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1 Introduction and definitions 

We work over a fixed algebraically closed base field k. We also fix an integer n > 3, 
an elliptic curve E defined over k, and a point r e E which is not  in the nm-torsion 
subgroup E,m for any m = 1,2 . . . . .  n - 2. 

Following Odesskii and Feigin I-4, 5] we now define a class of graded algebras 
determined by this data. 

Definition 1.1 [5] Fix a degree n line bundle ~ on E. Set V = H ~ (E, ~ ) .  Identify 
V|  with H~174 Define the shifted diagonal A~:={(x,x+ 
(n-2)r) lx~E}.  Denote  by M the set of fixed points for the involution 
(x, y) ~ (y + 2r, x - 2r) on E • E. We say that a divisor D on E • E is allowable if 
D is stable under this involution, and M occurs in D with even multiplicity. The 
n-dimensional Sklyanin algebra associated to (E, r) is defined to be the quotient of 
the tensor algebra, 

a(E,z) :=  T(V)/(Ra) 
where 

Ra := { f ~  V |  VIf= O, or ( f )o  = A~ -I- D where D is allowable}. 

Since E and ~ will be fixed th roughout  the paper, we will just write A for A (E, z). 
The algebra A is denoted Q,, 1 (E, r) by Odesskii and Feigin. The dependence of  the 
algebra on 5~ is illusory, since any two line bundles of degree n are pullbacks of one 
another along suitable translations. 

A linear module over A is a cyclic graded A-module having the same Hilbert 
series as a polynomial  ring. The linear modules over the 3- and 4-dimensional 
Sklyanin algebras are rather well unders tood now [1,2, 3,7]. A point module is 
a linear module  with the same Hilbert series as the polynomial  ring in 1 variable. 
Our  main result is that  the point  modules over A(E,z) are parametrized by E, if 
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n > 5. I f p  e E then we write M(p)  for the corresponding point module: an explicit 
description of M(p)  is given by Proposition 1.2 below. 

There is already quite a bit of information about linear modules in [4] and [5], 
although few proofs are provided. In particular, it is stated in [5, Sect. 3.3] that for 
all n the point modules are precisely the M(p)  for p e E. Unfortunately it is not 
proved there that these are all the point modules, and since the claim is false when 
n = 4, it seems sensible to offer a proof for n > 5. 

Define a E Aut(E) by p~ = p + (n - 2)r. Thus At is the graph of a. 

Proposition 1.2 Let p ~ E. Define an action o f  the tensor algebra T(V) on the graded 
vector space M := kvo O kvl G . . . by 

x  9 vj = x(p  ~ J)vj+ 

for each x ~ V. (More precisely, for each j f ix  a representative o f  p~- J in V* and 
evaluate each x ~ V at this representative.) Then M is an A-module, and is a point 
module ifdeg(vj) = j. 

Proof  It is obvious that M is a cyclic T(V)-module, and hence a point module for 
T(V). To see that M is an A-module, it suffices to check t ha t f ,  vj = 0 for al l j  > 0, 
and all r e la t ions fe  Ra c V |  V. This is clear since (p"- ..... , p " )  e A~, and all the 
relations vanish on A~ by definition. [] 

One of the main steps in proving these are all the point modules, is to prove that 
the subvariety ~(RA) ~ IP(V*) x IP(V*) cut out by RA equals the shifted diagonal 
A~. Once this is proved, a simple argument involving truncated point modules 
(Lemma 4.2 and Theorem 4.3) completes the classification of the point modules. To 
establish this intermediate result, we must show that there are certain relations in 
RA which are closely related to the geometry of E ~ IP(H~ ~)*) .  This is the 
substance of Sect. 2. 

2 Rank 2 tensors in RA 

By viewing elements of V|  V as linear maps V* ~ V we may speak of their rank. 
The main result in this section is the following 

Theorem 2.1 The (projectivized) space o f  rank 2 tensors in R~ is in bijection with the 
secant (n - 3)-planes to E in IP(V*) ~- IP "-1. 

In particular, if r v) is a secant (n - 3)-plane then the corresponding rank 
2 relation is o f  the form a | v - b @ u with 

n - - 2  

(U)o = ~, (Pi) + (qx) + (q2) 
i = 1  

n - 2  

(V)o = ~ (Pl) + (rl) + (rz) 
i = l  

. - 2  

(a)o = ~ (Pl + 2v) + (ql - (n - 2)z) + (qz - (n - 2)z) 
i = l  

n - 2  

(b)o = ~ (p~ + 2~) + (r l  - (n - 2)T) + (r2 - (n - 2)r) .  
i = 1  

The p~, q ,  r i may be arbitrary elements o f  E. 
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It is obvious that R A cannot  contain any rank 1 tensors, because a non-zero 
element u | v ~ V |  V cannot  vanish on A~. The importance of rank 2 tensors in Ra 
is already apparent  from [1] and [3]. 

F r o m  now on we will identify E with its image in IP(V*) ~ IP" 1 obtained via 
the ample line bundle ~L~ ~ Thus E is a degree n curve. 

Whenever we intersect E with a linear subspace of IP(V*), we wilt be interested 
in the scheme-theoretic intersection. Hence we always treat this intersection as an 
element of Div(E), the group of divisors on E. For  convenience we will choose our  
identity element 0 E E such that  ~o _ (gE(n.(0)). Hence by Abel's Theorem n points 
of E span a hyperplane of lP(V*) if and only if their sum is 0. 

Definition 2.2 I f H  ~ IP k is a linear subspace oflP(V*), we call H a secant k-plane to 
E, if H meets E at k + 1 points counted with multiplicity i.e. H c~ E is a divisor on 
E of degree k + 1. Secant 1-planes and secant 2-planes, will be called simply secant 
lines and secant planes. The union of all the secant lines (which includes the tangent 
lines to E since we are count ing intersections with multiplicity) is denoted Sec(E). 

Lemma 2.3 l f  D -= ( P l )  + " " " + ( P k )  ~ Div(E) then there is a unique linear subspace 
H ~- lP k-~ of  IP(V*) such that H c~ E = D. 

Proof This is obvious. It is enough to prove it when k = n - 1. In that case n - 1 
points certainly do not  span IP" l, so suppose they lie in two distinct hyperplanes. 
The intersection of these hyperplanes gives H ~-Ip"-3 such that 

n- -1  H n E ~ ~ i = 1  (Pl)- Choose a p ~ E in general position, and let H '  be the hyper- 
E = Y',i=l (Pi) + (P), so the sum of these plane spanned H and p. Thus H '  , -1  

n points must be zero. This is absurd, as p may  vary. [] 

Proof  o f  Theorem 2.1 Suppose that f =  a |  v -  b | u ~. RA is of rank 2. We will 
prove that ~ (u ,v )  meets E at n - 2  points counted with multiplicity. Since 
deg(E) = n we may write (U)o = ~ =  1 (Pi) for the divisior of zeroes of u on E, and 
similarly (V)o = ~ = 1  (qi). By our  choice of 0 ~ E, it follows that ~',~=1 Pi = O. 

First we show that u and v have a c o m m o n  zero on E. Suppose to the contrary 
that v(pl) #: 0 for all i. Since f (A 0 = 0, it follows that (a)o = ~ - 1  ( P i -  (n - 2)r). 
Since the sum of these points is also 0, n ( n -  2)z = 0 which contradicts the 
hypothesis on z. Thus u and v have a c o m m o n  zero on E. 

Suppose that ~ ( u ,  v) c~ E = ~ =  ~(Pi) and that qi = Pi for all 1 _ i _< k. Since 
f (AO = 0, we have 

for a dense set of x e E. Hence a and b also have k c o m m o n  zeroes on E (counted 
with multiplicity). We will label these rl . . . . .  rk. Sincef (A0 -- 0, the other zeroes of 
a o n E a r e p i - ( n - 2 ) z f o r k + l _ < i _ < n .  

Notice that ( f )o ,  the divisor of f o n  E x E, contains E~=I  {r~} x E. Since the 
part of ( f )o  whicla is supported outside A~ is stable under the involution 
(p,q) ~ (q + 2z, p - 2z)it follows that ( f )o  also contains ~ ] = 1 E  x {r~ - 2r}. There- 
fore for all x e E, the divisor of zeroes of the linear form a ( x ) v - b ( x ) u  on 

a 
E contains k ~ = l ( r ~ -  2z). Since the rational function ~ is not  constant,  there 

exist x , y ~ E  such that { a ( x ) v -  b ( x ) u , a ( y ) v -  b(y)u} is linearly independent. 
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It follows tha t  

Therefore 

k k 

~Z'(u,v) c~ E = ~ ( r i -  2z) = Z (Pi) .  
i = 1  i = l  

k 

(a)o = ~ (Pi + 2~) + (Pi - (n - 2)~). 
i = 1  i = k + l  

But ~ = 1 P i  = 0, so n ( n -  k -  2)r = 0. This cont radic ts  the hypothesis  on the 
order  of  ~, unless k = n - 2. We  conclude tha t  ~ ( u ,  v) meets E at n - 2 points  
coun ted  with mult ipl ici ty.  

We now prove  the converse. Suppose  that  u, v e V are l inear ly independent  and 
that  "U (u, v) ~ E , - 2  = Y,i=~ {P,}; i.e. ~/ ' (u ,v ) i s  a secant (n - 3)-plane. We will prove 
that  there  exist 0 4: a, b e V such that  a | v - b | u e Ra.  Wri te  (U)o = Y,~= 1 (Pl) 
and (V)o = ~ - = ~  {q,} with q~ = p~ for 1 < i < n - 2. Choose  a, b E  V s u c h  that  

n - 2  

(a)o = ~ (Pi + ZT) + (P, a - ( n - - 2 ) z ) + ( P , + ( n - - 2 ) z )  
i = 1  

and 
n - 2  

(b)o = ~ (Pi + 2r) + ( q , 2 l  - ( n -  2)~) + (q, + (n - 2)r) 
i = 1  

Thus a and b are de te rmined  up to scalar  multiples.  
Since t rans la t ion  by r is a morph i sm there exists forms f l  . . . .  , f ,  (of some 

degree d say) such tha t  x + ~ = ( f l  (x) . . . .  , f , ( x ) )  for all x in some dense open 
subset  of E. In  par t icular ,  there exists f o r m s f a n d  g of degree d on IP(V*) such that  

for a dense set of x e E. Both  f and g have N : =  nd zeroes on E. But _u has only 
/3 

N - 2  2 zeroes on E, s o f a n d  g have N - 2 c o m m o n  zeroes, say ~'(f , ,  g) n E = ~ i = 1  (rl). 
Since 

d i v ( U ) = ( P , - , ) + ( p , ) - ( q , - , ) - ( q . )  

it follows that  

div ( f ) =  ( p . _ l -  ( n - 2 ) r )  + ( p ,  ~ ( n - 2 ) r )  

- ( q . -  1 - ( n  - 2 ) r )  - ( q .  - ( n  - 2 ) v ) .  

Therefore  

(ag )o  = ( b f ) o  = 
n - 2  

Y', (Pi + 2r) + (P , -1  - (n - 2)~) + (p. - (n - 2)~) 
i = l  

N - 2  

+ ~ (ri) + (q . -1  -- (n -- 2)r) + (q, -- (n --  2)z).  
i = 1  

Thus ag and b f a r e  forms of degree d + 1, having n(d + 1) c o m m o n  zeroes on E. 
Since deg(E) = n there exists a scalar  2 such tha t  ag - 2bfvanishes  ident ical ly  on E. 
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Replace b by 2b, whence (a9 - b f ) ( E )  = 0. Therefore 

for a dense set of x e E. Therefore (a | v - b | u) (As) = 0. 
Set z = - ~ Z ~ p l  and define the divisors 

n--2 

D'  = Z ({P~ + 2 z } x E + E x { p l } )  
i = 1  

D" = { ( p , z  -- p -  (n - 2)z)lp E E} 

in E x E. We will now show that  

( a |  - b |  = As + D' + D" . 

We have already seen that a Q v  - b |  vanishes on As and on D'. For  p ~ E in 
general position, a(p)v  - b(p)u is a (non-zero) linear form on E which vanishes on 
a hyperplane H satisfying 

n - 2  
H c ~ E  ~ ~, ( p ~ ) + ( p + ( n - - 2 ) z ) .  

i = 2  

The other point  of H n E is determined by the fact that  the n points of H n E sum 
to 0 in E. Hence z - p - ( n - 2 ) z  is the other point  of H c ~ E .  Thus 
( a |  - b |  = 0. Hence ( a |  - b |  contains A, + D' + D". By looking 
at the n zeroes o f a ( p ) v  - b(p)u and the n zeroes o f v ( p ) a  - u(p)b  it is now clear that 
we actually have equality as claimed. 

Both D'  and D" are stable under  the involution (p, q) ~ (q + 2z, p - 2z), and the 
fixed point  set of the involution, namely M =  { ( p , p - 2 z ) l p e E } ,  occurs in 
D ' +  D" with multiplicity 0. Hence D ' +  D" is an allowable divisor, so 
a |  v - b | u is a relation as required. 

The final step is to check the uniqueness (up to scalar multiple) of the relation 
associated to the secant plane ~ ( u , v ) .  Suppose that  both f =  a |  b |  and 
f '  = a ' @  v -  b ' |  are relations. By the first part  of the proof, it follows that 
(a)o = (a')o and (b)o = (b')o. Since E spans IP"- 1, a is a scalar multiple o fa ' ,  and b is 
a scalar multiple of b'.  Hence if f and f '  are linearly independent then a | v 
is a linear combinat ion  of f and f ' .  However,  as remarked earlier there are no 
rank 1 relations (since a | v cannot  vanish on At). [] 

3 Geometry of E for n __> 5 

In this section we take n > 5. 
If y e F ( V * )  ~ IP"- 1 write ~zy: Ipn- 1 \ {y} ~ IP"- 2 for the projection with center 

y. The image of E under  this projection will be denoted Ey. If  y r  Sec(E) then Ey is 
a smooth  elliptic curve of degree n. If y E E then Ey is an elliptic curve of degree 
n - 1, which is embedded by a complete linear system of degree n - 1. In particu- 
lar, when y ~ E, then we may apply an induction argument  to Ey. 

Notation. If Pl . . . . .  Pk e E we will write Pl  9   9 Pk for the linear space H ~ ] p k - 1  

such that  H n E = ~ k = l  { Pi }. Thus pp is the tangent  line to E at p, and if the Pi are 
distinct p l . . .  Pk is the linear span of the Pi. 
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I fy  ~ IP"- 1 \E ,  and X is the set of all secant (n - 3)-planes to E which contain y, 
then X can be realised as a closed subvariety of S"-3E, the (n - 3)-th symmetric 
power of E: 

X =  {(Pl . . . . .  p ,_3)6S"-3Elp l . . .p ,_ay  meets E with multiplicity n - 2 }  

where p l . . .  p,_ 3Y denotes the (n - 3)-plane spanned by y and the secant (n - 4)- 
plane p ~ . . .  P , -3-  

Lemma 3.1 (n = 5) Fix y(E E. Then 

X : =  {secant planes to E containin9 y} 

is a 1-dimensional variety. 

Proof Define Z c E x X by 

z : = { ( p , b ) l p ~ b } .  

The projection onto the second factor is a surjection pr 2 : Z --~ X with finite fibers, 
so it suffices to prove that dim(Z) = 1. However,  projection to the first factor, fibers 
Z over E with fibers isomorphic to 

Xp :=  {secant planes containing p and y} , 

for p E E. To prove the lemma it suffices to prove that dim(Xp) = 1 for at most  
a finite number  of p, and dim(Xp) = 0 otherwise. 

Consider E r This is a quartic elliptic curve, lying on a pencil of quadric surfaces 
in IP 3, four of  which are cones, and the rest of which are smooth. The elements of Xp 
are in bijection with the secant lines to Ep c ]I ) 3  which contain 7Zp(y). 

Suppose that  ~p(y) E Ep. Thus y effq for some q e E. Hence the secant planes 
containing p and y are those of the form p~r for r e E. Hence dim(Xp) = 1 in this 
case. Furthermore,  there is at most  one p e E for which ~p(y) e Ep, because y can lie 
on at most  one secant line: if it lay on two such, then the span of those secant lines 
would be a IP 2 meeting E with multiplicity 4, which contradicts Lemma 2.3. 

N o w  suppose that ~zp(y)r E r Then np(y) lies on a unique quadric, Q say, 
containing E r If  Q is smooth  there are exactly 2 secant lines to Ep passing through 
gp(y), whence dim(Xp) = 0. If  Q is a cone, and gp(y) is a smooth  point  of Q, then 
there is a unique secant line through 7zp(y), whence dim(Xp) = 0. If Q is singular, 
and ~p(y) is the vertex of Q then there is a 1-dimensional family of secant lines 
through ~p(y), whence dim(Xp) = 1. 

It remains to show that this last possibility can occur for only a finite number  of 
p. It is clear that  gp(y) is the vertex of a quadric cone containing Ep if and only y and 
p both  lie on the singular locus of  a rank 3 quadric containing E. This is equivalent 
to the condition, that  gy(p) be the vertex of a quadric cone containing E r Since Ey 
is a quintic curve, it can lie on at most  one quadric in lP 3. Since y can lie on at 
most  one secant line, there are at most  2 points of E mapping  to the vertex of 
that  cone. [] 

Remark 3.2 The next result does not hold for n = 4, and is the reason that the 
4-dimensional Sklyanin algebra differs from the higher dimensional Sklyanin 
algebras in terms of point  modules. 

A general y e P 3 \  E lies on either 1 or 2 secant lines depending on whether y lies 
on a singular or  non-singular quadric containing E. However,  if y is the vertex of 
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a quadr ic  cone conta in ing  E, then there is a 1-dimensional  family of secant lines 
through y. 

Proposit ion 3.3 Suppose that n >= 5. Let  y E IP"- I \ E. Define 

X , ( y ) : =  {secant (n - 3)-planes containing y} .  

Then dim(X, (y ) )  < n - 4. 

Proof The result is true for n = 5 by L e m m a  3.1. We proceed by induction.  
Suppose the result  is true for n - 1. 

Define Z c E x X, (y )  by 

Z : =  {(P , I ) IP  ~ b}  9 

Fix p e E. The pro jec t ion  np with center p, maps  E to the no rma l  degree (n - 1) 
curve Ep c IP"-2, and  the induct ion  hypothesis  applies to this s i tuat ion.  Wri te  Zp 
for the fiber of the pro jec t ion  p r l  : Z ~ E over  p ~ E. 

If (p, b) E Zp then n~(b) ~ X . _  1 (n,(y)). Conversely,  every secant (n - 4)-plane to 
Ep which conta ins  rip(y) is the image  under  np of a secant  (n - 3)-plane to E which 
contains y. Thus Z~is  in bi ject ion with X ,  1 (n~(y)), so by the induct ion  hypothesis ,  
dim(Zp)== n - 5 .  I t  follows that  d i m ( Z ) = < n - 4 .  Since the projec t ion  p r / :  
Z ~ X , ( y )  has finite fibers, d im(X, (y ) )  = dim(Z).  [] 

Lemma 3.4 Let  y ~ IP n 1. Then there is a hyperplane H containing y, and n -  1 
distinct points Pl . . . . .  Pn 1 ~ H c~ E such that y does not lie in any of  the (n - 3)- 
secant planes spanned by these points. 

Proof Firs t  suppose  that  y ~ E. If p l , . . .  ,p ,_  1 e E are any (n - 1) dist inct  points  
whose sum is - y then H : =  p a . . .  P , -x  contains  y and the l emma is true. 

N o w  suppose  that  yr  E. Let  X denote  the variety of all secant (n - 3)-planes to 
E which conta in  y. By P ropos i t i on  3.3 d im(X)  < n - 4. Let  Y de no t e  the variety of 
all hyperplanes  th rough  y. Thus Y --- IP"- 2. Define Z c X x Y by 

Z : =  {(b ,H) lb  = H } .  

Let p r l :  Z ~ X and pra:  Z ~ Y he the project ions.  If b ~ X then p r ~ - l ( b ) =  IP 1, 
whence d im(Z)  =< n - 3. Therefore pr2(Z) 4= Y. Choose  H ~  Y such that  H~pra (Z) .  
Hence H does not  conta in  any secant  (n - 3)-plane which conta ins  y. In fact, there 
is a dense open set of Y consis t ing of such H. In par t icular ,  there will be such an 
H which meets E at  n dist inct  points.  Take  such an H, and any n - 1 of  the points  
Pl . . . . .  P , -1  ~ H c~ E. This will satisfy the lemma. [] 

4 Point modules for n _-> 5 

In this sect ion we prove our  main  result. I t  will follow from the next theorem.  

Theorem 4.1 I f n  > 5 then ~r = A~. 

Proof. This is a ra ther  simple consequence of L e m m a  3.4. Suppose  that  
( x , y ) ~ e ' ( R A ) .  Pick a hyperp lane  H conta in ing  y and dist inct  poin ts  
Pl . . . .  , P , - 1  ~ H as in L e m m a  3.4. Let p, be the o ther  po in t  o f H  • E. F ix  a l inear 
form u vanishing on H. 
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F i x m  ~ {1, ,n - 1} and write ~,~-~ (pl) = (p.,) + ~ " - ~  (qj). Choose  a linear  9 . . = j =  

form v,, such that  "l/"(u, v m ) = q l . . . q , - 2 .  By Theorem 2.1 there exist 
O:~a, , ,bmeA1 such that  a m | 1 7 4  Since Y C q l . . . q , - 2 ,  it 
follows that  v,,(y) 4:0 and hence that  am(x) = 0. Thus x e ~e'(al . . . . .  a,  a). By 
Theorem 2.1 

n - 2  

(a,,)o = ~ (qj + 2z) + (Pro -- (n - 2)z) + (p,  - (n - 2)T). (4.1) 
j - 1  

For  all 1 < k < n - 2, notice that  Pk+ 1 + 2z,p, -- (n -- 2)z) c ~tr(al . . . . .  ak), but  is 
not  contained in V(ak+,). Hence ~ ( a l  . . . . .  ak+l) is proper ly  contained 
in ~ ( a l  . . . . .  ak). Therefore ~V'(al . . . . .  a , - 1 ) = { p . - - ( n - 2 ) ~ } ,  whence x =  
p .  - ( n  - 2 ) z .  

In particular,  x ~ E. A similar a rgument  (applying L e m m a  3.4 to x rather  than  
y) shows that  y E E also. Now,  returning to the first three paragraphs  of this proof,  
if y e E, then y = p, by the careful choice of H and the Pl. But we just showed that  
x = p, - (n - 2)z, whence (x, y) E A,. [] 

For  the 3-dimensional Sklyanin algebra one also has ~F'(Ra) = A~, but  this fails 
for the 4-dimensional  Sklyanin algebra. For  the 4-dimensional Sklyanin algebra, 
~(RA)  = A~w {(ei,e~)[O < i <  3} where the e~ are the singular points  of the 
4 quadric  cones containing E [3, Theorem 1.1]. 

Our  main  result is now an immedia te  consequence of the following l emma 
which applies to any finitely generated quadrat ic  algebra. 

L e m m a  4.2 [1, Sect. 3] I f  ~ (RA)  is the 9raph of an automorphism of 
P := pra ('~r(RA)) then the point modules for A are in bijection with the points of P via 
the construction given in Proposition 1.2. 

Proof We give the details for completeness.  A truncated point module is a cyclic 
graded A-module  with Hilbert  series 1 + t + - -  9 + t"  for some m > 1. I t  is easy to 
see that  the t runcated point  modules  of length 3 are in bijection with the points of 
3U'(RA) c ]P(V*) • I P ( V * ) .  The bijection is implemented as follows. If(p, q) e ~ ( R A )  
then the corresponding t runcated point  module  is kvoGkv~Okv2 with x ~ A 1  
acting via 

X.Vo= x(q)vl,  x . v l  = x(p)v2, x . v 2 = 0 .  (4.2) 

Now suppose that  ~r is the graph  of an au tomorph i sm a of P. For  every 
p e P one m a y  construct  a point  module  M(p) as in P ropos i t ion  1.2. T o  see tha t  
these are all of them, suppose tha t  M = (~)~=o kvz is a point  module  for A. The  
t runcated point  module  N := M/Av3 corresponds  to a poin t  of ~ ( R A )  as explained 
~ibove. This point is of the form (p~ ' ,p) for some p e P. The act ion of A on N is 
given by (4.2). This also gives the action of A on Mo and  M1. N o w  consider the 
t runcated point  module  Avl/Av4[1] (we have to shift the degree). Again it corres- 
ponds  to a point  of  ~(RA),  and since x .  vl = x(pa-')v2 for all x ~ A~, that  point  
mus t  be (p~-',f-~). Continue in this way looking at the t runcated point  modules  
Avi/Avi+3[i]. One  finds that x.vi+2 = x ( p  ~-' ')z)v~+3. Thus,  by induction, 
M ~- M(p) as required. [] 

Theorem 4.3 Let n > 5. Then every point module over the n-dimensional Sklyanin 
algebra, is of the form M(p) for some p ~ E. 
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