS

Throughout this section we fix a locally noetherian space X. We denote
the injective envelope of an X-module M by E$M%.

Definition 3.1. A locally noetherian space X is integral if there is an
indecomposable injective !X such that End !X is a division ring and every
X-module is a subquotient of a direct sum of copies of !X . We call !X the
big injective in ModX.

Remarks. The endomorphism ring of an indecomposable injective ! is a
division ring if and only if HomX$!/N!!% = 0 for all non-zero submodules
N of !.
When X is locally noetherian the following conditions on an X-module

! are equivalent: (a) every X-module is a subquotient of a direct sum of
copies of !; (b) every noetherian X-module is a subquotient of a finite
direct sum of copies of !.
Corollary 3.7 shows that the big injective is unique up to isomorphism,

thus justifying the use of the definite article. Therefore the rank of a mod-
ule, the generic point, and the function field of X, all of which are defined
below in terms of !X , are unambiguously defined.

Definition 3.2. Let X be an integral locally noetherian space. An X-
module M is torsion if Hom $M!!X% = 0. A module is torsion-free if the
only submodule of it that is torsion is the zero submodule.

The torsion modules form a localizing subcategory of ModX.

Definition 3.3. Let X be an integral locally noetherian space. The rank
of an X-module M is the length of HomX$M!!X% as a left End !X-module.
We denote it by rank M .

Thus an X-module is torsion if and only if its rank is zero.
Because !X is injective, rank is additive on short exact sequences.
The hypotheses on !X ensure that it has rank one, and every proper

quotient of it has rank zero. Hence every non-zero submodule of !X has
rank one.
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Because a noetherian X-module is a subquotient of a finite direct sum
of copies of !X , its rank is finite.
If rank M ≥ 1, then M has a quotient of rank one, namely M/ ker f ,

where f is a non-zero element of HomX$M!!X%.
If M is a noetherian torsion-free module of rank n ≥ 1, then there is

a finite chain M = M0 ⊃ M1 ⊃ · · · ⊃ Mn−1 ⊃ Mn = 0 such that each
Mi/Mi+1 is torsion-free of rank one. To see this begin by choosing M1 to
be maximal subject to the condition that rank$M0/M1% = 1; the maximality
ensures that M0/M1 is torsion-free; then argue by induction on n.
Since rank is additive on exact sequences, it induces a group homomor-

phism rank: K0$X% → $.

Lemma 3.4. Let X be an integral locally noetherian space. Let M be a
noetherian X-module. There exist noetherian submodules L1! " " " !Ln of !X ,
a submodule L ⊂ L1 ⊕ · · · ⊕ Ln, and an epimorphism ϕ! L → M such that
ϕ$L ∩ Li% ,= 0 for all i.
Furthermore, the rank of L is n.

Proof. By the definition of integrality there are noetherian submodules
L1! " " " !Ln of !, a submodule L ⊂ L1 ⊕ · · · ⊕ Ln, and an epimorphism
ϕ! L → M . Choose this data so that n is as small as possible. If ϕ$L ∩ Li%
were equal to zero, then there would be an epimorphism L/L ∩ Li → M ,
and since L/L ∩ Li is isomorphic to a submodule of L1 ⊕ · · · ⊕ Ln/Li this
would contradict the minimality of n. So we conclude that ϕ$L ∩ Li% ,= 0
for all i.
Since the rank of each Li is one, rank $L1 ⊕ · · · ⊕ Ln% = n. Thus rank

L ≤ n. However, L ∩ Li ,= 0 for all i, whence rank L = n.

Proposition 3.5. Let X be an integral locally noetherian space. If J is a
non-zero injective, then HomX$!X! J% ,= 0.

Proof. If J is a non-zero injective X-module, then it contains a non-
zero noetherian submodule, say N . Let ϕ! L → N be an epimorphism as
in Lemma 3.4. The restriction of ϕ to L ∩L1, which is a submodule of !X ,
extends to a non-zero map map from !X to J.

Proposition 3.6. Let X be an integral locally noetherian space. An essen-
tial extension of a torsion module is torsion.

Proof. Let P ⊂ M be an essential extension of a torsion module P . It
suffices to prove the result when M is noetherian because every M is a
directed union of noetherian submodules Mi each of which is an essential
extension of Mi ∩ P .
Choose an epimorphism ϕ! L → M as in Lemma 3.4. Since ϕ$L ∩Li% ,=

0!P ∩ ϕ$L ∩ Li% ,= 0. But P is torsion and L ∩ Li is torsion-free, so the
restriction of ϕ to L ∩ Li is not monic. Thus kerϕ ∩ Li ,= 0. Since Li is
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torsion-free of rank one, Li/ kerϕ ∩Li is torsion. Since M is a subquotient
of

⊕n
i=1 Li/ kerϕ ∩ Li it is also a torsion module.

Corollary 3.7. If X is an integral locally noetherian space, there is
only one indecomposable injective up to isomorphism having the properties
in Definition 3.1.

Proof. Let !X be the injective in Definition 3.1, and let ! be another
indecomposable injective such that its endomorphism ring is a division ring
and every X-module is a subquotient of a direct sum of copies of !.

By Proposition 3.5, there is a non-zero map α! !X → !. If α is monic,
then its image would be a direct summand of !, so would equal ! because
! is indecomposable; hence the result is true if α is monic. Suppose to the
contrary that α is not monic. Then its image is a proper quotient of !X so
is torsion. Therefore ! is the injective envelope of a torsion module, so is
itself torsion by Proposition 3.6. That is, HomX$!!!X% = 0. It follows that
HomX$−!!X% vanishes on all X-modules. This is absurd, so we conclude
that α is monic.

Definition 3.8. Let X be an integral locally noetherian space. The
function field of X is the division algebra

k$X% != HomX$!X!!X%"

The generic point of X is the space η defined by

Modη = Mod X/T!

where T is the full subcategory consisting of the torsion modules.
Since T is a localizing subcategory of ModX, there is an adjoint pair of

functors $j∗! j∗%, where j∗! ModX → Modη != ModX/T is the quotient
functor, and j∗ its right adjoint. This defines a map of spaces

j! η→ X"

For the rest of this section j will denote this map.

Proposition 3.9. Let X be an integral locally noetherian space. If η is its
generic point, then Modη is equivalent to Modk$X%.

Proof. Since !X is torsion-free and every proper quotient of it is torsion,
j∗! ∼= j∗M for every non-zero submodule M of !X . It follows that j∗!X is
a simple module in Modη.
If M is an X-module, then E$M%/M is torsion by Proposition 3.11, so

j∗M ∼= j∗E$M%. Since E$M% is a direct sum of indecomposable injectives,
and j∗ commutes with direct sums, and an indecomposable injective is
either torsion or isomorphic to !X! j

∗M is isomorphic to a direct sum of
copies of j∗!X . Therefore every η-module is isomorphic to a direct sum
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of copies of j∗!X . Thus Modη is equivalent to ModD, where D is the
endomorphism ring of j∗!X .

Since !X is torsion-free and injective, j∗j∗!X
∼= !X , whence

D = Homη$j∗!X! j
∗!X% ∼= HomX$!X! j∗j

∗!X% ∼= k$X%"
This completes the proof.

Remark. The rank of an X-module M is equal to the length of j∗M
as a right k$X%-module. To see this, first observe that this length is equal
to the length of the left k$X%-module Homη$j∗M! j∗!X%; second, observe
that we have following natural isomorphisms:

Homη$j∗M! j∗!X% ∼= Homη$j∗j∗j∗M! j∗!X%
∼= HomX$j∗j∗M! j∗j∗!X%
∼= HomX$j∗j∗M!!X%"

It follows that the length of j∗M is equal to the rank of j∗j∗M . However,
there is an exact sequence 0 → A → M → j∗j

∗M → B → 0 where A and
B are torsion modules, so rank M = rank j∗j∗M .

Theorem 3.10 (Zhang). Let X be an integral locally noetherian space.
Then

1. every torsion-free module has a non-zero submodule that is isomor-
phic to a submodule of !X ;

2. a uniform torsion-free module has rank one;
3. the injective envelope of every torsion-free module of rank one is

isomorphic to !X ;
4. !X is the unique indecomposable injective of rank one;
5. every simple X-module is a subquotient of !X .

Proof. (1) It suffices to prove this for a noetherian torsion-free mod-
ule M . Choose an epimorphism ϕ! L → M as in Lemma 3.4. Since M is
torsion-free and every proper quotient of L ∩ L1 is torsion, ϕ$L ∩ L1% ∼=
L ∩ L1, which is a non-zero submodule of !X .

(2) It suffices to prove this for a noetherian torsion-free uniform
module M . Choose an epimorphism ϕ! L → M as in Lemma 3.4 and set
Mi = ϕ$L ∩ Li%. Thus Mi is torsion-free of rank one. Since M is uniform,⋂n

i=1 Mi ,= 0. An induction argument shows that the rank of M1 + · · · +Mn

is one: certainly rank$Mj% = 1 for all j, and
rank$M1 + · · · +Mi+1% = rank$M1 + · · · +Mi% + rank$Mi+1%

−rank$M1 + · · · +Mi% ∩ Mi+1

= rank$M1 + · · · +Mi% + 1 − 1

= rank$M1 + · · · +Mi%"
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But the rank of L/
⊕n

i=1$L ∩ Li% is zero, so the rank of its quotient
M/

∑n
i=1 Mi is also zero. Hence rank M = 1.

(3) By (1) a rank one torsion-free module is an essential extension
of a non-zero submodule of !X , so embeds in !X .

(4) Let E′ be an indecomposable injective of rank one. Since E′

is the injective envelope of all its non-zero submodules, it follows from
Proposition 3.6 that E′ is torsion-free. Hence by (1) E′ and !X have a
common submodule, whence E′ ∼= !X .

(5) Let S be a simple module. There is an epimorphism ϕ!L → S
as in Lemma 3.4. There is a finite descending chain L = K0 ⊃ K1 ⊃ · · · ⊃
Kr = 0 of submodules such that each Ki/Ki+1 is torsion-free of rank one.
Since HomX$L! S% ,= 0!HomX$Ki/Ki+1! S% ,= 0 for some i. Since S is sim-
ple, this provides the required epimorphism.

The next result improves on Proposition 3.6.

Proposition 3.11. Let X be a locally noetherian integral space. If L ⊂ M
is an essential extension of X-modules, then rank L = rank M .

Proof. It is sufficient to prove the result when M is the injective enve-
lope of L. In that case, we can write M as a direct sum of indecomposable
injectives, say M =

⊕
i Mi. Then L ∩ Mi ,= 0 for all i, and M/L is a quo-

tient of
⊕

Mi/L ∩ Mi. Since Mi is an indecomposable injective, either its
rank is zero or it is isomorphic to !X ; in either case, rankMi/L ∩ Mi = 0.
Hence rankM/L = 0, and the result follows.

4. EXAMPLES OF INTEGRAL SPACES

A scheme X is integral in the usual sense of algebraic geometry if
and only if #X$U% is an integral domain for all open subsets U ⊂ X.
Corollary 4.2 shows that a noetherian scheme is integral in our sense if
and only if it is integral in the usual sense.
We show that an affine space having a prime right noetherian coordinate

ring is integral. We give other examples which indicate that our notion
of integral is reasonable. In particular, Theorem 4.5 implies that the non-
commutative analogues of "2 discovered by Artin et al. are integral spaces,
as are the Sklyanin analogues of "n.

Proposition 4.1. Let X be an integral noetherian scheme. Let % denote
the constant sheaf having sections the function field of X. If & is a coherent
#X-module, then there is a coherent #X-submodule, ' say, of a finite direct
sum of copies of % and an epimorphism ψ! ' → &.
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Proof. For the purposes of this proof we call a coherent #X -module &
good if there is such an epimorphism. Clearly a finite direct sum of good
modules is good, a submodule of a good module is good, and a quotient of
a good module is good.
Let E$&% denote the injective envelope in QcohX of an #X-module.

This is a direct sum of indecomposable injectives. Each indecomposable
injective is isomorphic to E$#%Z for some closed reduced and irreducible
subscheme Z of X [3, Théorème 1, p. 443]. It therefore suffices to show
that every coherent submodule of each E$#Z% is good.

Fix a closed reduced and irreducible subscheme Z ⊂ X, and a coherent
#X-submodule & ⊂ E$#Z%. Let z denote the generic point of Z, and let #z

denote the stalk of #X at z. There is a morphism f ! Spec#z → X with the
following properties: the inverse image functor f ∗ is exact; the direct image
functor f∗ is fully faithful and exact and has a right adjoint f !. Because f∗
is fully faithful the counit f ∗f∗ → idSpec#z

is an isomorphism.
Let i! Z → X be the inclusion. Let ! be the constant sheaf on Z having

sections the function field of Z. Then i∗! is an essential extension of #Z , so
E$#Z% = E$i∗!%. But i∗! is also gotten by applying f∗ to the residue field
of #z, so the unit i∗! → f∗f

∗$i∗!% is an isomorphism. However, f∗ sends
injectives to injectives because it is right adjoint to an exact functor, so if
( is an injective envelope of f ∗$i∗!% in Mod#z! f∗( is an injective quasi-
coherent #X -module containing a copy of i∗!. Thus E$#Z% ∼= f∗( . There is
a surjective map #

$I%
z → ( from a suitably large direct sum of copies of #z,

and therefore an epimorphism f∗$#
$I%
z % → f∗( . Since f∗ has a right adjoint

it commutes with direct sums, so we obtain an epimorphism $f∗#z%$I% →
f∗( . Because QcohX is locally noetherian, every coherent #X -submodule
of f∗( is therefore an epimorphic image of a coherent submodule of f∗#

$I%
z .

However, f∗#z is an #X-submodule of %, so every coherent #X-submodule
of it is good. It follows that every coherent submodule of f∗( is good.
Hence & is good.

Corollary 4.2. Let X be a noetherian scheme. Then X is integral in the
usual sense if and only if it is integral in the sense of Definition 3.1. In that
case, !X is isomorphic to the constant sheaf % with sections the function field
of X.

Proof. Let X be integral in the usual sense of algebraic geometry. By [3,
Chap. VI], % is an indecomposable injective. It is also clear from Gabriel’s
classification of the indecomposable injectives in QcohX that % is the only
indecomposable injective of Krull dimension equal to dimX. It therefore
follows from Proposition 4.1 that X is integral in our sense. Furthermore,
!X = %, and the endomorphism ring of % is k$X%, so function field and
generic point in our sense agree with the usual notions.
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Conversely, suppose that X is integral in the sense of Definition 3.1. By
[3], !X

∼= E$#Z% for some closed reduced and irreducible subscheme Z of
X. In particular, rank #Z = 1.

We will show that every coherent #X-submodule of !X is an #Z-module.
It will then follow that the same is true of every coherent subquotient of a
finite direct sum of copies of !X . In particular, #X will be an #Z-module,
whence Z = X, and the proof is complete.
It suffices to prove that every coherent submodule of E$#Z% containing

#Z is an #Z-module. Let M be such a submodule. If W denotes the sup-
port of M/#Z , then M/#Z is annihilated by some power of )W , the ideal
cutting out W . Hence M) n

W )Z = 0 for n 0 0. If M)Z = 0, then M is an
#Z-module, so we may suppose that M)Z is non-zero. Hence M)Z has
non-zero intersection with the essential submodule #Z of E$#Z%, so ) n

W
annihilates a non-zero ideal of #Z . But Z is integral, so this can only hap-
pen if ) n

W ⊂ )Z ; hence Z ⊂ W .
On the other hand the injective envelope of M/#Z is a direct sum of

indecomposable injectives, so a direct sum of copies of E$#Wi
% for various

closed integral subschemes Wi of X. Since Z is contained in the support of
M/#Z , and every nonzero coherent submodule of E$#Wi

% has support equal
to Wi!Z is contained in the union of the Wis. Since Z is integral it must
be contained in one of the Wis. Hence #Z is a quotient of #Wi

for some i,
and we deduce that rank #Wi

≥ 1. It follows that the rank of E$M/#Z% = 1.
Hence by Proposition 3.11, rank M/#Z = 1. This contradicts the fact that
rank !X/#Z = 0, so we conclude that M)Z = 0. Hence M is an #Z-module,
as required.

Proposition 4.3. Let R be a right noetherian ring and let X be the affine
space with coordinate ring R. If R is prime, then X is integral.

Proof. By Goldie’s theorem [4], the ring of fractions of R is a matrix
ring over a division ring, say D. Furthermore, that matrix ring is an injective
envelope of R as a right R-module. Let ! be a simple right ideal of that
matrix ring. The endomorphism ring of ! as an R-module is the same as
its endomorphism ring as a module over the matrix ring, so is equal to the
division ring D. Since R embeds in a finite direct sum of copies of !, and
is a generator in ModR, every noetherian right R-module is a subquotient
of a direct sum of copies of !.

In Proposition 4.3, the function field of X is the division ring D that
appears in Goldie’s theorem.
It is not the case that a right noetherian ring R is prime if and only if

ModR is integral. For example, the ring of upper triangular matrices over
a field is integral in our sense. However, it is easy to see that if X is affine
and integral, then its coordinate ring is prime if and only if !X is a prime
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X-module in the sense of [9, Definition 4.3]. Proposition 6.4 also gives a
criterion which implies that the coordinate ring of an integral affine space
is prime.
Our notion of integral is not an invariant of the derived category. For

example, let A be the path algebra of the quiver • → • → • and let A′

be the path algebra of the quiver • ← • → •. The derived categories of
modules over A and A′ are equivalent. By listing the three indecomposable
injectives over each algebra it is clear that ModA is integral, but ModA′ is
not. In fact, the path algebra of a quiver without loops is integral if and only
if it has a unique sink. We are grateful to D. Happel for these observations.
We now show that a non-commutative analogue of a projective

scheme is integral if it has a homogeneous coordinate ring that is prime
and noetherian.

Definition 4.4 (Verevkin [13]; Artin and Zhang [2]). Let A be an
*-graded k-algebra such that dimk An < ∞ for all n. Define GrModA to
be the category of $-graded A-modules with morphisms the A-module
homomorphisms of degree zero. We write FdimA for the full subcate-
gory of direct limits of finite dimensional modules. We define the quotient
category

TailsA = GrModA/FdimA!

and denote by π and ω the quotient functor and its right adjoint. The pro-
jective space X with homogeneous coordinate ring A is defined by ModX !=
TailsA.

Theorem 4.5. LetA be prime noetherian locally finite*-graded k-algebra.
Suppose that dimk A = ∞. Suppose further that the graded ring of fractions
FractgrA contains an isomorphic copy of A$n% for every integer n. Then the
projective space with homogeneous coordinate ring A is locally noetherian and
integral. Its function field is the degree zero component of FractgrA.

Proof. Define X by ModX = TailsA. Since ModX is a quotient of a
locally noetherian category it is locally noetherian.
It is well known that the injective envelope of A in GrModA is its graded

ring of fractions, say E = FractgrA. Let ! = πE be its image in ModX.
Since A is prime and has infinite dimension, zero is the only finite dimen-
sional graded submodule of it. The same is true of E, so ! is injective in
ModX.
To show that X is integral it only remains to show that every noetherian

X-module is a subquotient of a finite direct sum of copies of !. If & is a
noetherian X-module, then & ∼= πM for some noetherian A-module M .
Now M is a quotient of a finite direct sum of shifts A$n% for various integers
n, so & is a quotient of a finite direct sum of various twists #X$n% = πA$n%.
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However, each A$n% embeds in E, so each #X$n% embeds in !. Thus & is
a subquotient of a finite direct sum of copies of !.
Finally,

k$X% = HomX$!!!% = HomX$πE! πE% ∼= HomGrA$E!ωπE%"

However, since zero is the only finite dimensional submodule of E and E
is injective, ωπE ∼= E. Hence

k$X% ∼= HomGrA$E!E% ∼= $FractgrA%0!

as claimed.

The hypothesis in Theorem 4.5 that FractgrA contain a copy of each
A$n% is necessary because if A = k3x24 with deg x = 1, then X ∼= Speck2.
This hypothesis holds if A has a regular element in all sufficiently high
degrees. In particular, if A is a domain generated in degree one, then X
is integral. Thus, the quantum planes of Artin et al. are integral, as are the
other standard non-commutative analogues of the projective spaces "n.
Van den Bergh has defined the notion of the blowup at a closed point

on a non-commutative surface [12]. The exceptional fiber, E say, is some-
times, but not always, a projective line. Nevertheless it is always integral.
For example, when ModE = GrModk3x4 its big injective is k3x!x−14 and
its function field is k. In the other cases ModE is of the form Tailsk3x! y4,
where k3x! y4 is the commutative polynomial ring with deg x = 1 and
deg y = n < ∞, and its integrality is guaranteed by Theorem 4.5. In these
cases the function field of E is the rational function field k$y/xn%.

5. PROPERTIES OF INTEGRAL SPACES

An integral scheme has several properties that we might expect a non-
commutative integral space to have. For example, every non-empty open
subscheme of a noetherian integral scheme is dense because it contains
the generic point. To get a non-commutative version of this we must first
introduce analogues of “open subspace” and “closure.” This is done in [9],
but we recall the definition here.

Definition 5.1. Let X be a non-commutative space. A weakly open sub-
space, say U , of X is a full subcategory ModU of ModX such that the
inclusion functor α∗! ModU → ModX has an exact left adjoint α∗.

For example, the generic point of an integral space is a weakly open
subspace.



804 s. paul smith

Definition 5.2. A weakly closed subspace W of a non-commutative
space X is a full subcategory ModW of ModX that is closed under
subquotients and isomorphisms, and for which the inclusion functor
α∗! ModW → ModX has a right adjoint. We write α! W → X for the
weak map corresponding to α∗.

Let α! W → X be the inclusion of a weakly closed subspace. Then
ModW is a Grothendieck category and is locally noetherian if ModX
is. Because ModW is closed under subquotients, α∗ is an exact functor.
Because α∗ has a right adjoint it commutes with direct sums. Further infor-
mation about weakly closed subspaces can be found in [9].
The requirement in the definition of an integral space that every

X-module be a subquotient of a direct sum of copies of !X is equivalent
to the requirement that X is the only weakly closed subspace having !X

as a module over it.
Let U and Z be respectively a weakly open and a weakly closed subspace

of X. We say that Z contains U if ModU is contained in ModZ. In other
words, if α! U → X and δ! Z → X are the inclusions, then U is contained
in Z if and only if there is a weak map ε! U → Z such that δε = α. In this
case, U becomes a weakly open subspace of Z because α∗δ∗ is an exact left
adjoint to ε∗: if M ∈ ModZ and N ∈ ModU , then

HomZ$M! ε∗N% = HomX$δ∗M! δ∗ε∗N%

= HomX$δ∗M! α∗N% ∼= HomU$α∗δ∗M!N%"

Definition 5.3 [9]. If U is a weakly open subspace of a locally noethe-
rian space X its weak closure, denoted 6U , is the smallest weakly closed
subspace of X that contains U .

This makes sense because the intersection of two weakly closed subspaces
is a weakly closed subspace. If α! U → X is the inclusion, then Mod 6U
consists of all subquotients of X-modules of the form α∗N as N ranges
over ModU . More details about weak closure can be found in [9].

Lemma 5.4. If η is the generic point of an integral space X, then η̄ = X.

Proof. If Z is a weakly closed subspace of X containing η, then !X

belongs to ModZ. Since ModZ is closed under subquotients and direct
sums, every X-module belongs to ModZ, showing that Z = X.

Lemma 5.5. Let p be a weakly open point in a locally noetherian space
X. That is, p is a weakly open subspace of X and Modp = ModD for
some division ring D. If p̄ = X, then X is integral, p is its generic point, and
k$X% = D.
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Proof. Let α! p → X denote the inclusion. The big injective in Modp
is D. Since α∗ is right adjoint to an exact functor, ! != α∗D is an injec-
tive X-module. Using the adjoint pair $α∗! α∗% it is easy to see that ! is
indecomposable because D is, and its endomorphism ring is the same as
that of D, namely D. Furthermore, if M is an X-module, it is a subquo-
tient of α∗N for some p-module N because p̄ = X. But N is a direct sum
of copies of D, and α∗ commutes with direct sums [3, Cor. 1, p. 379], so M
is a subquotient of a direct sum of copies of !. Hence X is integral.
To see that p is the generic point of X it suffices to show that α∗ vanishes

on the torsion modules. However, if M is torsion, then 0 = HomX$M!!% ∼=
Homp$α∗M!D%, whence α∗M = 0.

Proposition 5.6. Let U be a weakly open subspace of a locally noetherian
space X. Suppose that U is integral and 6U = X. If the inclusion U → X is
an affine map, then X is integral and k$X% = k$U%.

Proof. The notion of an affine map is defined in [9]; the important
point here is that if α! U → X denotes the inclusion, then α∗ is exact.
Let !U be the big injective in ModU . Since α∗ is right adjoint to an exact
functor, α∗!U is an injective X-module. It is also indecomposable, and its
endomorphism ring is equal to EndU!U .

It remains to show that every X-module is a subquotient of a direct
sum of copies of α∗!U . Let P ∈ ModU . Since U is integral, P ∼= B/A

for some U-submodules A ⊂ B ⊂ !
$I%
U and some index set I. Since α∗ is

exact, α∗P ∼= $α∗B%/$α∗A%; since α∗ commutes with direct sums we have X-
submodules α∗A ⊂ α∗B ⊂ $α∗!U%$I%; thus α∗P is a subquotient of a direct
sum of copies of α∗!U . But 6U = X, so every X-module is a subquotient of
α∗P for some P ∈ ModU . The result now follows.

Proposition 5.6 applies to the situation where one has an affine space
and embeds it in a projective space by adding an effective divisor at infinity
(see [9, Sec. 8]); if the affine space is integral, so is the projective space,
and their function fields coincide.
Let W be a weakly closed subspace of a locally noetherian space X.

Its complement X\W is defined in [9, Sect. 6]. In particular, X\W is a
weakly open subspace of X, and every weakly open subspace arises as such
a complement.

Proposition 5.7. Let X be an integral space and W a weakly closed sub-
space. Suppose that W ,= X. If !X does not contain a non-zero W -submodule,
then

1. η belongs to X\W and X\W = X;
2. X\W is integral and k$X\W % = k$X%.
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Proof. Let α! X\W → X denote the inclusion. Let τ! ModX → ModX
denote the functor that is the kernel of the natural transformation idX →
α∗α

∗. There is an exact sequence

0 → τ!X → !X → α∗α
∗!X → R1τ!X → 0"

By hypothesis, τ!X = 0. Since !X is injective, R1τ!X = 0. Hence !X
∼=

α∗α
∗!X . It follows that the generic point of X belongs to X\W . More

formally, if j! η → X is the inclusion, then there is a map γ! η → X\W
such that j = αγ (this is straightforward, though it can also be seen as a
special case of [9, Proposition 6.1]). By Lemma 5.4, the weak closure of
X\W is X. This proves (1).
Because τ!X = 0! α∗!X is an injective X\W -module. It is an indecom-

posable injective because

HomX\W $α∗!X! α
∗!X% ∼= HomX$!X! α∗α

∗!X% = HomX$!X!!X%

is a division ring. If & is a noetherian X\W -module, then & = α∗M for
some noetherian X-module M . There is a noetherian submodule L of !⊕n

X
and an epimorphism L → M . Hence α∗L is a noetherian submodule of
α∗!⊕n

X and there is an epimorphism α∗L → α∗M . Thus X\W is integral.

We define the empty space φ by declaring Modφ to be the zero category,
that is, the abelian category having only one object and one morphism.
Part (1) of Proposition 5.7 can now be rephrased as follows. If W1 and
W2 are non-empty weakly closed subspaces of an integral space X such
that !X contains neither a non-zero W1-module nor a non-zero W2-module,
then $X\W1% ∩ $X\W2% ,= φ. By [9, Sect. 6], this intersection is equal to
X\$W1 ∪ W2%, so we deduce that W1 ∪ W2 ,= X.

6. DIMENSION FUNCTIONS

Van den Bergh has suggested that a dimension function should play a
prominent role in non-commutative geometry.
In an earlier version of this paper our definition of integrality required

the big injective to be critical with respect to a dimension function. We are
grateful to the referee for suggesting that this was unnecessary. Neverthe-
less, since dimension functions play an important role in non-commutative
algebra and geometry it is useful to examine the connection.

Definition 6.1. Let X be a locally noetherian space. A dimension func-
tion on X is a function δ! ModX → +≥0 ∪ 8−∞!∞9 satisfying the follow-
ing conditions:

• δ$0% = −∞;
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• if 0 → L → M → N → 0 is exact, then δ$M% = max8δ$L%! δ$N%9;
• δ$M% = max8δ$N%:N is a noetherian submodule of M9;
• if σ is an auto-equivalence of ModX, then δ$Mσ% = δ$M%.

We define the dimension of X! dimX, to be the maximum of δ$M% as M
ranges over all X-modules.

Remarks. 1. We will make no use in this paper of the condition that δ
is invariant under auto-equivalences.

2. A dimension function δ determines various localizing subcate-
gories of X. If d ∈ +≥0 ∪ 8∞9, we write Mod≤dX and Mod<dX for the
full subcategories of ModX consisting of those M such that δ$M% ≤ d
and δ$M% < d respectively. These are localizing subcategories because
δ$∑j Nj% = maxj δ$Nj%. One can specify the dimension function simply by
specifying these localizing subcategories.

3. The notion of Krull dimension as defined by Gabriel in [3] is a
dimension function. It is defined inductively: Mod<0X consists of only the
zero module, and for each integer n ≥ 0!Mod≤nX/Mod≤nX consists of all
direct limits of artinian modules in ModX/Mod<nX.
The version of Krull dimension defined using posets that appears in [7,

Chap. 6] does not satisfy our definition of dimension function. In fact, it
is not even defined for all modules and does not lead to an ascending
chain of localization subcategories. Thus, we always use Gabriel’s version
of Krull dimension.

4. If X is a noetherian scheme, then the Krull dimension of a coher-
ent #X-module is equal to the dimension of its support.

5. Each of the localizing subcategories described above determines a
subgroup of K0$X%, and in this way one obtains a filtration of K0$X%.

6. If X is a locally noetherian space with a dimension function δ, then
every weakly closed subspace of X is locally noetherian, and it inherits the
dimension function. The dimension of such a subspace is the maximum of
the dimensions of its noetherian modules.

Definition 6.2. An X-module M is d-critical if δ$M% = d and
δ$M/N% < d for all non-zero submodules N contained in M . We say
that M is d-pure if δ$N% = d for all its non-zero submodules N . The
d-length of an X-module M is its length in ModX/Mod<dX. It is denoted
by ld$M%, and it may take the value ∞.

Let X be a noetherian scheme with Krull dimension as the dimension
function. If Z is a closed subscheme of X, then #Z is critical in QcohX if
and only if Z is an integral subscheme of X.
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The function ld$−% is additive on short exact sequences. One sees this
by passing to the quotient category ModX/Mod<dX and using the fact
that the usual notion of length is additive. Because ld is additive, a d-
critical module is uniform (i.e., two non-zero submodules of it have non-
zero intersection). Hence an injective envelope of a d-critical module is
indecomposable.
If M is a noetherian module of dimension d, then M has a d-critical

quotient module, namely M/N , where N is a submodule of M maximal
subject to the condition that δ$M/N% = d.
A d-critical module is d-pure. A d-pure module is critical if and only if

its d-length is one.

Proposition 6.3. Let X be a locally noetherian space. Suppose that ! is
an indecomposable injective such that every X-module is a subquotient of a
direct sum of copies of !. If ! is d-critical with respect to some dimension
function, then

1. X is integral of dimension d and ! is the big injective;
2. M is torsion if and only if δ$M% < d;
3. ld$M% = rankM .

Proof. (1) If M is a non-zero submodule of !, then δ$!/M% < δ$!%,
whence HomX$!/M!!% = 0. It follows that the endomorphism ring of ! is
a division ring. Hence X is integral. Since an X-module is a subquotient of
a direct sum of copies of ! its dimension is at most d. Hence dimX = d.

(2) If δ$M% < d, then HomX$M!!% = 0 because ! is d-critical, and
M is torsion. To prove the converse it suffices to show if M is a noetherian
module such that δ$M% = d, then M is not torsion. Suppose to the contrary
that there is such an M which is torsion. Then M has a d-critical quotient
6M . This is also torsion, and so is its injective envelope E$ 6M% by Proposition
3.6. By Proposition 3.5, there is a non-zero map ϕ! ! → E$ 6M%. Since
E$ 6M% is torsion, ϕ is not monic. Since ! is d-critical, δ$imϕ% < d. Hence
δ$imϕ ∩ 6M% < d. But imϕ ∩ 6M ,= 0, so this contradicts the fact that 6M is
d-critical. We conclude that M can not be torsion.

(3) By (2), Mod<dX consists of the torsion modules, whence
ModX/Mod<d X = Modη, where η is the generic point of X. The
remark after Proposition 3.9 implies that rank M = ld$M%.

Proposition 6.4. Let X be an integral locally noetherian affine space
with coordinate ring R. Suppose there is a dimension function δ such that
δ$M ⊗R I% ≤ δ$M% for all noetherian modules M and all two-sided ideals I.
If !X is critical with respect to δ, then R is prime.

Proof. Since X is locally noetherian, R is right noetherian. By [10,
Prop. 3.9], the condition on δ ensures that the annihilator of a critical
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right R-module is a prime ideal. In particular, Ann !X is a prime ideal.
But R itself is a subquotient of a finite direct sum of copies of !X , so the
annihilator of !X is zero. Hence R is prime.

We expect there is a dimension function for right noetherian rings sat-
isfying the hypothesis in Proposition 6.4. For many two-sided noetherian
rings, such as factors of enveloping algebras, Gelfand–Kirillov dimension
satisfies the hypothesis.
Every proper closed subscheme of an integral noetherian scheme X

has strictly smaller dimension than X. For non-commutative spaces Krull
dimension does not necessarily have this property—for example, take the
ring of upper triangular matrices over a field.
We now pick out a better behaved class of weakly closed subspaces.

Definition 6.5. Let δ be a dimension function on X. A weakly closed
subspace W of X is good if whenever 0 → L → M → N → 0 is an essential
extension of a W -module L by an X-module N such that δ$N% < δ$L%,
then M ∈ ModW .

A subspace can be good with respect to one dimension function but not
good with respect to another.
If X is integral and W ⊂ X is a proper weakly closed subspace, then

dimW < dimX if W is good. Hence we have the following result.

Lemma 6.6. Let X be an integral space, and suppose that δ$M% ∈ * for
all M ,= 0. If

φ ,= W0 ⊂ W1 ⊂ · · · ⊂ Wd

is a chain of distinct good integral subspaces of X, then d ≤ dimX.

Example 6.7. Let R be the ring of lower triangular 2 × 2 matrices over
a field. Let #p and #q be the two simple right R-modules with #p the
projective one. There are closed points, p and q, defined by Modp consists
of all direct sums of copies of #p= Modq is defined similarly (closed points
are defined in [9]). There is a non-split exact sequence 0 → #p → , →
#q → 0, where , is the annihilator of #p. The indecomposable injectives
are #q and ,.
Since EndR$,% ∼= k and R ∼= , ⊕ ,/#p, every R-module is a subquotient

of a direct sum of copies of ,. Therefore X is integral, , is the big injective,
and the function field of X is k. If j! η→ X is the inclusion of the generic
point, then j∗$Modη% consists of all direct sums of copies of ,. We also
note that η = X\q.
There are several ways in which X does not behave like an integral

scheme. The inclusion X\p → X sends X\p isomorphically onto q, so
X\p is both open and closed in X. In particular, X\p ,= X. Furthermore,
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if we view η as an open subspace of X, then η ∩ $X\p% = φ. Finally p is
a proper closed subspace of X having the same Krull dimension as X.
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