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1. Introduction.

1.1. Toric Deligne–Mumford (DM) stacks were introduced in the seminal paper
of Borisov et al. [2]. A toric DM stack is a particular kind of quotient stack X :=
[(V − Z)/G] for an abelian affine algebraic group G acting on a scheme V − Z that is
the complement to a suitable union of G-stable subspaces Z in a rational representation
V of G.

The appendix to Vistoli’s paper [8, Example 7.21] shows that QcohX is equivalent
to the category of G-equivariant sheaves on V − Z. The analysis of toric DM stacks
in [2], and in subsequent papers such as the framework developed by Fantechi et al.
[5], is carried out in the context of G-equivariant sheaves on V − Z. In particular, the
computation of the Grothendieck group K0(X ) by Borisov and Horja [3, Theorem
4.10] is couched in the language of G-equivariant sheaves.

In this paper, we offer a different approach that is arguably more elementary.

1.2. Let ! be the rational character group of G. It is a finitely generated abelian
group, and may have torsion. It is well known that

(1) the category of G-equivariant OV -modules is equivalent to Gr(O(V ),!), the
category of !-graded O(V )-modules, and

(2) the category of G-equivariant OV−Z-modules is equivalent to the quotient
of Gr(O(V ),!) by the localising subcategory generated by the coherent G-
equivariant OV -modules that are supported on Z.

It follows that there is an equivalence of categories

Qcoh
[

V − Z
G

]
≡ Gr(O(V ),!)

T
, (1.1)

where T is the localising subcategory described in (2). This is an equivalence of
monoidal categories: the tensor product of OX -modules corresponds to the tensor
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product of graded O(V )-modules where one uses the tensor product grading,
deg(Mα ⊗ Nβ) = α + β.

The graded ring (O(V ),!) is analogous to Cox’s homogeneous coordinate ring of
a toric variety.

1.3. In this paper, we use the quotient of the graded module category in (1.1) to
study a toric DM stack. We prove two results. We compute the Grothendieck group
K0(X ) := K0(cohX ) of the category of coherent sheaves on X in Theorem 2.1 and
the Picard group Pic(X ) in Theorem 4.4. The result on the Picard group is proved in
somewhat greater generality.

1.4. In Section 3 we introduce the notion of a homogeneous coordinate ring
for certain stacks. It consists of a triple (A,$, a) consisting of a commutative ring
graded by an arbitrary finitely generated abelian group $ and an irrelevant graded
ideal a. The idea is to mimic Cox’s homogeneous coordinate ring for toric varieties.
The homogeneous coordinate ring for the stacks we are interested in is particularly
accessible and allows one to avoid certain local-to-global arguments and to avoid some
of the more technical aspects of stacks.

We extend the definition of a connected graded ring to this setting, i.e. when the
grading group is arbitrary, and use that to prove more widely applicable versions of
some standard results for connected graded rings (modelled on those for commutative
local rings). For example, we prove a version of Nakayama’s lemma, and as a
consequence show that every finitely graded projective module is a direct sum of
free modules in a unique way (Lemma 2.2).

This allows us to show that for certain stacks X every coherent OX -module has
a finite resolution in which each term is a finite direct sum of invertible OX -modules
(Proposition 3.1).

1.5. One of the main motivations for the introduction and study of toric DM
stacks is that they are are a source of nice ambient spaces for the orbifolds that arise in
string theory. The stringy cohomology groups for toric DM stacks are particularly
accessible. Like the cohomology and Grothendieck groups of toric varieties, the
cohomological invariants of toric DM stacks can be computed and studied explicitly
in terms of the combinatorial data, the stacky fan, that is used to define the stack. That
combinatorial data is encoded in the homogeneous coordinate ring.

1.6. The author would like to thank Lev Borisov for pointing out that the
Grothendieck group results in an earlier version of this paper applied only to complete
toric stacks. That prompted the author to extend the result to other toric stacks. The
author also thanks Paul Horja for pointing out a serious error in an earlier version of
Section 2.9.

2. The Grothendieck group of X .

2.1. Let G be a closed subgroup of a torus (!m)r and write ! := Hom(G, !m) for
its rational character group.
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Let V be a finite-dimensional rational representation of G. We introduce the
following notation:

(1) % is a set indexing a basis {xρ | ρ ∈ %} for V∗ consisting of G-eigenvectors (in
applications to a toric stack % will be the set of one-dimensional rays in the
fan);

(2) %1, . . . , %n are subsets of %;
(3) Lm, 1 ≤ m ≤ n, is the common zero locus of {xρ | ρ ∈ %m};
(4) Z := L1 ∪ . . . ∪ Ln;
(5) X is the stack-theoretic quotient [(V − Z)/G];
(6) For each α ∈ !,

(a) tα is the corresponding basis element of the integral group ring "!, and
(b) OX (α) denotes the OX -module that is OV−Z endowed with its canonical

G-equivariant structure twisted by the character α;
(7) S := the polynomial ring k[xρ | ρ ∈ %] = O(V ) is endowed with the right G-

action defined by f g(v) := f (gv) for f ∈ S, g ∈ G, and v ∈ V ;
(8) S is made into a !-graded k-algebra with homogeneous components

Sα := {f | f g = α(g)f for all g ∈ G}.

(9) if ρ ∈ %, we define the character |ρ| : G → !m by (xρ)g := |ρ|(g)xρ for g ∈ G;
thus xρ ∈ S|ρ|.

THEOREM 2.1. The map ! → cohX , α *→ [OX (α)], induces a ring isomorphism

K0(cohX ) ∼=
"!

(q1, . . . , qn)
,

where

qm :=
∏

ρ∈%m

(1 − t|ρ|). (2.1)

2.2. Temporary hypothesis We first prove Theorem 2.1 under the following
equivalent hypotheses:

(1) the only Zariski-closed G-orbit in V is {0};
(2) the invariants O(V )G consist of the constant functions;
(3) S0 = k.

This hypothesis applies from now through Section 2.7. In Section 2.8, there is an
example where the hypothesis fails but we show how to side-step the problem for that
example. Section 2.9 shows the hypothesis can be removed for all toric DM stacks.

2.3. We write Gr(S,!) for the category of !-graded O(V )-modules with degree-
preserving homomorphisms, and gr(S,!) for the full subcategory of finitely generated
modules. Vistoli’s result [8, Example 7.21] establishes an equivalence

QcohX ≡ G-equivariant quasi-coherent OV−Z-modules ≡ Gr(S,!)
T(a)

,

where T(a) is the full subcategory consisting of direct limits of finitely generated
modules whose support is contained in Z.
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We write am for the ideal in S generated by {xρ | ρ ∈ %m} and

a :=
n⋂

m=1

am.

Each am is a prime ideal, a is a radical ideal, Lm is equal to the zero locus of am, and
Z, which is defined in Section 2.1(4), is equal to the zero locus of a.

We define

q(t) :=
∏

ρ∈%

(1 − t|ρ|) ∈ "!.

2.4. Hilbert series The hypothesis that {0} is the only G-stable closed subvariety
of V implies that S0 = k. It follows that every homogeneous component of S has finite
dimension. To prove this, consider the ideal b generated by a homogeneous component
Sβ . Then b is generated by a finite number of elements w1, . . . , wr belonging to Sβ . If
w is any element in Sβ , then w ∈ b so w = w1z1 + · · ·wrzr for some zis in S. Taking
the degree-zero component of each zi, it follows that w ∈ kw1 + · · · + kwr. Hence
dim Sβ < ∞.

Let M be a finitely generated !-graded S-module. Then each homogeneous
component Mα, α ∈ !, has finite dimension so we may define the Hilbert series of M
to be the formal expression

HM(t) :=
∑

α∈!

(dimk Mα)tα.

For the twist M(β) we have HM(β)(t) = t−β .HM(t). If U and V are !-graded
vector spaces so is their tensor product and HU⊗V (t) = HU (t).HV (t) provided the
homogeneous components of all these vector spaces have finite dimension. Since

S ∼=
⊗

ρ∈%

#[xρ ],

it follows that

HS(t) =
∏

ρ∈%

(1 + t|ρ| + t2|ρ| + · · · ) = q(t)−1.

Since M has a projective resolution in Gr(S,!) involving only a finite number of
direct sums of twists S(α) of the free module S,

HM(t) = f (t)HS(t)

for some f (t) ∈ "!. Therefore, HM(t)q ∈ "! and HM(t) is not just a formal expression
but a well-defined element of the localised group ring "![q−1].

2.5. An aside on projectives. The following lemma is ‘well known’ when the graded
algebra is assumed to be connected. However, the word ‘connected’ is usually applied
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to algebras graded by a free abelian group and we are not making that restriction in
this paper. We therefore include a proof.

LEMMA 2.2. Let k be a field and (S,!) a graded k-algebra such that S0 = k. Suppose
the only homogeneous units in S are the elements in k − {0}. Then

(1) m :=
∑

α -=0 Sα is the unique maximal graded ideal of S;
(2) if M is a finitely generated graded S-module such that mM = M, then M = 0;
(3) if P is a finitely generated projective graded S-module, then P is isomorphic to a

direct sum of graded free modules S(α) for various αs in !;
(4) two graded free modules P := S(α1) ⊕ · · · ⊕ S(αm) and Q := S(β1) ⊕ · · · ⊕ S(βn)

are isomorphic if and only if there is an equality of multi-sets {{α1, . . . ,αm}} =
{{β1, . . . ,βn}}.

Proof. We do not assume S is commutative in this proof.
(1) By hypothesis, S = m ⊕ k so, if m failed to be a left ideal, Sm would contain k.

In particular, Sαm−α would be non-zero for some α ∈ !, so there would be elements
x ∈ Sα and y ∈ m−α such that xy -= 0. Without loss of generality xy = 1. Now yx is
also in k. It cannot be zero because then 0 = x(yx) = (xy)x = x which is absurd. Hence
x has a left and a right inverse, so xy = yx = 1. That contradicts the hypothesis about
the homogeneous units in S so we conclude that Sm = m. By a similar argument m is
a right ideal.

To see that m is the unique maximal graded left ideal suppose J is a graded left
ideal that is not contained in m. Then m + J = S, from which it follows that k ⊂ J and
J = S.

(2) Suppose mM = M. Because M is finitely generated, if it were non-zero it would
have a non-zero graded cyclic quotient module, M̄ say. Suppose M̄ is isomorphic to
S/J (with some shift in the grading). Then J ⊂ m by (1), so m(S/J) -= S/J. Hence
mM̄ -= M̄. But this contradicts the fact that mM = M. We deduce that M = 0.

(3) Let P be a non-zero finitely generated graded projective left S-module.
Then mP -= P. Let V be a graded subspace of P such that P = V ⊕ mP. Then
SV = P because m(P/SV ) = P/SV . There is therefore a surjective degree-preserving
homomorphism ψ : S ⊗k V → P, ψ(s ⊗ v) = sv. Let K = ker ψ . Because P is
projective applying S/m ⊗S − to the exact sequence 0 → K → S ⊗ V → P → 0
produces an exact sequence. It follows then that K/mK = 0, so K = 0 by (2) and
we deduce that P ∼= S ⊗ V , as required.

(4) It follows from the argument in (3) that P ∼= Q if and only if the graded vector
spaces P/mP and Q/mQ are isomorphic. But isomorphism of those two graded vector
spaces is obviously equivalent to the condition in (4). !

2.5.1. Remarks. Given the result in Lemma 2.2, it might be sensible to say that a
graded k-algebra (A,!) is connected if A0 = k and the only homogeneous units in A
are the elements in k − {0}.

Suppose (A,!) is noetherian and connected in this sense and has finite global
dimension. Let T be any localising subcategory of Gr(A,!). Let F be the image of a
finitely generated graded A-module in Gr(A,!)/T. Then F has a finite resolution in
Gr(A,!)/T in which each term is a direct sum of various twists of O, where O denotes
the image of A in Gr(A,!)/T.

This remark is applied to certain DM stacks in Proposition 3.1 in Section 3.
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2.6. We now return to the main line of the proof, so S once more denotes the
polynomial ringO(V ) which is assumed to satisfy the hypotheses stated at the beginning
of Section 2.

PROPOSITION 2.3. There are mutually inverse "-algebra isomorphisms

K0(grS) → "!, [M] *→ HM(t)q (2.2)

and

"! → K0(grS), tα *→ [S(−α)].

Proof. Let P denote the full subcategory of gr(S,!) consisting of the projective
modules. By Lemma 2.2, every finitely generated projective graded S-module is
isomorphic to a unique finite direct sum of various S(α)s, so the map tα *→ [S(−α)]
is an isomorphism from "! to K0(P). This is an isomorphism of rings because
S(α) ⊗S S(β) ∼= S(α + β).

Every M ∈ gr(S,!) has a finite resolution by finitely generated projective
graded S-modules so the inclusion functor P → gr(S,!) induces an isomorphism
of Grothendieck groups K0(P) → K0(grS). We therefore have a ring isomorphism

( : "! → K0(grS), ((tα) := [S(−α)].

If 0 → L → M → N → 0 is exact in grS, then HM = HN + HL, so the universal
property of K0 ensures here is a well-defined group homomorphism

) : K0(grS) → "!, )([M]) = HM(t)q.

In particular, )([S(α)]) = HS(α)(t)q = t−α = (−1([S(α)]). Since "! is spanned by the
tαs, ) = (−1. !

For an arbitrary pair of modules M, N ∈ grS, the usual argument shows that
[M].[N] =

∑
i≥0(−1)i TorS

i (M, N) where the Tor-groups are computed as graded S-
modules.

2.7. Proof of Theorem 2.1. Let T = T(a) ∩ grS. Thus T is the full subcategory
of grS consisting of those modules supported on Z, i.e. the finitely generated graded
modules annihilated by a suitably large power of a.

The localisation sequence for K-theory gives an exact sequence

K0(T)
ι−→ K0(grS) −→ K0(cohX ) −→ 0. (2.3)

If M ∈ T so is M(α) for all α ∈ ! so K0(T) is a "!-module under the action tα.[M] =
[M(−α)]. The arrow ι in (2.3) is induced by the inclusion T → gr S so is a "!-module
homomorphism. Therefore, after identifying K0(grS) with "! as in Proposition 2.3,
K0(cohX ) is isomorphic to "! modulo the ideal generated by the images of a set of
"!-module generators for K0(T).

By definition, T consists of the modules annihilated by a power of a so, by dévissage,
the natural map K0(grS/a) → K0(T) is an isomorphism, even an isomorphism of "!-
modules. Since a is the intersection of the ams every M ∈ gr(S/a) has a finite filtration
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M = M0 ⊃ M1 ⊃ · · · ⊃ Mr = 0 such that each slice Mi/Mi+1 a finitely generated
graded S/am-module for some m. Since S/am is a polynomial ring, Mi/Mi+1 has a
finite resolution as an S/am-module in which all the terms are direct sums of various
twists (S/am)(α). It follows that K0(grS/a), and hence K0(T), is generated as a "!-
module by the classes [S/am], 1 ≤ m ≤ n.

The image of [S/am] under the first map in (2.3) is [S/am]. Since S/am is the
polynomial ring on the indeterminates {xρ | ρ ∈ % − %m},

HS/am (t) =
∏

ρ∈%−%m

(1 − t|ρ|)−1.

Under the isomorphism in (2.2), the image of [S/am] in "! is therefore

HS/am (t)q = q
∏

ρ∈%−%m

(1 − t|ρ|)−1 =
∏

ρ∈%m

(1 − t|ρ|).

This completes the proof of Theorem 2.1. !

2.8. Example. This example was prompted by a question of Lev Borisov.
Let Bl(0,0)#

2 denote the blowup of #2 at the origin. The usual fan for this toric
variety is that spanned by (1, 0), (1, 1) and (0, 1). Cox’s homogeneous coordinate
ring is (#[x0, x1, x2], ", (x0, x2)) where the grading is given by deg xi = (−1)i. Since
#[x0, x1, x2]0 -= #, Theorem 2.1 does not apply.

However, Theorem 2.1 does apply if we present Bl(0,0)#
2 as an open subscheme

of the Hirzebruch surface $1 because then Bl(0,0)#
2 has homogeneous coordinate ring

#[t0, t1, x0, x1] with "2-grading deg t0 = deg t1 = (1, 0), deg x0 = (−1, 1), and deg x1 =
(0, 1) with irrelevant ideal x1(t0, t1), and #[t0, t1, x0, x1](0,0) = #. The locus Z is the
union of the subspaces x1 = 0 and t0 = t1 = 0. The group algebra "! is "[u±1, v±1]
with (1, 0) = u and (0, 1) = v so

K0(Bl(0,0)#
2) = "[u±1, v±1]

(1 − v, (1 − u)2)
.

For the first presentation of Bl(0,0)#
2 as #3 − Z(x0, x2)/#× there are non-trivial closed

orbits such as x0x1 = x2x1 = 1. However, for the second presentation of Bl(0,0)#
2 as

(#4 − Z(x1t0, x1t1))/#× × #× the only closed orbit is the origin.

2.9. Removing the temporary hypothesis. Let X = [(V − Z)/G] be as described
at the beginning of Section 2.1, but do not assume that {0} is the only closed G-orbit.
We will show there is alternative data V ′, Z′, G′ such that

(1) the stack X ′ := [(V ′ − Z′)/G′] is isomorphic to X and
(2) {0} is the only closed orbit for the G′ action on V ′.

We will do this by showing that the data (S,!, a), which determines and is determined
by (V, G, Z), may be replaced by data (S′,!′, a′) such that the degree zero component
of S′ is k and

Gr(S,!)
T(a)

≡ Gr(S′,!′)
T(a′)

.
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Let (A,ϒ) be a graded ring. If ϒ̄ is a quotient of ϒ , then A becomes a ϒ̄-graded
ring with respect to the grading

Aδ :=
∑

i∈δ

Ai

for each coset δ ∈ ϒ̄ . An ideal I in A that is not graded for the ϒ-grading might be
graded with respect to the ϒ̄-grading, and in that case the natural homomorphisms to
the quotients give a morphism of graded rings (ψ, θ ) : (A,ϒ) → (A/I, ϒ̄). This idea is
used in the next result.

PROPOSITION 2.4. [7, Section 2]. Let (A,ϒ) be a graded ring having central
homogeneous units z1, . . . , zd and define

Ā := A
(z1 − 1, . . . , zd − 1)

.

Suppose that the subgroup . generated by {deg zi | 1 ≤ i ≤ d} is free of rank d. If there
is a subgroup ! ⊂ ϒ such that ϒ = ! ⊕ ., there is an equivalence of categories

F∗ : Gr(A,ϒ) ∼ !! Gr(Ā,ϒ/.), F∗M := Ā ⊗A M.

COROLLARY 2.5. Let (S,!) = k[xρ | ρ ∈ %] be a graded polynomial ring as in
Section 2.1. Let

S̃ = S ⊗k k[z±1],

where the z is a central indeterminate and give S̃ a ! × " grading by declaring that

deg z := (0, 1) and degS̃ xρ := (degS xρ, 1).

Then Gr(S,!) ≡ Gr(̃S,! × ").

Proof. This follows from Proposition 2.4 with ϒ = ! × ", . = (0, "), ! = (!, 0),
S̃ playing the role of A. and S playing the role of Ā. !

PROPOSITION 2.6. Retain the notation in Corollary 2.5. Let S′ be the subring S[z] of
S̃. Suppose that a is a graded ideal in (S,!) and let a′ := S′az. Then

Gr(S,!)
T(a)

≡ Gr(S′,! × ")
T(a′)

.

Furthermore, S′
(0,0) = k.

Proof. For any graded ring (S′,ϒ, a′) having a central homogeneous regular
element z such that a′ ⊂ zS′ the induction functor S′[z−1] ⊗S′ − from Gr(S′,ϒ) to
Gr(S′[z−1],ϒ) induces an equivalence

Gr(S′,ϒ)
T(a′)

≡ Gr(S′[z−1],ϒ)
T(a′[z−1])

.

(This is an analogue of the fact that if R is a commutative ring with an ideal a contained
in a principal ideal zR, then Spec R − Z(a) = Spec R[z−1] − Z(a[z−1]).)
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Applying this to the case of interest with ϒ = ! × ",

Gr(S′,ϒ)
T(a′)

≡ Gr(S′[z−1],ϒ)
T(a′[z−1])

= Gr(̃S,ϒ)
T(̃Sa′)

= Gr(̃S,ϒ)
T(̃Sa)

.

Under the equivalence in Corollary 2.5, the graded S-modules annihilated by a power of
a correspond to the graded S̃-modules annihilated by a power of S̃a, so the equivalence
in Corollary 2.5 induces an equivalence

Gr(S,!)
T(a)

≡ Gr(̃S,ϒ)
T(̃Sa)

between the quotient categories. This completes the proof of the claimed equivalence
of categories.

The degree zero component of S′ with its ! × "-grading is spanned by the
homogeneous elements xzs such that x is a word of length r in the letters xρ and

degS̃(xzs) = (degS x, r) + (0, s) = (0, 0) ∈ ! × ".

It follows that S′
(0,0) = k. !

We now define V ′ = Spec S′, Z′ = Z(a′), and G′ = Spec k!′ where !′ = ! × ".
Because S′ = S ⊗k k[z], V ′ = V × k. Because a′ = S′az,

Z′ = (Z × k) ∪ (V × {0})

We write the group ring for !′ as

"!′ = "![t±1],

where t = degS′ z. Because the degree zero component of S′ is k, Theorem 2.1 gives

K0(X ′) ∼=
"!′

(q1, . . . , qm, q)
,

where q1, . . . , qm have the same meaning as before, and q = 1 − t. Therefore

K0(X ′) ∼=
"!

(q1, . . . , qm)
.

The equivalence of categories in Proposition 2.6 says that X ∼= X ′, but one can
also see this geometrically because

[
V ′ − Z′

G′

]
=

[
(V − Z) × (k − {0})

G × !m

]
.

Let η ∈ !m. The ! × "-grading on S′ defined in Corollary 2.5 is such that the action
of (1, η) ∈ G′ on a point in (v, λ) ∈ V ′ = V × k is given by

(1, η).(v, λ) = (ηv, ηλ).

It is now clear that the origin of V ′ is in the closure of every G′-orbit on V ′.
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3. Homogeneous coordinate rings for some stacks. Let k be a field, X a stack over
Spec k, and suppose we have data (A,$, a) consisting of

(1) an abelian group $,
(2) a $-graded commutative k-algebra A, and
(3) a graded ideal a.

Let G be the affine group scheme Spec k$ where k$ is given its natural Hopf algebra
structure. Let Z(a) denote the zero locus of a. We call (A,$, a), or simply A if the
other data is clear from the context, a homogeneous coordinate ring1 of X if

X ∼=
[

Spec A − Z(a)
G

]
.

If (A,$, a) is a homogeneous coordinate ring for X , Vistoli’s result [8, Example 7.21]
tells us there is an equivalence of monoidal categories

QcohX ≡ Gr(A,$)
T(a)

, (3.1)

where T(a) is the localising subcategory consisting of the graded modules M such that
H0

a(M) = M.
Let

π∗ : Gr(A,$) → QcohX

be the functor inducing the equivalence in (3.1). The functor π∗ is analogous to the
functor

M " M̃

that is used in the classical case for schemes of the form Proj A where A is an %-graded
commutative ring generated as an A0-algebra by A1. Indeed, when A satisfies those
hypotheses and a = A≥1, then π∗ is the functor M " M̃.

Because OX and π∗A are neutral objects for the internal tensor product on the two
categories in (3.1) we can replace π∗ by its composition with a suitable auto-equivalence
of QcohX and so assume that π∗A = OX . We will assume this has been done.

The general results on quotient categories in [6] tell us that π∗ is exact and has
a right adjoint that we will denote by π∗. Furthermore, the counit is an isomorphism
π∗π∗ ∼= idQcohX and the unit fits into an exact sequence

0 → H0
a(M) → M → π∗π

∗M → H1
a(M) → 0

that is functorial in M.
The following conditions on a graded A-module M are equivalent:

(1) M ∈ T(a);
(2) π∗M = 0;
(3) H0

a(M) = M;
(4) the support of every finitely generated submodule of M is contained in Z(a).

1The idea of using (O(V ),!) as a “homogeneous coordinate ring” of a stack is developed more fully in [7]
although the main focus there is on homogeneous coordinate rings of non-commutative schemes.
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We call M a torsion module if it satisfies (1)–(4). Always H0
a(M) is the largest submodule

of M that π∗ sends to zero. We say M is torsion-free if H0
a(M) = 0.

3.0.1. Resolutions by direct sums of invertible OX -modules. The following is an
immediate consequence of Lemma 2.2 and the remarks in Section 2.5.1.

PROPOSITION 3.1. Let X be a stack and F ∈ cohX . Suppose that X has a
homogeneous coordinate ring (A,$, a) such that A is noetherian, has finite global
dimension, and is connected in the sense of the remark in Section 2.5.1. Then F has
a finite resolution in which every term is a direct sum of invertible OX -modules of the form
OX (α) for various αs in $.

4. The Picard group when X has a homogeneous coordinate ring. In this section,
we compute the Picard group PicX which is, by definition, the group of isomorphism
classes of invertible OX -modules with group operation given by ⊗.

4.1. Graded domains. Suppose (A,$) is a graded-domain, i.e. every non-zero
homogeneous element is regular, i.e. not a zero-divisor. Then (A,$) embeds in its
graded ring of fractions

K := {ab−1 | a and b are homogeneous and b -= 0}

with grading given by deg(ab−1) = deg a − deg b.
Every $-graded K-module is isomorphic to a direct sum of various twists K(α),

α ∈ $. Furthermore, K(α) ∼= K if and only if Kα -= 0.2

A non-zero homogeneous non-unit a ∈ A is said to be graded-irreducible if in
every factorisation a = bc in which b and c are homogeneous either b or c is a unit.
A non-zero homogeneous non-unit a ∈ A is said to be graded-prime if whenever a
divides a product bc of homogeneous elements a divides either b or c. We say that
(A,$) is graded-factorial if every homogeneous element is a product of graded-prime
elements. If A is graded factorial and noetherian, then every non-zero homogeneous
element is either a unit or a product of graded-irreducible elements in a unique way;
the notion of greatest common homogeneous divisor for a set of homogeneous elements
of A therefore makes sense.

We say A is graded-noetherian if every graded ideal of A is finitely generated.

4.2. Invertible OX -modules. In all the results in this section we assume that
(A,$, a) satisfies conditions (1)–(3) at the beginning of Section 3 and that it is a
homogeneous coordinate ring for a stack X .

LEMMA 4.1. Suppose (A,$, a) is a homogeneous coordinate ring for X . Suppose
further that A is a graded-noetherian, graded-factorial, graded-domain such that H0

a(A) =
H1

a(A) = 0. Let M and N be finitely generated graded A-modules, and suppose there is
a degree-preserving homomorphism φ : M ⊗A N → A such that π∗φ is an isomorphism.
Then π∗M ∼= OX (α) and π∗N ∼= OX (−α) for some α ∈ $.

2We will not need this fact, but Gr(K,$) is equivalent to the category of locally unital modules over the
direct sum K⊕|$/!|

0 where ! = {α ∈ $ | Kα -= 0}. The subgroup ! is generated by {α | Aα -= 0}.
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REMARK 4.2. The hypothesis H0
a(A) = H1

a(A) = 0 implies that the natural map
A(α) → π∗π

∗A(α) = π∗(OX (α)) is an isomorphism for all α ∈ $. We will write A(α) =
π∗OX (α) to denote this fact.

Proof. Because π∗φ is an isomorphism, ker φ and coker φ are both torsion.
First we prove the result under the assumption that H0

a(M) = H0
a(N) = 0.

The result is vacuous if a = 0, so we assume a -= 0. Every non-zero homogeneous
element in K is a unit so aK = K . It follows that the functor K ⊗A − sends all torsion
modules to zero. In particular, K ⊗A − kills the kernel and cokernel of φ. But K ⊗A −
is an exact functor so φ induces an isomorphism (M ⊗A K) ⊗K (N ⊗A K) → K . Since
every homogeneous element in K − {0} is a unit, there is an element α ∈ $ such that
M ⊗A K ∼= K(α) and N ⊗A K ∼= K(−α). Let f and g be the obvious compositions
M → M ⊗A K → K(α) and N → N ⊗A K → K(−α), respectively.

Let µ be the restriction to f M ⊗A gN of the multiplication map K(α) ⊗A K(−α) →
K and consider the not-necessarily-commutative diagram

M ⊗A N
φ−−−−→ A

f ⊗g
*

*ι

f M ⊗A gN −−−−→
µ

K

where ι : A → K is the inclusion. Since K ⊗A M ⊗A N ∼= K , HomA(M ⊗A N, K) ∼= K .
Hence there is some c ∈ K0 such that cι ◦ φ = µ ◦ (f ⊗ g). Now replace f by c−1f so
that ι ◦ φ = µ ◦ (f ⊗ g), and replace M and N by f M and gN, so that M and N are
graded A-submodules of K(α) and K(−α) respectively, and φ is the restriction of the
multiplication map. The image of φ is therefore the product MN. But π∗(coker φ) = 0
so A/MN is torsion.

Because MN ⊂ A, there is a non-zero homogeneous element a ∈ A such that
Ma ⊂ A. Hence Ma =

∑n
j=1 Abj for some homogeneous elements bj ∈ A, 1 ≤ j ≤ n.

Let d be the greatest common homogeneous divisor of the bjs. Then {q ∈ K | Maq ⊂
A} = Ad−1. Therefore a−1N ⊂ Ad−1 and

MN = Maa−1N ⊂ Mad−1A ⊂ A.

It follows that A/ad−1M is torsion, whence π∗M ∼= O(deg a − deg d).
This completes the proof when M and N are torsion-free. Now we deal with the

general case. The map φ : M ⊗A N → A factors as a composition

M ⊗A N
φ1−−−−→ M

τM ⊗A
N
τN

φ2−−−−→ A.

Since π∗φ is an isomorphism, π∗φ1 is monic; but φ1 is epic so π∗φ1 is epic too; hence
π∗φ1, and therefore π∗φ2, is an isomorphism. By the first part of the proof applied to
φ2, π∗(M/τM) ∼=O(α) for some α ∈$. But π∗M ∼=π∗(M/τM), so π∗M ∼=O(α). !

LEMMA 4.3. Suppose (A,$, a) is a homogeneous coordinate ring for the stack X .
Suppose further that A is graded-noetherian graded-factorial graded-domain such that
H0

a(A) = H1
a(A) = 0. Then OX (α) ∼= OX (β) if and only if Aα−β contains a unit.
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Proof. Multiplication by a unit u ∈ Aα−β produces an isomorphism g : A(β) →
A(α) of graded A-modules. Applying π∗ to g produces an isomorphism π∗g : O(β) →
O(α).

Conversely, suppose that f : O(β) → O(α) is an isomorphism. Since π∗π∗ ∼= id,
applying π∗ to the map π∗f : π∗O(β) → π∗O(α) produces f again. The kernel and
cokernel of π∗f are therefore torsion. But π∗O(β) = A(β), so ker(π∗f ) = 0. However,
H0

a(coker(π∗f )) = coker(π∗f ) and H1
a(A(β)) = 0 so Ext1

A(coker(π∗f ), A(β)) = 0. Con-
sequently, the exact sequence

0 −−−−→ A(β)
π∗f−−−−→ A(α) −−−−→ coker(π∗f ) −−−−→ 0

splits. But H0
a(A(α)) = 0 so we conclude that coker(π∗f ) = 0. Hence π∗f is an

isomorphism. But every $-graded A-module homomorphism A(β) → A(α) is
multiplication by an element of Aα−β , so the required unit exists. !

THEOREM 4.4. Suppose (A,$, a) is a homogeneous coordinate ring for the stack
X . Suppose further that A is a graded-noetherian, graded-factorial, graded-domain such
that H0

a(A) = H1
a(A) = 0. Define

$u := 〈α ∈ $ | Aα contains a unit〉.

The map α *→ O(α) induces an isomorphism

$/$u
∼−−−−→ Pic(X ).

Proof. If M ∈ Gr(A,$) is invertible so is π∗M, so the rule α *→ O(α) is a
homomorphism $ → PicX . By Lemma 4.3, the kernel of this map is $u. It remains
to show that the O(α)s are the only invertible OX -modules up to isomorphism.

To this end, suppose M ⊗ N ∼= OX . Suppose M = π∗M and N = π∗N. By
adjointness, the isomorphism M ⊗ N → OX is induced by a map φ : M ⊗A N →
π∗π

∗A whose kernel and cokernel are torsion. But π∗π
∗A = A so φ : M ⊗A N → A.

The result now follows from Lemma 4.1. !
PROPOSITION 4.5. Suppose (A,$, a) is a homogeneous coordinate ring for the stack

X . Suppose further that A is a graded-noetherian, graded-factorial, graded-domain such
that H0

a(A) = H1
a(A) = 0. Let f be a homogeneous element in A of degree α and let

Z ⊂ X be the zero locus of f . Then there is an exact sequence

" −−−−→ PicX −−−−→ Pic(X − Z) −−−−→ 0,

where the first map is n *→ O(nα).

Proof. Write U = X − Z and let ι : U → X be the inclusion. Then

QcohU ≡ Gr(A[f −1],$)
T′ ,

where T′ is the full subcategory consisting of A[f −1]-modules with the property that
the support of all their finitely generated submodules is contained in Z(a[f −1]).

The inclusion ι is induced by the natural map A → A[f −1].
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But A[f −1] is graded factorial because A is, so there is a commutative diagram

$/$u −−−−→ $/〈$u,α〉
*

*

PicX −−−−→
ι∗

PicU

in which the vertical maps are isomorphisms. Since the upper horizontal arrow is
surjective so is the lower one. The result now follows from the fact that kernel of the
upper arrow is the map " → $/$u, 1 *→ α. !

5. Some examples.

5.1. Stacky weighted projective spaces. Let Q = (q0, . . . , qn) be a sequence of
positive integers. The weighted projective space &(Q) is the scheme Proj A where A is
the weighted polynomial ring

A = k[x0, . . . , xn], deg xi = qi.

If the characteristic of k does not divide any of the qis, then &(Q) can be expressed as
the quotient of &n modulo the coordinate-wise action of

µQ := µq0 × · · · × µqn ,

where µq denotes the group of qth roots of 1 in k×.
The stack-theoretic weighted projective space

&[Q] = &[q0, . . . , qn]

is defined to be the stack-theoretic quotient
[

'n+1 − {0}
!m

]

where ξ ∈ !m acts by

ξ · (x0, . . . , xn) = (ξ q0 x0, . . . , ξ
qn xn).

Let m = (x0, . . . , xn). Then (A, ",m) is a homogeneous coordinate ring for &[Q].

THEOREM 5.1. Suppose n ≥ 1. With the above notation,

Pic &[q0, . . . , qn] ∼= ".

Proof. Because A is a unique factorization domain in the usual sense it is graded
factorial. Because n ≥ 1, H1

m(A) = 0 so the result follows from Theorem 4.4. !

5.1.1. When n = 0, &[q] is the classifying stack B(µq). In that case, rather
than using (k[x], ", (x)) as a homogeneous coordinate ring for &[q], we may
use (k[x, x−1], ", 0) as the homogeneous coordinate ring. The hypotheses of
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Theorem 4.4 are satisfied by (k[x, x−1], ", 0) and k[x, x−1] has a unit of degree nq
for all n, so Pic &[q] ∼= "/q".

5.1.2. Let M1,1 be the fine moduli space of pointed elliptic curves over #, and
M̄1,1 its usual compactification. It is well known that M̄1,1 ∼= & [4, 6]. Because M1,1 =
M̄1,1 − {p} where p is the zero locus of a degree 12 element, Proposition 4.5 gives

PicM1,1 ∼=
"

12"
.

5.2. Rugby balls. Fix positive integers p and q. The orbifold whose underlying
manifold is the Riemann sphere endowed with the groupoid structure given by cyclic
groups of orders p and q at the north and south poles is called a rugby ball. If p or q is
1, it is called a teardrop, sometimes Thurston’s teardrop.

Let

G :=
{
(λ1, λ2) ∈ #× × #× ∣∣ λ

p
1 = λ

q
2

}

act on #2 by component-wise multiplication and define the (p, q)-rugby ball to be the
stack

$[p, q] :=
[

#2 − {0}
G

]
.

Give the polynomial ring S := #[x, y] a grading by the group ! := 〈e, e′ | pe = qe′〉 by
declaring deg x := e and deg y := e′. Let m = (x, y). Then (S,!,m) is a homogeneous
coordinate ring for $[p, q].

The group homomorphisms

#× ξ *→(ξ q,ξ p)
!! !

(λ1,λ2)*→λ
p
1=λ

q
2 !! #× (5.1)

induce homomorphisms

" !
φ′

"" "
ψ ′

"" (5.2)

between the rational character groups where φ′(ae + be′) = aq + bp and ψ ′(1) = pe =
qe′. The group homomorphisms in (5.1) induce morphisms

&[q, p]
φ̄

!! $[p, q]
ψ̄

!! &1 (5.3)

between the corresponding stack-theoretic quotients. The morphisms ψ̄ and ψ̄φ̄ are
the natural morphisms to the coarse moduli spaces, and φ̄ is an isomorphism if and
only if (p, q) = 1 (if and only if ! is torsion-free).

The homomorphisms in (5.2) can also be interpreted as the natural maps

Pic(&[q, p]) Pic($[p, q])
φ̄∗

"" Pic(&1)
ψ̄∗

""
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between the Picard groups. Similarly, the homomorphisms in (5.2) induce the natural
maps between the Grothendieck groups

K0(&[q, p]) K0($[p, q])
φ̄∗

"" K0(&1)
ψ̄∗

""

"[u±1]
((1−up)(1−uq))

"[s±1,t±1]
((1−s)(1−t),sq−tp)

"[v±p]
(vp−1)2

(up, uq) (s, t), tp = sq!"" v!""

The morphisms in (5.3), and their associated inverse and direct image functors,
are induced by morphisms

(#[x, y], ",m) (#[x, y],!,m)
(φ,φ′)

"" (#[xp, yq], ", (xp, yq))
(ψ,ψ ′)

""

between their homogeneous coordinate rings where! φ = id#[x,y] and ψ is the inclusion #[xp, yq] → #[x, y],! φ′ and ψ ′ are the homomorphisms between the grading groups in (5.2),! the "-grading on #[xp, yq] is given by setting deg xp = deg yq = 1 and! the "-grading on #[x, y] is given by setting deg x = q and deg y = p.
We call the point where x vanishes north pole. The closed substack there is

isomorphic to Bµp. We write On for the skyscraper sheaf at the north pole with
the trivial equivariant structure. It fits into an exact sequence

0 −−−−→ O$[p,q](−e)
x−−−−→ O$[p,q] −−−−→ On −−−−→ 0 (5.4)

and in terms of graded modules

On = π∗
(

#[x, y]
(x)

)
. (5.5)

By (2.2), (2.3) and (5.5), the class [On] in K0($[p, q]) is

[On] = H#[x,y]/(x) · H−1
#[x,y] = 1 − t.

The other equivariant structures on On are given by the modules

On(ie) = π∗
(

#[x, y]
(x)

)
(ie), i = 0, 1, . . . , p − 1,

and [On(−ie)] = ti(1 − t). The class in K0 of a non-stacky point, say Oλ =
π∗(#[x, y]/(λxp − yq)), λ -= 0, is 1 − tp = 1 − sq. We note that

[Oλ] =
p−1∑

i=0

[On(−ie)].

Because 1 − tp = t(1 − tp) = t(1 − tp) in K0, twisting the structure sheaf of a non-stacky
point does not change it.
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