THE PRIMITIVE FACTOR RINGS OF THE ENVELOPING ALGEBRA OF $\operatorname{sl}(2, \mathbb{C})$

S. P. SMITH

1. Introduction

Let R denote a non-artinian primitive factor ring of the enveloping algebra of $s l(2, \mathbb{C})$. Arnal-Pinczon [1] and Roos [10] have shown that if R is simple then it has Krull dimension 1. Roos also shows that "most" of the simple R have global dimension 1. In this paper we prove that if R is not simple then it has Krull dimension 1 (thus all non-artinian primitive factor rings of $s l(2, \mathbb{C})$ have Krull dimension 1) and does not have global dimension 1.

Notation and the basic properties of these factor rings are described in $\S 2$. In particular, if R denotes such a non-simple primitive factor ring, then R has a unique proper two-sided ideal M of finite codimension, and R embeds in the Weyl algebra A_{1}. In $\S 3$ we prove that R has Krull dimension 1. The proof illustrates and depends on the close relationship between R and A_{1}. In $\S 4$ the relationship between certain R-modules and certain A_{1}-modules is examined more closely. The results in $\S 4$ are used in $\S 5$ to describe the generators of M as a left ideal. We also show in $\S 5$ that the grading on A_{1} (defined by the semi-simple element) induces a grading on R, and that both R and M are graded by the induced grading. Finally, in $\S 6$ it is proved that R is not hereditary. In particular, it is shown that R / M has projective dimension 2. (The primitive ideal of the enveloping algebra corresponding to R is the annihilator of a Verma module of length two and both composition factors of this Verma module have projective dimension at most two as R-modules.) The precise global dimension of R remains an open question.

I would like to thank J. C. McConnell and J. C. Robson for bringing these problems to my attention. I am indebted to them both for their constant interest, and for their generous encouragement and advice.

2. Preliminaries

All modules are tacitly assumed to be left modules; global dimension and Krull dimension are both calculated on the left but of course a similar argument will give corresponding results on the right. The Krull dimension of a module, M, is denoted by $|M|$, and global dimension is abbreviated to gl.dim. The annihilator of a module M is denoted by ann (M).

Let U denote the enveloping algebra of $s l(2, \mathbb{C})$. The basic properties of U appear in Dixmier [3] and Nouazé-Gabriel [7]. Let

$$
E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad H=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \quad F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Received 22 April, 1980.
be a basis for $s l(2, \mathbb{C})$. Let

$$
Q=4 E F+H^{2}-2 H=4 F E+H^{2}+2 H \in U .
$$

The centre of U is $\mathbb{C}[Q]$. For all $c \in \mathbb{C}$ let $I_{c}=U(Q-c)$. The map $c \rightarrow I_{c}$ is a bijection from \mathbb{C} onto the set of primitive ideals of U of infinite codimension; I_{c} is maximal if and only if c is not of the form $n^{2}+2 n, n \in \mathbb{N}=\{0,1,2, \ldots\}$. As mentioned above, if c is not of the form $n^{2}+2 n(n \in \mathbb{N})$ then $\left|U / I_{c}\right|=1([1],[10])$. Roos also proved that if c is transcendental over \mathbb{Q} then gl.dim. $\left(U / I_{c}\right)=1$. Let $A=A_{1}(\mathbb{C})$ denote the Weyl algebra over \mathbb{C} with two generators p, q subject to the relation $p q-q p=1$. For $t \in \mathbb{Z}$ set

$$
D(t)=\{x \in A \mid[q p, x]=t x\}
$$

(where $[a, b]=a b-b a$). It is obvious that $A=\bigoplus_{-\infty}^{\infty} D(t)$, and

$$
D(t)= \begin{cases}q^{t} \mathbb{C}[q p] & t \geqslant 0 \\ p^{-t} \mathbb{C}[q p] & t<0\end{cases}
$$

It is easy to see that $D(s) D(t) \subset D(s+t)$; frequent use is made of this fact. We also make frequent use of the identity $q^{t} p^{t}=(q p-t+1) \ldots(q p-1)(q p)$.

Roos [10] has shown that U / I_{c} embeds in A_{1}. There are a number of different such embeddings and we shall use the embedding defined by the map

$$
E \rightarrow q(q p-\mu), \quad F \rightarrow-p, \quad H \rightarrow 2 q p-\mu
$$

where $\mu \in \mathbb{C}$ satisfies $\mu^{2}+2 \mu=c$.
Henceforth fix $n \in \mathbb{N}$, put $c=n^{2}+2 n$, and let R be the subring of A_{1} isomorphic to U / I_{c}, which is defined by the map above with $\mu=n$. Put

$$
e=q(q p-n) ; \quad f=-p ; \quad h=2 q p-n
$$

The ring R has a unique proper two sided ideal M; this ideal M is of codimension $(n+1)^{2}$ in R, and is the annihilator of the unique finite dimensional simple R-module, S, and S has dimension $(n+1)$. We have that $S \cong R / I$ where $I=R e+R(h-n)+R f^{n+1}$, (see for example [4; 7.2.7]).

Let h denote the subspace of $s l(2, \mathbb{C})$ spanned by H, let h^{*} denote the dual space of h and let $\lambda: h \rightarrow \mathbb{C}$ be the element of h^{*} defined by $\lambda(H)=n$. In the notation of Dixmier [4; Chapter 7], I_{c} is the annihilator of the Verma module $M(\lambda+\delta)$ (where δ is the half-sum of positive roots). The finite dimensional simple U-module, $L(\lambda+\delta)$, is isomorphic as an R-module to S, and as mentioned above has annihilator M (as an R-module); $L(\lambda+\delta)$ has highest weight λ and the weights of $L(\lambda+\delta)$ are precisely those $\mu \in h^{*}$ such that $\mu(H)=n-2 j(j \in \mathbb{N}, 0 \leqslant j \leqslant n)$. Thus, $t=\prod_{j=0}^{n}(h-n+2 j)$ is
an element of M (this fact is used in Lemma 3.1). an element of M (this fact is used in Lemma 3.1).

3. Krull dimension

Recall Corollaire 1 of Roos [10]. R may be localised at $\mathbb{C}[e] \backslash\{0\}$ and at $\mathbb{C}[f] \backslash\{0\}$ to obtain the rings R_{e} and R_{f}, say. Both R_{e} and R_{f} have Krull dimension 1 (being isomorphic to partial localisations of A); both R_{e} and R_{f} are flat as either right or left R-modules. Consider R as a subring of $T=R_{e} \oplus R_{f}$ via the diagonal embedding $r \rightarrow(r, r)$. It is implicit in Roos' Corollaire 1 that if I and J are left ideals of R with $I \subseteq J$ and $T I=T J$ then J / I is finite dimensional as a \mathbb{C}-vector space.

Lemma 3.1. Let I and J be left ideals of R with $I \subseteq J, J / I$ a simple left R-module and $A I=A J$. Then J / I is infinite dimensional as $a \mathbb{C}$-vector space.

Proof. Suppose not-that is, let J and I be as above with J / I finite dimensional.
Now $A I=I+q I+q^{2} I+\ldots$. For $x \in A I$, define the length of x to be $l(x)=\min \left\{m \in N \mid x \in I+q I+q^{2} I+\ldots+q^{m} I\right\}$. Pick $x \in J, x \notin I$ of least length (such x exist because $I \neq J$ and $l(x)$ is defined because $J \subseteq A J=A I)$. Let $x=b_{0}+q b_{1}+\ldots+q^{m} b_{m}$ where each $b_{i} \in I$ and $l(x)=m \geqslant 1$. Put $a=x-b_{0}$, so $a \in J, a \notin I$ and $l(a)=m$.

Put $t=\prod_{j=0}^{n}(h-n+2 j)$. By the remark in $\S 2 t \in M$. Because J / I is a finite dimensional simple module, $M J \subseteq I$; in particular $t a \in I$.

Look at $t q^{i}$. For $i \geqslant 1$, we have $h=2 q p-n$, so $(h-n+2 j) q^{i}=2(q p-n+j) q^{i}=2 q^{i}(q p-n+j+i)=q^{i}(h-n+2(j+i))$. So $t q^{i}=q^{i} s_{i}$ where $s_{i}=\prod_{j=0}^{n}(h-n+2(j+i))$. Thus, $t a=q s_{1} b_{1}+q^{2} s_{2} b_{2}+\ldots+q^{m} s_{m} b_{m}$.

Considering s_{i} as a polynomial in $(h-n)$ it has non-zero constant term because $j+i \geqslant i \geqslant 1$. Write $s_{i}=(h-n) r_{i}+\alpha_{i} \quad$ where $r_{i} \in R$ and $0 \neq \alpha_{i} \in \mathbb{C}$. Now $q(h-n)=2 q(q p-n)=2 e \in R$. Write $b_{i}^{\prime}=q(h-n) r_{i} b_{i} \in I$. Now

$$
t a-\alpha_{m} a=b_{1}^{\prime}+q b_{2}^{\prime}+\ldots+q^{m-1} b_{m}^{\prime}+\left(\alpha_{1}-\alpha_{m}\right) q b+\ldots+\left(\alpha_{m-1}-\alpha_{m}\right) q^{m-1} b_{m-1}
$$

However, as $\alpha_{m} \neq 0$, it follows that $t a-\alpha_{m} a \in J, t a-\alpha_{m} a \notin I$ and $t a-\alpha_{m} a$ is of shorter length than x. This contradicts the choice of x. Hence J / I cannot be finite dimensional.

Theorem 3.2. The Krull dimension of R is 1 .
Proof. Consider the natural embedding of R in $T \oplus A=R_{e} \oplus R_{f} \oplus A$ via the map $r \rightarrow(r, r, r)$. Suppose that I and J are left ideals of R with $I \subsetneq J$. Then $(T \oplus A) I \neq(T \oplus A) J$ because if $T I=T J$ then J / I is finite dimensional by the comments prior to Lemma 3.1, but then by the lemma, $A I \neq A J$.

Thus the lattice of left ideals of R may be embedded in the lattice of left ideals of $T \oplus A$. Consequently, $|R| \leqslant|T \oplus A|$. However,

$$
|T \oplus A|=\max \left\{\left|R_{e}\right|,\left|R_{f}\right|,|A|\right\}=1
$$

4. Relation between certain R-modules and A-modules

The Weyl algebra A is easier to deal with than R, and the purpose of this section is to exhibit some of the connections between R and A so that the simpler structure
of A may be exploited. In particular, Lemma 4.3 will enable us to describe the generators of M (Theorem 5.2) by using the properties of A. Lemma 4.1 and Lemma 4.2 exhibit the remarkably close relationship between R and A. Unfortunately, though, A is not flat as an R-module.

Lemma 4.1. If J is a left ideal of A, then $J=A(J \cap R)$.
Proof. Clearly $J \supseteq A(J \cap R)$.
For $m \in \mathbb{N}$, put $J_{m}=J \cap\left(R+q R+\ldots+q^{m} R\right)$. It is obvious that $A=$ $R+q R+q^{2} R+\ldots$, and so $J=\bigcup_{m=0}^{\infty} J_{m}$. We will show that $J_{m} \subseteq A(J \cap R)$ for all m. The proof is by induction on m. Clearly $J_{0} \subseteq A(J \cap R)$.

Suppose that $J_{m} \subseteq A(J \cap R)$ and pick $x \in J_{m+1}$. We will show that both $(q p-n-m-1) x$ and $(q p) x$ are in $A(J \cap R)$. Let $x=y+q^{m+1} r$ with $r \in R$ and $y \in R+q R+\ldots+q^{m} R$. Now,

$$
(q p-n-m-1) x=(q p-n-m-1) y+q^{m+1}(q p-n) r=(q p-n-m-1) y+q^{m} r^{\prime}
$$

where $\quad r^{\prime}=q(q p-n) r \in R$. It is easy to check that $(q p-n-m-1) y \in$ $R+q R+\ldots+q^{m} R$, and so $(q p-n-m-1) x \in J_{m} \subseteq A(J \cap R)$. Now

$$
p x=p y+(q p+1) q^{m} r=p y+q^{m}(q p+m+1) r
$$

and because $p y \in R+q R+\ldots+q^{m} R$ it follows that $p x \in J_{m} \subseteq A(J \cap R)$. Consequently, $q p x \in A(J \cap R)$, and thus $(n+m+1) x \in A(J \cap R)$ which implies $x \in A(J \cap R)$ as $n+m+1 \neq 0$. Hence $J_{m+1} \subseteq A(J \cap R)$.

Lemma 4.2. Let K be a maximal left ideal of R and suppose $A K \neq A$. Then $A K$ is a maximal left ideal of A, and $K=A K \cap R$.

Proof. Now $K \subseteq A K \cap R$ implies that either $A K \cap R=R$ or $A K \cap R=K$. If $A K \cap R=R$ then $1 \in A K$ which implies $A K=A$, contradicting the hypothesis. So $A K \cap R=K$.

Suppose now that J is a left ideal of A and $A K \subseteq J \neq A$. Clearly $K \subseteq J \cap R$, so either $J \cap R=R$ or $J \cap R=K$. But $J \cap R \neq R$ (as $J \neq A$) so $J \cap R=K$. However, by Lemma $4.1, J=A(J \cap R)$, so $J=A K$ and consequently $A K$ is a maximal left ideal of A.

Lemma 4.3. If K is a maximal left ideal of R and $A K \neq A$, then $A / A K$ (considered as an R-module) contains an isomorphic copy of R / K, namely $(R+A K) / A K$, and

$$
\operatorname{ann}_{R}(R / K)=R \cap \operatorname{ann}_{A}((R+A K) / A K)
$$

Proof. As R-modules, $(R+A K) / A K \cong R /(R \cap A K)=R / K$ (by Lemma 4.2). The second part of the Lemma follows easily from the fact that

$$
\operatorname{ann}_{R}(R / K)=\operatorname{ann}_{R}((R+A K) / A K)
$$

5. Description of R and M

Recall the definition of the $D(t)$ in $\S 2$. It is well known that the $D(t)$ define a gradation on A. Because R is generated as an algebra by homogeneous elements of A (with respect to the gradation defined by the $D(t)$) it follows that

$$
R=\bigoplus_{-\infty}^{\infty}(R \cap D(t))
$$

This fact together with the proposition below describes R in detail.
Proposition 5.1. (i) If $t>0$ then

$$
\begin{aligned}
D(t) \cap R & =q^{t}(q p-n)(q p-n+1) \ldots(q p-n+t-1) \mathbb{C}[q p] \\
& =(q p-n-t)(q p-n-t+1) \ldots(q p-n-1) q^{t} \mathbb{C}[q p] .
\end{aligned}
$$

(ii) If $t \leqslant 0$ then

$$
D(t) \cap R=D(t)=p^{-t} \mathbb{C}[q p]
$$

Proof. (i) Recall that R is spanned (as a \mathbb{C}-vector space) by the homogeneous elements $\left\{e^{i} f^{j} h^{l} \mid i, j, l \geqslant 0\right\}$, and so $R \cap D(t)$ is spanned by $\left\{e^{i} f^{j} h^{l} \mid i, j, l \geqslant 0\right\} \cap D(t)$. Now $e^{i} f^{j} h^{l} \in D(i-j)$ so $e^{i} f^{j} h^{l} \in D(t)$ if and only if $i-j=t$. It follows that $e^{t} \mathbb{C}[q p] \subseteq D(t)$; also if $i-j=t$, then $e^{i} f^{j} h^{l}=e^{t} e^{j} f^{j} h^{l} \in e^{t} D(0) \subset R$. Hence $R \cap D(t)=e^{t} \mathbb{C}[q p]$, and the result follows because

$$
e^{t}=[q(q p-n)]^{t}=q^{t}(q p-n) \ldots(q p-n+t-1)=(q p-n-t) \ldots(q p-n-1) q^{t}
$$

(ii) As $p \in R$, so $p^{t} \in R$ and consequently $p^{t} \mathbb{C}[q p] \subseteq R$ as $q p \in R$.

Theorem 5.2. The unique proper ideal M of R is generated as a left ideal by

$$
X=\left\{q^{i} p^{n+1} \mid 0 \leqslant i \leqslant 2(n+1)\right\} .
$$

Proof. We show first that $X \subseteq R$. Now $q^{i} p^{n+1} \in D(i-n-1)$, so if $0 \leqslant i \leqslant n+1$ then $q^{i} p^{n+1} \in R$ by Proposition 5.1 (ii). Suppose $i=j+n+1$ with $1 \leqslant j \leqslant n+1$. Then

$$
q^{i} p^{n+1}=q^{j} q^{n+1} p^{n+1}=q^{j}(q p-n) \ldots(q p-1)(q p)
$$

and because $j \leqslant n+1$ this is an element of $q^{j}(q p-n) \ldots(q p-n+j-1) \mathbb{C}[q p]$ which by Proposition 5.1 (i) is contained in R. Hence $X \subseteq R$.

Recall that $M=\operatorname{ann}_{R}(R / I)$ (where I is as in §2). Now $A I=A e+A(h-n)+A f^{n+1}=A(q p-n)+A p^{n+1}$, which by McConnell-Robson [5; Proposition 5.11] is a maximal left ideal of A. In particular $A I \neq A$, and so by Lemma 4.3

$$
M=R \cap \operatorname{ann}_{A}[(R+A I) / A I]
$$

But $R / I=\left[\mathbb{C}+\mathbb{C} p+\ldots+\mathbb{C} p^{n}+I\right]$, so $(R+A I) / A I=\left[\mathbb{C}+\mathbb{C} p+\ldots+\mathbb{C} p^{n}+A I\right]$. It is easy to see that $p^{n+1}[(R+A I) / A I]=0$ (considering $(R+A I) / A I$ as a subset of the
A-module $A / A I)$. Thus $A p^{n+1} \subseteq \operatorname{ann}_{A}[(R+A I) / A I]$ which implies that $X \subseteq M$ and so $R X \subseteq M$.

Finally we show that the left ideal generated by X is also a right ideal. To show this it suffices to prove that $X f \subseteq R X, X h \subseteq R X$, and $X e \subseteq R X$. These three cases are proved separately:
(i) $p^{n+1} \cdot p \in R X$; if $i \geqslant 1$ then

$$
q^{i} p^{n+1} \cdot p=q^{i-1}(q p) p^{n+1}=(q p-i+1) q^{i-1} p^{n+1} \in R X
$$

(ii) $q^{i} p^{n+1} \cdot(q p)=(q p+n+1-i) q^{i} p^{n+1} \in R X$;
(iii) $q^{i} p^{n+1} \cdot q(q p-n)=q^{i} p^{n}(q p+1)(q p-n)=(q p+n-i+1) q^{i+1} p^{n+1}$, and if $i \leqslant 2 n+1$ then this is in $R X$; should $i=2(n+1)$ then this is equal to

$$
(q p-n-1) \cdot q \cdot q^{2(n+1)} p^{n+1}=q(q p-n) q^{2(n+1)} p^{n+1} \in R X .
$$

It is well known that if J is a two sided ideal of a factor ring of an enveloping algebra of a finite dimensional lie algebra, then any set which generates J as a left ideal also generates J as a right ideal. Thus $M=R X=X R$. Because the generators of M are homogeneous we have the following.

Corollary 5.3. $\quad M=\underset{-\infty}{\infty}(M \cap D(t))$.
We now have a good enough description of M to show that R is not hereditary (Theorem 6.2) but to show that R / M has projective dimension 2 a slightly better description of M is required. This is given in Theorem 5.5.

Lemma 5.4. Let K be the left ideal of R. Let $m \in N$ and suppose $a \in K$ and $q^{m} a \in K$. Then $a, q a, q^{2} a, \ldots, q^{m} a$ are all in K.

Proof. The proof is by induction on m. Clearly the result holds if $m=1$. Suppose $m \geqslant 2$.

If $a \in K$ then $[q(q p-n)]^{m-1} a \in K$, and

$$
\begin{aligned}
{[q(q p-n)]^{m-1} a } & =q^{m-1}(q p-n) \ldots(q p-n+m-2) a \\
& =(q p-n-m+1) \ldots(q p-n-1) q^{m-1} a
\end{aligned}
$$

If $q^{m} a \in K$ then $p q^{m} a=(q p+1) q^{m-1} a \in K$. It is now easy to see that $q^{m-1} a \in K$ because when viewed as polynomials in (qp) the expressions $(q p-n-m+1) \ldots(q p-n-1)$ and $(q p+1)$ do not have a common root.

Theorem 5.5. As a left ideal M is generated by $f^{n+1}=p^{n+1}$ and by $e^{n+1}=[q(q p-n)]^{n+1}=q^{2(n+1)} p^{n+1}$.

Proof. By Theorem 5.2 both these elements are in M, and a single application of Lemma 5.4 shows that $X \subseteq R p^{n+1}+R q^{2(n+1)} p^{n+1}$.

6. Global dimension

Let $S=\{a \in Q(R) \mid a M \subseteq M\}$ where $Q(R)$ is the quotient division ring of R. In fact $Q(R)=D_{1}$ the quotient division ring of A_{1}. From Theorem 5.2 we see that $p^{n+1} \in M$ and $A M=A p^{n+1}$, so $a M \subseteq M$ implies $a p^{n+1} \in A p^{n+1}$ whence $a \in A$. Thus $R \subseteq S \subseteq A$.

Theorem 6.1. The rings S and R are equal.
Proof. Because $A=\bigoplus_{-\infty}^{\infty} D(t)$ and $R=\bigoplus_{-\infty}^{\infty}(R \cap D(t))$ with $R \cap D(t)$ as given in Proposition 5.1, it follows that

$$
A=R \oplus\left[\bigoplus_{t=1}^{\infty} q^{t} V_{t}\right]
$$

where V_{t} is the \mathbb{C}-subspace of $\mathbb{C}[q p]$ generated by $\left\{1,(q p),(q p)^{2}, \ldots, \ldots,(q p)^{t^{-1}}\right\}$. Suppose now that $S \neq R$. Then there exists $0 \neq a \in S \cap\left(\bigoplus_{t=1}^{\infty} q^{t} V_{t}\right)$ with $a=\sum_{t=1}^{m} a_{t}$ where each $a_{t} \in q^{t} V_{t} \subseteq D(t)$. Clearly $a M \subseteq M$ if and only if $a X \subseteq M$; because X consists of homogeneous elements and $M=\bigoplus_{-\infty}^{\infty}(M \cap D(t))$ we have for some t that $a_{t} \neq 0$ and $a_{t} X \subseteq M$. So we may assume, without loss of generality, that there exists $0 \neq a \in S \cap q^{t} V_{t}$ for some t.

Let $a=q^{t} f(q p)$ where $f(q p)$ is a polynomial in $q p$ of degree $\leqslant t-1$. Now,

$$
a q^{2(n+1)} p^{n+1}=q^{n+t+1}(q p-n) \ldots(q p) f(q p+n+1)
$$

and as $a X \subseteq M$ this is an element of $R \cap D(n+t+1)$. Now by Proposition 5.1 (i) $a q^{2(n+1)} p^{n+1} \in R \cap D(n+t+1)$ if and only if $f(q p) \in(q p+1) \ldots(q p+t) \mathbb{C}[q p]$. However, $f(q p) \neq 0$ and the degree of f is $\leqslant t-1$, so $f(q p)$ cannot be an element of this ideal of $\mathbb{C}[q p]$. Thus $a q^{2(n+1)} p^{n+1} \notin M$. This contradiction shows that no such a can exist and hence $S=R$.

Corollary 6.2. The global dimension of R is either 2 or infinity.

Proof. Suppose gl.dim. R is finite. It is well known that gl.dim. $U=3$, so by Kaplansky [5; Theorem 4, p. 173], gl.dim. $R \leqslant 2$. It is clear that gl.dim. $R \neq 0$. It remains to show that gl.dim. $R \neq 1$.

Suppose gl.dim. $R=1$; that is R is hereditary. Because M is idempotent (that is, $M^{2}=M$) and R is prime noetherian, Theorem 4 (iii) of Robson [9] applies. This says that $M S=S$, but this contradicts Theorem 6.1 as $M \neq R$. Hence gl.dim. $R=2$.

If K is a left ideal of R put $K^{*}=\{a \in Q(R) \mid K a \subseteq R\}$. Because R is a prime noetherian ring $K^{*} \cong \operatorname{Hom}(K, R)$ and so K is projective if and only if $K^{*} K=\operatorname{End}_{R}(K)$; and for this to happen it is sufficient that $1 \in K^{*} K$. This provides a reasonable method to prove Theorem 6.4. First we require an easy lemma.

Lemma 6.3. If s and $s q^{m}$ are both elements of R, then $s q, s q^{2}, \ldots, s q^{m-1}$ are also elements of R.

Proof. It is enough to prove the lemma when $s q^{m} \in R \cap D(t)$. Suppose $t>1$; then $s q^{m}=x(q p-n-t) \ldots(q p-n-1) q^{t}$ for some $x \in \mathbb{C}[q p]$ by Proposition 5.1 (i). Thus $s q^{m-1}=x(q p-n-t) \ldots(q p-n-1) q^{t-1}$ which is an element of R by Proposition 5.1 (i). Suppose $t \leqslant 1$; then $s q^{m-1} \in D(t-1)$ and $t-1 \leqslant 0$, but by Proposition 5.1 (ii), $D(t-1) \subseteq R$. An induction argument now shows that the lemma holds.

Theorem 6.4. The R-module R / M has projective dimension 2.
Proof. Because R is uniform as an R-module, R / M is not projective. Notice that the ring S is the endomorphism ring of M, so M is projective if and only if $M^{*} M=S$. However, $S=R$ by the previous theorem. Thus if M were projective then $M^{*} M=R$; but this cannot happen as M is idempotent, viz. $M^{*} M=R$ implies $M^{*} M^{2}=M$. So M is not projective.

Now look at a projective resolution for $M=R p^{n+1}+R q^{2(n+1)} p^{n+1}$. Let

$$
0 \longrightarrow K \longrightarrow R \oplus R \xrightarrow{\pi} M \longrightarrow 0
$$

be a short exact sequence where $\pi(r, s)=r p^{n+1}+s q^{2(n+1)} p^{n+1}$. It is obvious that the kernel K is given by

$$
K=\left\{\left(-s q^{2(n+1)}, s\right) \mid s \in R \quad \text { and } \quad s q^{2(n+1)} \in R\right\} ;
$$

K is isomorphic to the left ideal $J=\left\{s \in R \mid s q^{2(n+1)} \in R\right\}$. To show that R / M has projective dimension two it suffices to show that $1 \in J^{*} J$ (that is J is projective).

Clearly $1, q^{2(n+1)} \in J^{*}$, so $1, q, q^{2}, \ldots, q^{2(n+1)}$ are elements of J^{*} by Lemma 6.3. It is easily checked that J contains $p^{2(n+1)}$ and $p^{t}(q p-n-2(n+1)) \ldots(q p-n-t-1)$ for $0 \leqslant t<2(n+1)$. Hence $J^{*} J$ contains the following elements:

$$
q^{2(n+1)} p^{2(n+1)}, q^{t} p^{t}(q p-n-2(n+1)) \ldots(q p-n-t-1)
$$

for $0 \leqslant t<2(n+1)$. Putting $x=q p$ these elements are

$$
\begin{aligned}
& x(x-1) \ldots(x-2 n-1) \\
& \{(x-3 n-2) \ldots(x-n-t-1)(x-t+1) \ldots(x-1) x \mid 1 \leqslant t \leqslant 2 n+1\} ; \\
& (x-3 n-2) \ldots(x-n-1) .
\end{aligned}
$$

Look at the commutative polynomial ring $\mathbb{C}[x]$. The ideal of $\mathbb{C}[x]$ generated by the elements above is $\mathbb{C}[x]$ itself, so $1 \in J^{*} J$ (because $\mathbb{C}[x] \subseteq J^{*}$).

Corollary 6.5. The unique finite dimensional simple R-module has projective dimension 2.

Proof. The R-module R / M is a direct sum of copies of this simple module so Exercise 4 of Kaplansky [5; p. 169] gives the result.

7. Remarks

1. It is possible for corresponding results to be established on the right rather than the left. However, for this to be done a different embedding of R in A_{1} is required. This embedding is given by the map

$$
E \rightarrow-(n+p q) q, \quad F \rightarrow p, \quad H \rightarrow n+2 p q .
$$

2. As mentioned in $\S 4, A$ is not flat as an R-module. To see this let I be the left ideal of R generated by p and $q p$. Then $q \otimes p-1 \otimes q p$ is a non-zero element of $A \otimes I$, but the image of this element in $A \otimes R$ under the natural homomorphism is zero. Thus A is not flat as a right R-module. A similar example using the right ideal of R generated by p and $p q$ shows that A is not flat as a left R-module either.
3. As mentioned in the introduction and in $\S 2$ (using the notation of $\S 2), M(\lambda+\delta)$ is an artinian R-module of length two and is faithful over R. Moreover, $M(\lambda+\delta)$ has a unique simple submodule which is itself faithful over R. This simple submodule is isomorphic to R / K where

$$
K=R e+R(h+n+2)=R q(q p-n)+R(q p+1)
$$

To show that K has projective dimension $\leqslant 1$ is straightforward. Let

$$
0 \longrightarrow J \longrightarrow R \oplus R \xrightarrow{\pi} K \longrightarrow 0
$$

be the short exact sequence given by $\pi(r, s)=r q(q p-n)+s(q p+1)$, so the kernel, J, is given by

$$
J=\{(r, s) \mid \pi(r, s)=0\} \cong\left\{r \in R \mid r q(q p-n)(q p+1)^{-1} \in R\right\}=J_{2}
$$

where J_{2} is a left ideal of R. It is easy to see that $p \in J_{2}$, and that $q(q p-n)(q p+1)^{-1} \in J_{2}^{*}$, so $q(q p-n)(q p+1)^{-1} p \in J_{2}^{*} J_{2}$. This element is equal to $q p-n-1$, and this together with the fact that $q p \in J_{2} \subseteq J_{2}^{*} J_{2}$ shows that $1 \in J_{2}^{*} J_{2}$ (as $n \geqslant 0$). So J_{2}, and hence J, is projective.
4. Dixmier [2] has shown that every left ideal of A_{1} can be generated by two elements. More generally, Stafford [11] has shown that every left ideal of a simple noetherian ring with Krull dimension 1 can be generated by two elements. Considering how close R is to satisfying these conditions, we are prompted to ask whether every left ideal of R can be generated by two elements. The answer is no.

Let $J=\left\{s \in R \mid s q^{2(n+1)} \in R\right\}$ be the left ideal which occurs in Theorem 6.4 as the kernel of the resolution of M. We will show that J requires at least three generators. Clearly if J can be generated by less than three elements so too can the R-module $J / M J$. It will be shown that $J / M J$ requires at least three generators.

We use the techniques and notation developed in Ratliff and Robson [8]. To begin recall the definitions of [8]. Let B be a finitely generated R-module. Let $J(B)$ denote the Jacobson radical of B (that is, the intersection of the maximal submodules of B), and $\lambda(B)$ denotes the length of a composition series for $B / J(B)$, or ∞ if no composition series exists. Suppose $\lambda(B)<\infty$ and $B \neq 0$. For each simple R-module T occurring in a composition series for $B / J(B)$, let $e(T)$ denote the number of copies of T in the composition series and let $f(T)=\lambda(R /$ ann $T)$. Define $v(B)$ to be the least integer such that

$$
v(B) \geqslant \sup \{1, e(T) / f(T)\}
$$

where T varies over all simple composition factors of $B / J(B)$. The following theorem forms the basis for our proof.

Theorem 7.1 [8]. If $\lambda(B)<\infty$, then B can be generated by $v(B)$ elements and no fewer.

Here $J / M J$ is a finitely generated left R / M module, so is certainly of finite length as R / M is simple artinian. It follows that $J / M J$ is semi-simple and has zero Jacobson radical. The only module possibly occurring in a composition series for $J / M J$ is the finite dimensional simple module S (of dimension $n+1$). It is clear that $f(S)=n+1$ and $e(S)$ is precisely $\operatorname{dim}(J / M J) /(n+1)$ so we shall show that $\operatorname{dim}(J / M J)>2(n+1)^{2}$, implying $v(J / M J) \geqslant 3$, and hence by the theorem, J has at least three generators.

The idea behind the proof is simple but a tedious amount of calculation is required. The first step is to show that $M J \subseteq J \cap A p^{3(n+1)}$, and the problem is reduced to showing that we can find at least $2(n+1)^{2}+1$ elements of J which are linearly independent (over \mathbb{C}) modulo $A p^{3(n+1)}$.

Lemma 7.2. $\quad M J \subseteq A p^{3(n+1)}$.

Proof. After Theorem 5.5 it is enough to show that $p^{n+1} J \subseteq A p^{3(n+1)}$. Because $q^{2(n+1)}$ is a homogeneous element of A it follows that $J=\bigoplus_{-\infty}^{\infty}(J \cap D(t))$, and accordingly we prove that $p^{n+1}(J \cap D(t)) \subseteq A p^{3(n+1)}$ for all t. Let $a \in J \cap D(t)$.

Suppose $t>0$. Put $a=(q p-n-t) \ldots(q p-n-1) f(q p) q^{t}$ (after Proposition 5.1) where $f(q p) \in \mathbb{C}[q p]$. Because $a q^{2(n+1)} \in R$, it follows (by Proposition 5.1) that there exists $g(q p)$ in $\mathbb{C}[q p]$ such that $f(q p)=(q p-n-2(n+1)-t) \ldots(q p-n-t-1) g(q p)$. Now

$$
\begin{aligned}
p^{n+1} a & =(q p-n-(n+1)-t) \ldots(q p) p^{n+1} g(q p) q^{t}=g(q p+n+1) q^{2(n+1)+t} p^{3(n+1)+t} q^{t} \\
& =g(q p+n+1) q^{2(n+1)+t} p^{3(n+1)} p^{t} q^{t}
\end{aligned}
$$

which is an element of $A p^{3(n+1)}$ as $p^{t} q^{t} \in \mathbb{C}[q p]$ and $p^{3(n+1)} \mathbb{C}[q p]=\mathbb{C}[q p] p^{3(n+1)}$.
Suppose $t \leqslant 0$. If $t \leqslant-2(n+1)$ then it is clear that

$$
p^{n+1} a \in D(t-(n+1)) \subseteq A p^{3(n+1)}
$$

by Proposition 5.1. So suppose $-2(n+1)<t \leqslant 0$, and put $s=-t$. Let $a=f(q p) p^{s}$ where $f(q p) \in \mathbb{C}[q p]$. Because $a q^{2(n+1)} \in R$, and is equal to $f(q p) p^{s} q^{s} q^{2(n+1)-s}$, it follows that

$$
f(q p) p^{s} q^{s}=(q p-n-2(n+1)+s) \ldots(q p-n-1) g(q p)
$$

for some $g(q p) \in \mathbb{C}[q p]$ (this is by Proposition 5.1). Now $p^{s} q^{s}=(q p+1) \ldots(q p+s)$ and so $g(q p)=(q p+1) \ldots(q p+s) h(q p)$ with $h(q p) \in \mathbb{C}[q p]$. In particular, if follows that $f(q p)=(q p-n-2(n+1)+s) \ldots(q p-n-1) h(q p)$ and now
$p^{n+1} a=p^{n+1}(q p-n-2(n+1)+s) \ldots(q p-n-1) h(q p) p^{s}=q^{2(n+1)-s} p^{3(n+1)-s} h(q p) p^{s}$
which is an element of $A p^{3(n+1)}$ because $p^{3(n+1)-s} h(q p) \in \mathbb{C}[q p] p^{3(n+1)-s}$.
This completes the proof of the lemma.

Lemma 7.3. The vector space $J / J \cap A p^{3(n+1)}$ has dimension at least $n+1+2(n+1)^{2}$.

Proof. In Theorem 6.4 it was shown that J contains the elements $p^{2(n+1)}$ and $p^{t}(q p-n-2(n+1)) \ldots(q p-n-t-1)$ for $0 \leqslant t<2(n+1)$. Because J is a left ideal J contains the following elements:

$$
x(s, t)= \begin{cases}p^{2(n+1)+s} & 0 \leqslant s<n+1, \quad t=2(n+1) \\ p^{t+s}(q p-n-2(n+1)) \ldots(q p-n-t-1) & 0 \leqslant s<n+1, \quad 0 \leqslant t<2(n+1)\end{cases}
$$

There are precisely $n+1+2(n+1)^{2}$ of the elements and the proof will show that the images of these elements in $J / J \cap A p^{3(n+1)}$ are linearly independent. Notice that each $x(s, t)$ may be written uniquely in the form $y(s, t) p^{s+t}$ where $y(s, t)$ is a polynomial in $q p$ of degree $2(n+1)-t$.

Suppose that $\sum \alpha_{s, t} x(s, t) \in A p^{3(n+1)}$ where $\alpha_{s, t} \in \mathbb{C}$ and the sum over all pairs (s, t) with $0 \leqslant s<n+1,0 \leqslant t<2(n+1)$. Because $p^{3(n+1)}$ is a homogeneous element of A, it follows that $A p^{3(n+1)}=\bigoplus_{-\infty}^{\infty}\left(A p^{3(n+1)} \cap D(r)\right)$. Fix an integer r with $0 \leqslant r \leqslant 3(n+1)$. Splitting the above sum into its homogeneous parts, it must be the case that

$$
\sum_{s+t=r} \alpha_{s, t} x(s, t) \in A p^{3(n+1)} \cap D(-r) .
$$

Now, if $x \in A$, then $x p^{3(n+1)} \in D(-r)$ if and only if $x \in D(3(n+1)-r)$; that is if and only if $x=f(q p) q^{3(n+1)-r}$ for some $f(q p) \in \mathbb{C}[q p]$. Hence,

$$
\sum_{s+t=r} \alpha_{s, t} x(s, t)=f(q p) q^{3(n+1)-r} p^{3(n+1)}
$$

and, dividing on the right by p^{r},

$$
\sum_{s+t=r} \alpha_{s, t} y(s, t)=f(q p) q^{3(n+1)-r} p^{3(n+1)-r}
$$

Now, $q^{3(n+1)-r} p^{3(n+1)-r}$ is an element of $\mathbb{C}[q p]$ of degree $3(n+1)-r$, so the above equation may be interpreted as being a relationship of linear dependence between certain polynomials in $\mathbb{C}[q p]$. However, each term on the left is of degree $2(n+1)-t=2(n+1)-(r-s)<3(n+1)-r$ because $s<n+1$. So we have a linear dependence relation between elements of $\mathbb{C}[q p]$, each element being of different degree-this of course can only happen if all $\alpha_{s, t}=0$.

Corollary 7.4. The left ideal $J=\left\{s \in R \mid s q^{2(n+1)} \in R\right\}$ requires at least three generators.

Proof. It is simply a matter of putting together all the above. By the two foregoing lemmas, $\operatorname{dim}(J / M J)>\operatorname{dim}\left(J / J \cap A p^{(n+1)}\right)>2(n+1)^{2}$, and then the discussion prior to Lemma 7.2 completes the argument.

Note added in proof. Stafford has recently shown that every infinite dimensional simple R-module is of projective dimension 1 . Consequently gl.dim. $R=2$.

References

1. D. Arnal et G. Pinczon, "Idéaux à gauche dans les quotients simples de l'algèbre enveloppante de sl(2)", Bull. Soc. Math. France, 101 (1973), 381-395.
2. J. Dixmier, "Sur les algèbres de Weyl II", Bull. Sci. Math. (2), 94 (1970), 289-301.
3. J. Dixmier, "Quotients simples de l'algèbre enveloppante de $s(2)$ ", J. Algebra, 24 (1973), 551-564.
4. J. Dixmier, Enceloping algebras, North-Holland Mathematical Library (North-Holland, Amsterdam, 1977).
5. I. Kaplansky, Fields and rings, Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 1969).
6. J. C. McConnell and J. C. Robson, "Homomorphisms and extensions of modules over certain differential polynomial rings", J. Algebra, 26 (1973), 319-342.
7. Y. Nouazé et P. Gabriel, "Idéaux premiers de l'algèbre enveloppante d'une algèbre de lie nilpotente", J. Algebra, 6 (1967), 77-99.
8. L. J. Ratliff and J. C. Robson, "Minimal bases for modules", Houston J. Math., 4 (1978), 593-596.
9. J. C. Robson, "Idealizers and hereditary noetherian prime rings", J. Algebra, 22 (1972), 45-81.
10. J.-E. Roos, "Compléments a l'étude des quotients primitifs des algèbres enveloppantes des algèbres de lie semi-simples", C. R. Acad. Sci. Paris Sér. A, 276 (1973), 447-450.
11. J. T. Stafford, "Completely faithful modules and ideals of simple noetherian rings", Bull. London Math. Soc., 8 (1976), 168-173.

School of Mathematics, University of Leeds, Leeds LS2 9JT.

