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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 322, Number 1, November 1990 

A CLASS OF ALGEBRAS SIMILAR TO 
THE ENVELOPING ALGEBRA OF sl(2) 

S. P. SMITH 

ABSTRACT. Fix f E C[X]. Define R = C[A, B, H] subject to the relations 

HA-AH = A, HB-BH =-B, AB-BA = f(H). 

We study these algebras (for different f) and in particular show how they are 
similar to (and different from) U(sl(2)), the enveloping algebra of sl(2, C). 
There is a notion of highest weight modules and a category a' for such R. 
For each n > 0, if f (x) = (x + 1)n+l _ Xn+1 , then R has precisely n simple 
modules in each finite dimension, and every finite-dimensional R-module is 
semisimple. 

0. INTRODUCTION 

Fix f E C[X]. Define R = C[A, B, H] subject to the relations 

[H, A] = A, [H, B] = -B, AB - BA = f(H). 

This paper studies these algebras (for different f) and in particular shows how 
they are similar to (and different from) U(sl(2)), the enveloping algebra of 
sl(2, C). For example, each R is a noetherian domain of Gelfand-Kirillov 
dimension 3 and has finite-dimensional simple modules of arbitrarily large fi- 
nite dimension (whenever f 0 C). Furthermore, there is a theory of Verma 
modules, highest weight modules, and a category a for R. 

One reason for studying the rings R is to construct examples of noetherian 
rings which have a rich structure that can be understood in detail and which 
exhibit some new features. Perhaps the most interesting part of the paper is ?5, 
which analyzes the finite-dimensional R-modules. The results there show that 
the ideas involved in the study of enveloping algebras of semisimple Lie algebras 
have a wider applicability. One striking result is the following. Let n > 0, and 
set f(x) = (x + 1 )n+l - xn+l . Then for each d > 0, R has precisely n simple 
modules of dimension d, and every finite-dimensional R-module is semisimple 
(Example 5.10). The case n = 1 gives R U(sl(2)). For general R not every 
finite-dimensional module is semisimple. It is this feature which makes the 
structure of R a little more interesting than that of U(sl(2)). 

Nevertheless, there are many similarities to U(sl(2)), as is clear from the 
following brief description of the papers' contents. 
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? 1. Description of R as a skew polynomial ring over the enveloping algebra 
of the 2-dimensional nonabelian Lie algebra. R is a noetherian domain of 
GK-dimension 3. The center of R is a polynomial ring in one variable. R is 
a subalgebra of the second Weyl algebra. 

?2. Definition of highest weight modules, V(A), and the unique simple quo- 
tient of V(A), L(i). Every finite-dimensional simple R-module occurs among 
the L(i). Description of which L(A) are finite-dimensional in terms of prop- 
erties of f. The number of finite-dimensional simples of dimension n is 
< deg(f). Central characters and homomorphisms between the V(A). 

?3. The primitive ideals of R are all of the form Ann L(A); {Ann V(A)} = 

{minimal primitives}, and Ann V(A) is generated by its intersection with the 
center. Each R/ Ann V(A) is completely prime and embeds in the first Weyl 
algebra with the same ring of fractions. 

?4. There is a category of R-modules containing the V(A) and L(i) which 
is analogous to category a of Bernstein-Gelfand-Gelfand. The basic properties 
of category & hold in this context. 

?5. A finite-dimensional R-module need not be semisimple. A nonsplit 
extension between two finite-dimensional simple modules must occur either at 
the "top" of some V(A) or at the "bottom" of its dual. For certain f, every 
finite-dimensional R-module is semisimple. 

?6. The case deg(f) = 2 is analyzed in detail. 
?? 1-3 are mainly straightforward generalizations of the U(sl(2)) theory, but 

are prerequisites for the main results of the paper, which occupy ??4-6. Some 
useful identities (easy but tedious to verify) are given in an appendix. 

This work was stimulated by a letter from Tim Hodges [H1] which followed 
on from the paper [AHV]. He was concerned with the action of the cyclic group 
G = Zm as automorphisms of the Weyl algebra C[t, & = d/dt] (acting by t 

Pt, a -> p' I where p = e27i!m). The invariant subring is C[tm, ta, am]. 

As is well known, when m = 2 this ring is isomorphic to a primitive factor of 
U(sl(2)). 

Hodges showed that there exist rings Sj (1 < j < m) with C[tm, ta, am] c 

Sj c FracC[tm, ta, am] such that ejSj is a faithfully flat overring of 
C[tm, ta, am]. This is similar to the situation for (certain) primitive quo- 
tient rings U(g)/P of the enveloping algebra of a semisimple Lie algebra g. 
The Beilinson-Bernstein equivalence of categories can be interpreted in terms 
of there being a certain faithfully flat overring of U(g)/P [HS]. For example, 
this gives a faithfully flat overring of C[t2 , tO, a2] consisting of a direct sum of 
two copies of the Weyl algebra (C[t, 0] is not one of these); the two overrings 
correspond to the usual open affine cover of P1. Motivated by this analogy 
with U(g), I tried to find an algebra like U(sl(2)) which would have the rings 
C[tm, tO, am] as primitive quotients. Given m, there is indeed a suitable 
choice of f, such that C[tm, tO, am] is a quotient of R (Proposition 3.5). 
Since the first version of this paper was written, Hodges [H2] has shown that 
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the primitive factors of all our rings R possess such faithfully flat overrings, 
and has realized these primitive factors as the global sections of a sheaf of rings 
on a suitable (finite) topological space. Thus the primitive factor rings of R 
can be studied locally in the same way as those of U(g). 

Another reason for looking at these algebras is to construct new examples 
of noncommutative noetherian rings. One could begin by looking at some 
examples which are "small" in terms of various dimensions (Krull, Gelfand- 
Kirillov, global homological); or one could look for examples which are "sim- 
ilar" to some known important examples (enveloping algebras, rings of differ- 
ential operators); or one could look for examples which are given by gener- 
ators and relations (few generators, and relations which on the surface look 
simple)-recent examples include the papers [AS, BS], and the examples in this 
paper fit into all three contexts. The value of the new examples can in part 
be judged in terms of whether they are tractable and exhibit interesting fea- 
tures. One useful test question is to classify the finite-dimensional simple mod- 
ules (more generally the primitive ideals) and perhaps all finite-dimensional 
modules. This question is natural if one takes the following point of view. 
Suppose one wishes to find all matrices Xl, ...X, X E Md(C) which satisfy 
a given set of equations f1(A', ..., Xn) =. =fr(XI; -.-, Xn) = 0. This 
is the same as the problem of classifying all d-dimensional modules over the 
ring C(X1, ...,Xn)/(, , r). Finally, as pointed out in (1.6), the rings R 
which we construct can all be interpreted as rings of differential operators, so 
fit in with recent interest of ring theorists in differential operators. 

1. BASIC PROPERTIES OF R 

If deg(f) < 1, then R is familiar. 

Proposition 1.1. If deg(f) < 1, then R is a factor ring of an enveloping algebra. 
In particular, if AB - BA = aH + fl with a, fl E C, then 

(a) if a = 0 and ,B 54 0, then R C[t, 0] Xc C[s] where t and s are 
commuting indeterminates, and & = d/dt; 

(b) If a = 0 and ,B = 0, then R U(l) where l is a 3-dimensional solvable 
Lie algebra; 

(c) if a :$O, then R- U(sl(2)). 
Proof. Define a Lie algebra g, with basis A, B, H, X and relations 

[H, A] = A, [H, B] = -B, [A, B] = aH+ flX. 

There is a surjection U(g) -+ R. 
Notice that X is a central element of g and that g/CX is either solvable 

(when a = 0) or isomorphic to sl(2) (when a 54 0). Hence, if a = 0, g is 
solvable, and if a $& 0, then g sl(2) ED C. The rest is clear. o 

Henceforth we shall be interested in the case deg(f) > 2. 
Let S be a ring and a E AutS. A a-derivation of S is a linear map 

3: S -+ S such that 3(st) = s3(t) + i(s)tu for all s, t E S . Given a a-derivation, 
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the skew polynomial ring determined by a and 3 is the ring S[X; a, 3] 
S(X)/(sX - Xs' - 3(s) I s E S). See [C, ? 12.2] for details. In particular, 
S[X; a, ] = S E SX E sx2 E sX3 ED_ . The ring S[X; a, 3] is called a skew 
polynomial ring over S. 

Proposition 1.2. Let b be the 2-dimensional nonabelian Lie algebra, with basis 
{h, a} and relation [h, a] = a. Then R U(b)[X; a, 3] is a skew polynomial 
ring over U(b), where a' =a, h' = h - 1, 3(a) = f(h), and 3(h) = O. 
Proof. Observe that a extends to an automorphism of U(b) and that 3 is a 
a-derivation. The ring U(b)[X; a, 3] is defined by the relations ha - ah = a, 
aX = Xa' + a(a) = Xa + f(h), and hX = Xh' + a(h) = Xh - X. It is 
immediately clear that there is an isomorphism R -+ U(b)[X; a, 3] defined by 
At -a, H y-h, B- -X. 0 

Set b := CH + CA. This is a solvable Lie subalgebra of R and will be the 
analog of a Borel subalgebra of sl(2). 

Corollary 1.3. R is a noetherian domain, with basis {AiBIHk I (i, j, k) E N3}, 
and GK-dimR=3. 
Proof. It is proved in [C] that if S is a domain, so is S[X; a, 3], and if S 
is noetherian, so is S[X; a, 3]. Since U(b) is a noetherian domain so is R. 
Since S[X; a, ] = S 0 SX E SX 2 

SX3 eD , R has a basis as claimed. 
Let deg(f) =n . Set V = C(A, 1,H, .. .,Hn), and W = V ED CB. 

k k k-i k-22 klI k 
Claim. W 

= 
V E V B ED V B E ...* ( VB - GCB . This is certainly 

true for k = 1. The right-hand side is a direct sum and is contained in Wk. 
Since Bg(H) = g(H + 1)B and BA = AB + f(H) E VB + V, it follows 
that B V c VB + V. The claim now follows by induction by rewriting Wk = 

(V+CB)W - 

Since U(b) is of GK-dimension 2, there is a polynomial, p say, of degree 
2, such that dime V = p(k). Now dime W = p(O) + p(l) + + p(k) is 
certainly a polynomial of degree 3. 0 

J. T. Stafford pointed out that one could obtain the basis AiBJHk by 
Bergman [B, Theorem 1.2]. In the free algebra C(A, B, H) assign degrees 
to the generators by deg A = deg B = deg f and deg H = 1 . Order the mono- 
mials (the words in the letters A, B, H) first by degree and then lexicograph- 
ically according to A < B < H. The relations defining R give replacements 
BA = AB - f(H), HB = BH - B, HA = AH + A. There is only one ambigu- 
ity, namely HBA, and it is easy to check that this is resolvable. Hence a basis 
for R is given by the irreducible monomials, namely the elements ABjHk . 

The structure of R depends on f, but it is useful to introduce another func- 
tion of H, which we denote by u. Define a linear map A: C[x] C[x] by 
(Aq)(x) = q(x + 1) - q(x). Set (x) = 1, and for n > 1, (X) 
x(x - 1)(x - 2) ...(x - n + 1)/n! The set {(X) I n > 0} is a basis for C[x]. 
Now A(x) = (nx I so A is surjective, and kerA = C. The next result is clear. 



A CLASS OF ALGEBRAS SIMILAR TO THE ENVELOPING ALGEBRA OF sl(2) 289 

Lemma 1.4. There exists u E C[x] such that f = Au. Furthermore, for k E N, 
u(x+ I)-u(x+ 1 -k) =f(x)+f(x+ 1)+...+f(x-k+ 1). 

Notation. For the rest of the paper u will be as in (1.4), and n = deg(f) (thus 
deg(u) = n + 1). 

Remarks. (1) It will emerge that the behavior of finite-dimensional simple R- 
modules is determined by the behavior of the functions u(x + 1) - u(x + 1 - k) 
for k E N. For example, see (2.3), (2.4), (4.7). 

(2) The operator A may be expressed as A = e - 1, where D = d/dx. 
Similarly, if Ak = ekD- 1, then Ak:C[x] - C[x] is surjective, and for q E 
C[X], (Akq)(x + 1 - k)=q(x + 1) - q(x 1- k). 

(3) The adjoint action [H, -] of H on R gives a decomposition of R 
into weight spaces R = )EzR, where R, := {r E R I [H, r] = vr}. The 
commutant of H is Ro = C[AB, BA, H] = C[AB, H] = C[AB + BA, H]. 

The center of U(sl(2)) is a polynomial ring in 1-variable; there is an analo- 
gous result for R. 

Proposition 1.5. Set Q = AB + BA + -{u(H + 1) + u(H)}. The center of R is 

Proof. It is straightforward to calculate that n is central. To see that the center 
equals C[Q], suppose that z is central. Then 

z E R0 = C[AB + BA, H] = C[Q, H]. 

Write z = EiZ'ci where Ci E C[H]. Then 0 = [z, A] = ZiQ'[ci, A] = 

A Ei f?1{ci(H + 1) - ci(H)} . Hence, as R is a domain, ci(H + 1) - ci(H) = 0 
for all i. Thus each ci is a constant, and z E C[Q]. o 

If M is an R-module on which Q acts as scalar multiplication by a E C, 
we say that M has central character a. 

Proposition 1.6. There is an embedding R -+ 9_(A ) 
2 

C[x, y, OA, ay] given 
by A 4Y I(u(x + 1) - u(x - yOy + 1)), H x - yOy, and B y Thus, 
R may be realized as an algebra of differential operators on the polynomial ring 
C[x, Y] 

Proof. Set M:= C[x, y] the polynomial ring in two variables. Define elements 
a, b, h E Endc M as follows: 

a-x' =0 , and for j l 1, 

a-xiy =xi(f(x) + f(x- 1) + + f(x - j+ 1))y'1 

= lxi((x + 1) -u(x - j + l))yj , 

b xyJ xyJ+ h - x'y =x(x - j)Y- 

These elements satisfy ha - ah = a, hb - bh = -b, ab - ba - f(h) = 0. 
Hence, there is a ring homomorphism R -+ Endc M. 
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It is clear that b = y, and h = x - yO , and a little work shows that 

a =y y (u(x+ 1) - u(x -yOy + 1)). Hence there is a map R -+ C[x, y,&A] 
It remains to show this map is injective. Since R is a noetherian domian with 
GK- dim R = 3, any proper factor ring of R has GK-dimension at most 2 [KL, 
Proposition 3.5]. So it is enough to show that GK-dimC[ba, b, h] = 3. Since 
u(x-yOY+ 1) E C[h] it is enough to show that GK-dimC[u(x+ 1), y, yO ] = 3. 
However, C[x, y, yOy] is a finitely generated module over C[u(x + 1 ), y, yOy] 
and is of GK-dimension 3, so it follows that GK- dim C[u(x + 1), y, yOA = 

3. 0 

The homomorphism R -* (C[x, y]) makes C[x, y] an R-module, which 
we call the universal Verma module. 

In [MR] and [MS], a ring R is said to be somewhat commutative if there is a 
filtration on R by finite-dimensional subspaces such that the asssociated graded 
algebra is finitely generated and commutative. Since R embeds in the second 
Weyl algebra, R certainly has a filtration by finite-dimensional subspaces such 
that the associated graded algebra is commutative. It is not clear whether the 
associated graded algebra is finitely generated. However, given the description 
of R in (1.2), it follows from [MR, Theorem 3.3] that R is indeed somewhat 
commutative. 

Proposition 1.7. R is somewhat commutative. 

The class of somewhat commutative algebras includes enveloping algebras 
and their factor rings, but it is considerably larger and includes many rings of 
differential operators. There is a good theory of Gelfand-Kirillov dimension, 
and a Hilbert-Samuel polynomial for the class of somewhat commutative alge- 
bras, and this is the point of [MS] and [MR]. In particular, there is a notion 
of "multiplicity" which behaves well on short exact sequences (see [MR] for 
details). We will make use of this in ?3 to study the Krull dimension of factor 
rings of R. 

2. HIGHEST WEIGHT MODULES AND FINITE-DIMENSIONAL SIMPLES 

Let N be an R-module. For v E C, define the v-weight space of N to 
be N := {n E N I Hn = vn}. Call N a highest weight module if there 
exists v such that (a) dimNv = 1, (b) N = RN>, and (c) if N 54 0, then 
v - ,u e N U {0}; the v satisfying these conditions is unique and is called the 
highest weight of N. If v - u E N U {0}, then we will write v > u. 

If A E C, write Cl for the 1-dimensional b-module killed by H - A and 
A. The Verma module of highest weight A is V(A) := R ?u(b) CA. As a 

right U(b)-module, R is free on 1, B, B2, .... Thus V(i) C[B] as a left 
C[B]-module. The action of H on V(A) is semisimple, and the highest weight 
space is 1 CA . Write 1 ? CA = Cv2 . Each B'v2 is of weight A - j. Hence 
V (A)= EjeNU{O} V(Z)A-j is the sum of its weight spaces, V(i) is a highest 
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weight module, and dim, V(A),_j = 1 for all j E N U {O}. The action of A 
on a weight vector increases its weight by 1. 

Recall the universal Verma module M = C[x, y]. For A E C, (x - A)M is 
an R-submodule of M. Thus M/(x - A)M is an R-module. It is easy to see 
that M/(x - A)M V(A) . 

The submodule structure of V(A) is described by 

Lemma 2.1. Fix A E C, and let vA be a highest weight vector of V(i). The 
submodules of V(i) are precisely 

{C[B]Bjvj I u(.+ 1) - u(A - j + 1) = 0 for j E N}. 

Proof. Write v = v, . A submodule must be stable under the action of both 
B and H. Because it is stable under B it corresponds to an ideal of C[B]. 
Because it is H-stable, it is the sum of its H-weight spaces. This forces the 
submodule to be of the form (Bj)v. This is a submodule precisely when it is 
stable under the action of A. This is equivalent to A - Bjv = 0. For j > 1, 

A-B'v = (BA+f(H))B''v - (BA +f(2-j +l))Bj lv 

and by induction, 

A-B'v = (f(A) + f(.- 1) + + f(2 - j + 1))Bj 'v. 

The lemma follows from the definition of the function u in (1.4). o 

Corollary 2.2. (a) The length of V(A) is the number of distinct j E Nu {0} such 
that u(A + 1) = u(2 - j + 1). In particular, the length of V(A) is < deg(u) = 

deg(f) + 1. 
(b) V(i) is a uniserial module. In particular, V(i) has a unique maximal 

submodule, and hence a unique simple quotient, which we denote L(i)). 
(c) V(2) has a simple socle. 

Proof. (a) The submodules of V((A) are in 1-1 correspondence with those zeros 
of the polynomial u(A+ 1)-u(2.-x+ 1) E C[x] which are contained in Nu{0}. 
The degree of this polynomial is deg(u). 

(b) This is immediate, because the only possible submodules are of the form 

(BJ)v A. 
(c) This follows from (a) and (b). o 

Lemma 2.3. (a) Thefinite-dimensional simple R-modules are precisely the mod- 
ules L(A) = V(A)/BjV(A) where j E N is minimal such that u(2 + 1) - 
u(A-j+ 1) = 0. (There may of course be no such j, in which case L(i) = V(A).) 
If A 5. v then L(A); L(v). 

(b) The number of simple modules of dimension j equals 

{2.ECfu(2.+1)-u(2.-j+l)=O, andj is the least such element ofN}I 

which is < deg(u) - 1 = deg(f). 
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(c) Iffor each j E N there are precisely deg(f) simple modules of dimension 
j, then, for all A E C, length V(A) < 2. 

Proof. (a) Let V be a finite-dimensional simple R-module. As a U(b)-module, 
V has a 1-dimensional submodule, Cv say. By standard solvable Lie algebra 
theory, A - v = 0, and H v = Av for some A E C . Since V is generated by 
v, there is a surjection V(A) V. Thus V L(A). 

If ~o: L(A) -+ L(v) is a nonzero module homomorphism then (0(v.) must be 
annihilated by (H - A) and A. Hence (0(v2) is a highest weight vector in L(v) 
of weight A. Thus A = v. 

(b) Obvious after (a). 
(c) Fix A . Suppose that length V(i) > 3. Then there exist distinct il, j2E N 

suchthat u(A+ 1)-u(A- jl + 1)=U(A+ 1)-U(A- j2+ 1) =0 Say jl < j2 
Then A {1u E C u(,u + 1) -u(u-j2 + 1) = & j2 is least such element of 
N}. Thus 

{If E C Iuu + 1)- u(u -j2 + 1) = O&j2 is least such element of N}I < n - 1, 

and there are at most n - 1 simple modules of dimension j2. This is a con- 
tradiction. o 

Remarks. (1) Given j E N, there always exists A E C such that u(A + 1) - 

u(A - j + 1) = 0, SO there is always an indecomposable R-module of dimension 
j. In-particular, the 1-dimensional R-modules are {L(A) I f(A) = 0}. How- 
ever, there need not be a simple module of dimension j, as the next example 
illustrates. 

(2) There exist simple R-modules of arbitrarily large finite dimension. To see 
this, suppose to the contrary that all finite-dimensional simple R-modules are 
of dimension < k. Fix m > 0. By (2.1) some V(i) has a quotient module, 
M say, with dimc M = m. By (2.2a), deg(f) > length(M) ?i m/k. The 
contradiction is clear. 

Example 2.4. Let u(x) = (x - I)x(x + 1), so f(x) = 3x(x + 1)/2. Then R 
does not have a simple module of dimension 2. 

Proof. Such a module would have to be a 2-dimensional quotient of V(A), 
where A satisfies u(A + 1) - u(A - 1) = 0. Since u(A + 1) - u(A - 1) = 62 5 

only V(0) has a 2-dimensional quotient. However, V(0) has a 1-dimensional 
quotient, because u(1) = u(0), and therefore (since V(A) is uniserial) the 2- 
dimensional quotient of V(0) is not simple. O 

In fact, V(0) is the only Verma module of length 3. Consequently, if 2 54 
j E N, there are exactly two simple modules of dimension j. To see this, set 
v = A+ 1, and consider u(A+ 1)-u(A-j+ 1) = j{32 +3)(2-j)+(j-2)(j- 1)} = 

2_ 2 j{j -3jv+3v -1} . Thus V(A) has length > 3 X there exist distinct i, j E N 
which are zeroes of y _ 3yv + 3v 2 1 . This requires that i + j = 3v and 

2 _ .2 _ .2 
ij = 3v -1, and hence that i 

- ij +j = 3. The only solution to this is 
(i,j) E {(1, 2), (2, 1)}, and therefore v = 1,so A = 0. Hence if A $40, 
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then length V(A) < 2. If i #A 2, then there are two distinct v such that 
I -3jv+3v 1 =0. 

Let 1 < k E N. I expect there exists u with deg(u) = 3, such that R has 
no simple module of dimension k. 

I expect that for all except finitely many j, there are exactly deg(f) simple 
modules of dimension j. Unfortunately, I can only prove this is some special 
cases (see ?6, and Example 5.10). 

Proposition 2.5. The following are equivalent: 
(a) there exists ko E N such that, if j E N, and j > ko, then there are exactly 

n simple modules of dimension j; 
(b) there exists k1 E N such that, if j E N, and j > k1, then every highest 

weight module of dimension j is simple; 
(c) there exist only finitely many A E C such that length M(A) > 2. 

Proof. Set p(y, z) = u(y + 1) - u(y + 1 - z). Then M(A) has a j-dimensional 
quotient X p(A, j) = 0, and the only j-dimensional highest weight modules 
are the j-dimensional quotients of those M(i) for which p(A, j) = 0. Let 
D(z) E C[z] be the discriminant of p(y, z) viewed as a polynomial in y, and 
set Z = {z E C I D(z) = 0}. This set is finite, so choose k E N such that if 
j > k, then j 0 Z. Hence, if j E N and j > k, then there are precisely n 
distinct highest weight modules of dimension j. 

(a) => (1) Let j > ko. There are at most n highest weight modules of di- 
mension j. By hypothesis, each of these is simple, so take k1 = ko . 

(b) =} (c) Set C = { A M(A) has a quotient of dimension i} . Then CjI < n . 
Therefore v :=.V U **.*U = {k I M(i) has a quotient of dimension < k1} 
is finite. Suppose A 0 v . 

Claim. length M(A) < 2. If M(A) is simple, this is true, so suppose that 
M(A) has a quotient of dimension j. Since A 0 X, j > kAc. Hence the 
quotient is simple, so length M(A) < 2. 

(c) => (a) The set v = {2. I length M(i) > 3} is finite. Hence, so is the set 

K := U {i I M(A) has a quotient of dimension i}. 

Set ko = max{i E K, k}. Let j > ko. Because j > k, there are n dis- 
tinct 2, ,..., An such that each M(Aq) has a j-dimensional quotient. If some 

Aq E ', then j E K, a contradiction. Hence length M(q) < 2, and the 
j-dimensional quotient of M(Aq) is simple. o 

Hence, the comment prior to the proposition amounts to an expectation that 
the equivalent conditions of Proposition 2.5 are satisfied for all f. To prove 
this one must show that a certain plane algebraic curve passes through only a 
finite number of integral points. The curve in question is 

V= {(a, fl) E C2 a#54fl and3 AE Csuchthat 

u(A + 1) = u(2.+ 1 - a) = u(A + 1 - fl)}. 
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That is, I conjecture that VnN2 is finite for all u E C[X] with deg(u) > 2. This 
would follow from Siegel's theorem [L, p. 127, Theorem 4] if all the irreducible 
components of V were of genus > 1, but this is not always the case. 

Lemma 2.6. (a) The central character of V(i~) is u(A + 1). 
(b) If 0 -O L(A) -* X - L(v) -* 0 is a nonsplit extension, then L(A) and 

L(v) have the same central character. 
Proof. (a) Let v, E V(A) be a highest weight vector. Set 

g(H) = 2{u(H + 1) + u(H)}. 

Then 

Q- vi= (AB + BA + g(H)) -V = (AB+ g(A)) -vi 
= (BA + f(A) + g(A)) vv = (f (A) + g())v,. 

Hence, Q acts on V(A) as multiplication by the scalar f (A) + g(A) = u(A + 1). 
(b) Suppose that u(A + 1) = a : ,fl = u(v + 1) . Then 0 :O (Q - a)X L(v), 

whence X = L(A) e (Q - a)X splits. Hence a = ,B. o 

Lemma 2.7. If)A, v eC, then 
(a) dimcHomR(V(v), V(A)) < 1; 
(b) Hom(V(v), V(A)) = C if and only if v =A - j for some j E N, and 

u(A + 1) - u(A - j + 1) = 0, i.e., u(A + 1) = u(v + 1) . 
(c) Every submodule of V(A) is of the form V(v) for some v. 

Proof. A homomorphism ,v: V(v) - V(A) is completely determined by the 
image of the highest weight vector, vV . If ,v $A 0, then VI(vv) is of weight v. 
Since dim V(A)v < 1, dimc Hom(V(v), V(A)) < 1 . The dimension is 1 if and 
only if V(')v $0 ?, and A-V(')v = 0. Now V(A)v $0 ? if and only if v = A-j 
for some j E N. In that case V(A)v = Bj-v,. By (2.1), A-B'v, = 0 if and 
only if u(A + 1) - u(A - j + 1) = 0. This gives (a) and (b); (c) follows from (b) 
and the description of the submodules of V(A) given in (2.1). o 

Corollary 2.8. Let A, v E C. Consider the following statements: 
(a) Hom(V(v), V(A)) = C; 
(b) there is an injective map V(v) -V(A); 
(c) v = A - i for some j E N u {O}, and u(A + 1) = u(v + 1); 
(d) V(v) and V(A) have the same central character; 
(e) u(A + 1) = u(v + 1). 
Then (a) X (b) X (c) => (d) 4 (e). 

3. PRIMITIVE IDEALS OF R 
Recall that if g is a semisimple Lie algebra, and 0 :$ x E U(g); then there is 

a finite-dimensional simple g-module E such that xE :$ 0. The next lemma 
is an analog of this for the ring R. 
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Lemma 3.1. Let A C C be an infinite set with the property that dimc L(A) < 00 

for all A E A. Let 0 54 x E R. Then xL(A) #A 0 for some A E A. Thus, if 
{IA I A E A} is any infinite set of (distinct) ideals of finite codimension in R, 
then nEA IA = 0. 

Proof. Suppose that xL(A) = 0 for all A E A. Write x = E>EZ XV where x, 
is a weight vector of weight v . If vY E L (A) is of weight [U, then xV v-v is of 
weight v +,u . Hence each xV E Ann L(A) . Fix v with xV :A 0 . By multiplying 

xv by a suitable power of A or B, it follows that there is 0 5# x E Ro 
C[H, Q] such that xL(A) = 0 for all A E A. 

Fix A, and write dimc L(A) = d + 1. Then 

C[H, Q] n Ann L(A) = (Q- u(A + 1), (H- A)(H-2A- 1) ...(H-A-d)). 

There are only finitely many L(A) of a given dimension, hence {dimc L(A) 
A E A} is infinite. Similarly, given a E C, there are only finitely many A with 

u(A + 1) = a. Hence {Q - u(A + 1) I A 2E A} is infinite. Therefore 

n (,Q- u(A + 1),~ (H -A)(H - A-1) ..(H iA- d)) =O0. 
AE 

This contradicts the existence of x. Hence no such x exists. 0 

Notation. If n E N, write (H) = (I/n!)H(H - 1) .(H - n + 1). The proof of 
(3.1) shows that if dimL((A) = d + 1, then 

C[H, Q]nAnnL(i)= (Q-u(+.?l),(d+1 )H) 
A key point in the previous lemma is that any nonzero ideal of R is stable 

under [H, -] and hence contains a (nonzero) weight vector and therefore has 
nonzero intersection with Ro = C[H, Q]. The following is a stronger version 
of this. 

Theorem 3.2. If O 5I is an ideal of R, then I n C[Q] $ 0. 

Proof. As R is noetherian, I contains a (finite) product of prime ideals, so it is 
enough to prove the result when I is prime. Since GK- dim R = 3, it follows 
that GK-dim(R/I) <2. 

Because R is of countable dimension over C, I is the intersection of the 
primitive ideals which contain I. Furthermore, as the dimension of R is 
countable, the center of any primitive factor ring of R is C, so if I is primitive 
the result holds. Thus we may assume that I is not primitive, and I is the 
interesection of the primitive ideals which (strictly) contain I. If P D I is 
primitive, then GK-dim(R/P) < 1. 

Sublemma. Let S be a nonartinian, noetherian, finitely generated algebra over 
a field k, and supose that GK- dim(S) = 1 . Then S is not primitive. 

Proof of Sublemma. Suppose that S is primitive, and let S/J be a faithful 
simple S-module. Since dimk S = 00, so too is dimk(S/J) = 00. If J were 
not an essential left ideal, then the socle of S would be nonzero, so would 
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contain a regular element, c say. But then S Sc would be of finite length, 
contradicting the fact that S is not artinian. Hence J is essential, so contains 
a regular element c. But now dimk (S/Sc) = 00, and also GK- dim(S/Sc) < 
GK- dimS - 1 . This is a contradiction, because in this situation a module is of 
finite dimension if and only if it has GK-dimension zero. o 

Let P 2 I be primitive. Thus R/P is artinian, hence simple artinian. 
We wish to show that in fact dimc(R/P) < 00. Suppose not. Then there 
exists a E R/P which is a unit, and a 0 C. Therefore the field C(a), of 
transcendence degree 1, is contained in R/P. But C(a) is of uncountable 
dimension, contradicting the fact that R is of countable dimension. Thus 
dimc(R/P) < 00. Hence P is the annihilator of a finite-dimensional simple 
R-module. Thus P = Ann L(A) for some A). 

Hence I annihilates a collection of finite-dimensional L(A). But I :$ 0, 
so by the previous lemma, I can annihilate at most a finite number of such 
L(A). Thus there is only a finite number of primitive ideals P I. But the 
intersection of a finite number of ideals of finite codimension in R is again 
of finite codimension in R. Thus dimc(R/I) < 0, and certainly I n C[Q] $ 
0. o 

Remark. We could have avoided the sublemma, and the paragraph after it, by 
an appeal to [SW]. The proof in [SW] works for a more general situation than 
that we are considering, and it seemed worthwhile to point out an easy proof of 
the following fact: Let S be a finitely generated algebra of countable dimension 
over a field k . Suppose that S is noetherian, primitive, and GK- dim(S) < 1 . 
Then dimk S < 0, and S is simple artinian. 

Given the analogy with U(g), the next result is to be expected. 

Theorem 3.3. (a) Every primitive ideal of R is of the form Ann L(A). 
(b) The minimal primitive ideals are the ideals Ann V(A) = (Q - u(A + 1)). 
(c) There is only a finite number of primitive ideals containing a given (Q - 

u(A+ 1)). 
(d) If I is an ideal such that I (Q - u(A + 1)), then dim(R/I) < x. 

2 
Proof. Recall the decomposition of R into weight spaces: R = E BRo R& 
BRo & Ro & ARo & A2R0 & . As V(A) is the sum of its weight spaces, 
and V(A) is not annihilated by any power of either A or B, it follows that 
Ann V(A) is generated by Ann V(A) n Ro . But Q - u(A + 1) E Ann V(A), and 
V(A) has infinitely many distinct weights, so Ann V(A) = (Q - u(A + 1)) . Let 
V(v) be isomorphic to the simple socle of V(A) . Then u(v + 1) = u( + 1), so 
Ann V(v) = (Q - u(v + 1)) = (Q - u(A + 1)) = Ann V(A) . Hence Ann V(A) is a 
primitive ideal. Given any a E C, there exists A E C such that u(A + 1) = a; 
thus (Q - a) is a primitive ideal. 

Let P be a primitive ideal of R. Then P :$ 0, because the center of a 
primitive factor ring of R must be C. Thus P n C[Q] :$ 0 and so contains 
Q - a for some a E C. Hence P D (Q - a) for some a E C. Thus the ideals 
(Q- a) are precisely the minimal primitive ideals of R. 
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Fix a E C. Let P (Q - a) be a primitive ideal. By the argument in the 
proof of (3.2), P = AnnL(A) for some finite-dimensional L(A). Thus every 
primitive ideal is of the form Ann L(A). Furthermore, since u(A + 1) = a, 
there are only finitely many P containing a given Q - a. 

Let I D - a) be an ideal. Since R is noetherian, I contains a product of 
prime ideals, each of which contains I. Hence, to prove (d), we may suppose 
that I is prime. But in R, every prime contains an intersection of primitive 
ideals. As the primitive ideals containing I are all of finite codimension in 
R and there are only finitely many of them, the result follows. In fact, it also 
follows that if I is prime then I is primitive. o 

For each A E C, write J(A) := Ann L(A) . 

Lemma 3.4. Each J(A) is generated, as an ideal, by J(A)0 := J(A) n Ro 
Proof. If dim(R/J(A)) = oo, then this follows from (3.3b). So suppose that 
dimCL(A)=d+l. 

Set J(A)i = J(A) n Ri. Every ideal of R is the sum of its adH-weight 
spaces, so J (A) = ei J(A)i. Recall that Ro = C[Q, H] and for i > 0, Ri = 

C[Q, H]A'. and R_i = C[H, 4]B. By (3.1), 

J(A)O = ( - U(A + l) 
H A + d 

More generally, for d > i > 0, 

J(A)i = Q - U(A + l ) S d- i++ I Al 

and 

J(A)_j = ( - u(A + 1), d i + I ) ) B 

If i > d + 1, then J(A)i =Ri, and J(A)_i =Ri. 
Now RJAJ)oR contains 

(adA)i(' d H) )=(-)i(H -+d ) iA 

The rest of the argument is clear. o 

Proposition 3.5. Let u(x) = 2(-I)m+1 mm(x - 1)(x - 1 + 1/rm)... (x - 1/m). 
Then there is a surjective map R -* C[tm, ta, Om] with kernel (Q). 
Proof. Observe that [-(1/m)t9, tm] = -tm, [-(l/m)t9, am] = am and, set- 
ting h = -(1/m)ta, [ami, tm] = 2{u(h+ 1) -u(h)}. Hence there is a surjection 
as claimed; the map is A ,-* s m, B F-* tmi, H I-+ h. The natural action of 
C[tmi, ta, am] on C[tm] is faithful, and C[tm] V V(0), which has central char- 
acter u(1) = 0. o 

The fact that this primitive factor embeds in the Weyl algebra C[t, 0] is 
typical of what happens in general. Recall the definition of the map R 
9(C[x, y]) in (1.6). The image is contained in C[x, y, aY]J. For each A E C, 
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there is a 2-sided ideal (x - A) in this ring and C[x, y, aO]/(x - A) C[y, 0] 
where 9 = d/dy. Thus, composing, there is a homomorphism R -* C[y, 0]. 
As remarked earlier, the natural action of C[x, y, a ] on M = C[x, y] then 
induces an action of R/(x - A) n R on M/(x - A)M = C[y] V(A) . Since 
C[y] is a faithful C[y, 0]-module, it is a faithful R/(x - A) n R module. Thus 
(x - A) n R c Ann V(A). Consider the action of Q on C[x, y]. Noting that 
g(H) - x1yj = g(x - j)x'y', it follows that (Q - u(x + 1)) - x1yj = 0. But the 
annihilator of C[x, y] in C[x, y, ay] is (x - A) . Hence Q - u(x + 1) E (x - A), 
and thus 

Q - u(A + 1) E (x - A) n R c Ann V(A) = (Q - u(A + 1)). 

Hence, (Q2 - u(A + 1)) = (x - A) n R = Ann V(A) . 
The fact that these primitive factors embed in the Weyl algebra is similar to 

what happens for enveloping algebras. There has recently been some interest 
in realizing more of the primitive factor rings of U(g) as rings of differential 
operators (see .[J, LSS, LS]). 

Proposition 3.6. Set a = u(A + 1). There is an injection R/(Q - a) -* C[y, 0] 
given by B )-* y, H l-* )A-y0, and A -* y I(a-u(A-y0+l)). Asan R-module 
C[y] V(A). Furthermore, R/(Q - a) is a domain, and FractR/(Q - a) 
FractC[y, 0]. 
Proof. This follows from (1.6). That the rings of fractions are the same follows 
from the fact that C[y, y0] c R/(Q- a) c C[y, 0]. 0 

The filtration on C[y, 0] induces a filtration on R/(Q - a). Write C[y, f] 
for the associated graded ring of C[y, 0]. Then 

gr R/ (LI-a) = C[y, y4, Y ne ] 

where n = deg(f). There are two alternative descriptions worth noting: 

(a) grR/(Q - a) C[X , Y , Z]/(XY - Z 
n+1 

) ; 

(b) grR/(Q - a) C[Xn, yn, XY] c C[X, Y]. 
Again, the analogy with U(sl(2)) is clear. 
For certain a E C, there are curves X (some singular) and isomorphisms 

U(sl(2))/(Q - a) (X)Z2, the invariant subalgebra for a suitable action of 

Z2 as automorphisms of the ring 9(X) of differential operators on X (see 
[Sm] for details). I expect there are similar results for the appropriate primitive 
quotients of the rings R. 

If g is a semisimple Lie algebra, and P a primitive ideal of U(g), then 
U(g)/P contains a unique minimal nonzero ideal. 

Theorem 3.7. Let a E C, and set S = R/(Q-a) . Then S has a unique minimal 
nonzero ideal. 

Proof. We will show that there exists 0 :$ r E C[H] such that, if 0 :$ I is an 
ideal of S, then r E I. Hence the intersection of all the nonzero ideals of S 
is nonzero as required. 
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Let I 54 0 be an ideal of S. By applying ad H to an element of I, it follows 
that I contains a nonzero weight vector. By multiplying this weight vector by 
a suitable power of A or B, it follows that I contains a nonzero element of 
weight 0. Since Ro = C[H, Q] it follows that C[H] is the weight 0 part of 

S. Hence there exists 0 $A g(H) E I n C[H]. Thus I contains Akg(H) and 
g(H)Ak = Akg(H+ k) . But for suitably large k, g(H) and g(H+ k) have no 
common zeros, so the ideal of C[H] generated by g(H) and g(H + k) is all 
of C[H]. Hence the ideal of S generated by Akg(H) and g(H)Ak contains 
Ak. It follows that I contains Ak for large k. Similarly, I contains Bk for 
large k. 

Consider the ideal (A k, Bk) of S generated by Ak and B k. From the 

expressions for AkBk and BkAk given in the appendix it follows that (A k, Bk 
contains 

Pk := (a - u(H))(a - u(H - 1)).. (a - u(H - k + 1)) and 

qk :=(a - u(H + l))(a - u(H + 2)) .(a - u(H + k)). 

Let Y = ... , )+ An+} be the zeros of a - u(H) . Fix m such that Y c 
= {z E C zI < Im}. Let r be the greatest common divisor in C[H] for 

Pm and qm. 

Claim. If k > m, then g.c.d. (Pk, qk) = r. 

Proof. Suppose that k > m. Write Pk = Pmdk' qk = qdk It is enough to 
show that g.c.d.(pm, dk) = g.c.d.(ck, dk) = g.c.d.(qm, Ck) = 1 . If g E C[H] 
write 2(g) for the zeros of g. Clearly 

Y(pm) = u (2+ 1) u u (2,+ m 1) 
cRu(,W+ 1)u ..u(,q+m- 1), 

2(qm) = (2'- 1) u..U u(2-m) c (,q- 1) u U (R- ) 

Y(ck) = ( + m) u -u (2+k- 1) c ( + m) u .. U(g +k- 1), 

2(dk) = ( - M- 1) U ..U (Y- k) c (R - m- 1)U.. U (R -k). 

It follows from the choice of m that Y(pm)nY(dk) = 0, Y(ck)nY(dk) = 0, 

and Y(qm) n Y(ck) = 0 

Hence if k > m, then r E (A k, B k). Hence every nonzero ideal of S 
contains r, and the proof is complete. o 

Corollary 3.8. Every nonzero ideal of R/(Q - a) is eventually idempotent. 

Corollary 3.9. The Krull dimension of R/(Q - a) is 1. 

Proof. The proof is similar to that for the factors of U(sl(2)). Let I be the min- 
imal nonzero ideal of S = R/(L2?-a). It is enough to show that if 0 $ J is a left 
ideal of S, then S/J is artinian. Using the "good behavior" of GK-dimension 
alluded to at the end of ? 1, S/J has only a finite number of simple subquotients 
of infinite dimension. Hence (replacing J if necessary) it is enough to show 
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that if every proper factor of S/J is finite-dimensional then S/J itself is finite- 
dimensional. Suppose that K D J. If dimc(S/K) < oo, then Anns(S/K)$ O, 
whence I(S/K) 0 O and I c K; in particular, dimc(S/K) < dimc(S/I) < oo, 
hence if every factor of S/J is finite-dimensional, then in fact I c J, and 
dimc(S/J)<oo. o 

I expect that R is of Krull dimension 2; a more complicated version of the 
U(sl(2)) argument should work. 

4. A BGG CATEGORY 

The analysis of primitive ideals in enveloping algebras of semisimple Lie 
algebras depends on a certain category of modules discovered by Bernstein, 
Gelfand, and Gelfand [BGG], the category 6'. There is an analog of a for 
the rings R. The proofs of the properties of < are "identical" to those given 
in [BGG]. 

The category a consists of the R-modules M which satisfy the following 
conditions: 

(a) M is the sum of its H weight spaces, 
(b) for all m E M, dim(C[A]- m) < oo, 
(c) M is a finitely generated R-module. 
Thus a' contains the Verma modules V(A). Clearly a1 is closed under 

submodules and quotient modules, so & contains all L(i). 
Basic properties of modules in a' are as follows. 

Lemma 4.1. Let M be an object of <, and set 7'f(M) = { I M,u A O}. Then 
(a) there exists a finite number of weights AO, ..., An such that 7if(M) c 

UnI (Ai- N); 
(b) dim(M/) < oo for all u; 
(c) M is offinite length; 
(d) if M is simple then M L (A) for some A, 
(e) if M, Ned', then dimcHomR(M, N) <oo. 

Proof. Since M is finitely generated, there is a finite number of weight vectors 
m,, ... , mk generating M. By hypothesis Ej C[A]mj is a finite-dimensional 
C[H]-module. Pick a basis v,, . . ., vn for this with vi of weight Ai . Then (a) 
follows from the fact that 

M = E Rmj = E C[B]C[H]C[A]mi = E C[B]C[H]vi = E C[B]vi. 

Since dim(C[B]vi),, < 0 for each i and each u,j (b) holds. 
The description of M in (a) shows that M is a quotient of M(A1) ...E 

M(A2n), which is of finite length. 
(d) follows immediately from (a). 
(e) Let ml, ... , mk be weight vectors generating M. If 6 E HomR(M, N), 

then 0 is determined by 0(ml), ..., I(mk). But 6(mj) is of the same weight 
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as mi. Since the weight spaces of N are finite-dimensional the result fol- 
lows. 0 

If M is an R-module, make M* into a left R-module by defining 
(A y-)(m) = yV(B m), (B - )(m) = qi(A m), (H y-)(m) = yi(H m) for 
all y/ E M*, m E M. Thus M -4 M* is an exact contravariant functor on 
R-modules. Define 3M = {i / E M* I dim(C[H] - y) < oo}. Then 3 is a 
(left exact) contravariant functor on the category of R-modules. It is easy to 
show that 3 is exact on the category & . But 3 is not exact on the category 
of R-modules (the exactness depends on the fact that the modules in a are 
semisimple C[H]-modules). We shall apply 3 only to modules in &. 

Define an antiautomorphism of R (of order 2) r F-+ tr by tA = B, tB = A, 
tH = H. Notice that (a) the restriction of r -4tr to Ro is the identity, and 
(b) for t E M*, m E M we have (r* - )(m) = (tr - m) . Hence, if M has a 
central character so does 3M. 

Lemma 4.2. Let Me6: 
(a) for all u, (3M)I, = {H E M* I 6(Mv) = 0 for all Iv u ,u} (Mm)*, 
(b) for all 2, 3L(A) L(), 
(c) 3Me6&, 
(d) 3 M , 
(e) the evaluation pairing (, ): 3M x M -+ C is nondegenerate, and gives 

an order-reversing lattice isomorphism between submodules of M and of 3M. 

Proof. For each ,u E 2f(M), set N = E M* I 0(Mv) = O for all 
There is an injective map N, 1 (M 1)*,so dim N,1 < o. It is clear that N,1 is 
a C[H]-submodule of M*, hence N, c 3M. Furthermore, (H - u)N,1 = 0, 
so N,1 c (3M)'u. Let f E (JM),, and let m E Mv for some v $ ,u. Then 
uf(m) = (H-f)(m) = f(H-m) = f(vm) = vf(m), whence f(m) = 0; therefore 

f E N1. It follows that N, = (3M),1, whence (a). 
By (a), JL(A) and L(A) have the same weights. Hence 3L(A) has a highest 

weight vector of weight A. Hence there is a surjection 3L(A) -* L(A). Since 
the weights of 3L(A) and L(i) are the same this map must be bijective. Hence 
(b). 

By (a), 3M is a semisimple C[H]-module, and since the weights of 3M are 
the same as those of M, if q/ E 3M, then dim C[A]- V/ < oo. Thus it remains 
to prove that 3M is of finite length. By (b) and (4. Id), if M is simple, so too 
is 3M. Now, since 3 is an exact functor on &, it follows by induction on the 
length of M that the length of 3M equals that of M. Hence (c) holds. 

There is an obvious R-module map M - 3 2M. Since M and 3 2M have 
the same length, this is an isomorphism if and only if it is injective. However, 
if it is not injective, then there exists 0 :$ m E MI1, for some such that 

V/(m) = 0 for all Y/ E 3M. But (M8)* = (3M)8, so no such V/ exists. Hence 

M 2 M a2 . 
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By taking annihilators, one gets order-reversing maps between the lattices of 
submodules of M and 3M. Since 3M = 0 X M = 0, this lattice map is 
bijective. Hence (e) holds. o 

After (4.2e), it is helpful to think of 3M as an "upside-down version of M ." 

Let M be an R-module. For each a E C, set Ma = {m e M I (Q-a) kM = 0 
for k > 0} . Then the sum of the various Ma is direct. Let M e &; because M 
is of finite length, M = e Ma . Therefore, 9 is a direct sum of subcategories, 

9) = ffg where (< consists of those M e ( such that (Qi - a) M = 0 for 
some k > 0. If M = Ma, we say that M has a generalized central character. 
The functor MF--+ 3M on 9 restricts to a functor on each &>. Thus each &a 
is self-dual. 

To understand 9 one may proceed by studying each &a individually. We 
show that projective covers exist in ,'a. The first requirement is a more precise 
version of (4.la). 

Lemma 4.3. Let M E <a. Let L(A0) ..., L(An) be the simple objects of , 
that is, A0i... i are the zeros of a - u(A + 1). Then >1if(M) c UJ=O(Ai - N). 

Proof. Since M has a composition series consisting of various L(Aj), and the 
result is true for the LQ(Aj), the result hoids for M. o 

Theorem 4.4. Let M E (. Then there exist a projective object P E M and a 
surjective map P -+ M. 

Proof. It is enough to prove this for M E , so suppose M E 6a. Fix 
A E C. By (4.3), there exists k E N (depending on A, but not on M) such 
that AkMA = 0. 

Set I = R(H - A) + RA k, Q(A) = R/I, and q = T E Q(A). Clearly 
Q(A) E . Since q is of weight A, so is (0(q) for any (0 E HomR(Q(A) , M) . 
Hence the map HomR(Q(AI), M) -* M. defined by # F-+ (o(q) is surjective. 
On the other hand, if p $ 0, then (0(q) $ 0 because q generates Q(A). Thus 
HomR(Q(A), M) -* M, is an isomorphism. But M E o, SO HomR(Q(A), M) 

M. is an isomorphism. 
Thus the functors M F-* HomR(Q(A)a, M) and M I-4 M. on (9 are iso- 

morphic. However, MF-* M. is exact on &R. Hence Q(A)a E &a is projective 
(in ()9. As M E 9, M is finitely generated, say by elements of weights 

1' . .. I Pk -Set p = i Q(i)a . Thus M is a homomorphic image of P. o 

Corollary 4.5. If P E a is an indecomposable projective, then P has a unique 
maximal submodule P'. This gives a 1-1 correspondence between indecompos- 
able projectives in a and the simple objects L(A) in 9. Write P(A) for the 
projective cover of L(i). 
Proof. [BGG, Corollary 1]. 0 

Proposition 4.6. P((A) has a filtration by Verma modules. 
Proof (see [BGG, ?6]). If a direct sum of modules has a filtration by Verma 
modules, then so has each of the summands (the same argument as in [BGG] 
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applies). Hence it is enough to show that each Q(A) := R/R(H - A) + RAk has 
a filtration by Verma modules. Such a filtration arises from the images of the 
left ideals I R(H - A) + RAN. o 

Fix a, and let A,O..., A, be the zeros of a - u(A + 1). Then P(O0),... 
P(ln) are the indecomposable projectives in & . Set P = P(A 
and A = HomR(P, P). Then A is a finite-dimensional C-algebra, and & is 
equivalent to the category of finite-length A-modules. 

The following definition is taken from [I]. 
A finite-dimensional C-algebra, A say, is a BGG-algebra if the following 

conditions hold: 
(0) there is a poset W indexing the simple A-modules L(w), w E W; write 

P(w) for the projective cover of L(w); 
(1) for each w E W there is a "Verma module" V(w), a finite-length A- 

module, such that V(w) has simple top L(w), and all other composition fac- 
tors of V(w) are of the form L(y) with y < w; 

(2) each P(w) has a filtration by Verma modules; 
(3) there is a contravariant duality functor 3:ModA -+ ModA such that 

6L(w) = L(w) for all w E W; 
(4) if M is an A-module, having a simple top L(w), and all other com- 

position factors of the form L(y) with y not > w, then M is a quotient of 
V(w) . 

The category of A-modules is called a BGG-category. 

Proposition 4.7. For a E C, , is a BGG-category for the poset W = E C a 
u( + 1) = a(}, with the order relation A < , X , - A E N. 
Proof. Only condition (4) remains to be checked. If M E & has simple top 
L (A), then rad M, the radical of M, is the unique maximal submodule of M. 
If M/ Rad M L(A), then there exists v E M of weight A such that the image 
of v in L(i) is a highest weight vector. If all composition factors of M are of 
the form L(v) with v < A, then every weight of M is < A. Hence A-v = 0. 
Therefore there is a map V(A) -* M sending the highest weight vector of V(A) 
to v. Therefore the composition V(i) -* M -* L(R) is nonzero. Hence the 
image of V(A) is not contained in rad M, whence the image is all of M. o 

The category & may further decompose as a direct sumi of subcategories. 
To see this, note that if either Ext1(L(A), L(v)) :$ 0 or Ext1(L(v), L(i)) :$ 0 
then A - v E Z (this is implicit in (5.5)). Hence, E is the direct sum of the 
full subcategories &, where a E C/Z, and F. = {M E a I 7(M) C a + Z}. 
Similarly, 6 = ea()a n F). Furthermore, each n F, is a BGG-category. 

This decomposition of 6 corresponds to a decomposition of W as a dis- 
joint union of posets, where elements in distinct components of W are incom- 
parable. Because each Verma module V(A) is uniserial, each & is a direct a 
sum of subcategories where the index set for an indecomposable subcategory is 
{0, 1, ... , k} c Z (for a suitable k) with its usual ordering. 
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In particular, the same poset can arise from different rings R and from 
different central characters. However, I do not know if for a fixed W, the BGG- 
categories arising from different R or different central characters are equivalent 
or not. For example, is there a translation principle for R ? 

A BGG-algebra with poset W = {O, 1, ... , k} also arises from 
U(sl(k + 1)) for a suitable (singular) central character. For example, take the 

gqk) primitive factor of U(sl(k + 1)) which is _(P ), the ring of global differential 
k 

operators on the generalized flag variety P . The full subcategory of category 
a (for sl(k + 1)) consisting of those M in & whose composition factors L(,) 
are ?(Pk )-modules is again a BGG-category. With the geometric point of view 
the indexing set W is taken to be the set of Bruhat cells of Pk with order 
relation obtained through containment of closures of cells. This is the usual 
cellular decomposition Pk = A U Al u ... u A k, and the order relation is given 
by the inclusions of the closures of the cells A0 c C c A . Hence the 
poset is {0, 1, ... , k} with its usual order relation. 

Again, I do not know if the BGG category for -'J(Pk) will also arise from 
the algebras R (for suitable f). 

5. EXTENSIONS BETWEEN THE MODULES L(A) 

Finite-dimensional R-modules need not be semisimple in general; in this sec- 
tion we see to what extent this fails (cf. Example 2.4). The finite-dimensional 
R-modules which belong to category a are fairly easy to understand (as indi- 
cated at the end of ?4), so the idea is to compare ExtR with Ext . One of the 
main results (5.5a) in this section is that if there is a nonsplit extension between 
distinct finite-dimensional simple R-modules, then that extension occurs either 
at the top of a Verma module, or at the bottom of the dual of a Verma mod- 
ule. Thus all such extensions can be recognized from knowledge of the Verma 
modules. A second key result is a description of all the nonsplit extensions of 
a finite-dimensional simple by itself. Such an extension will not belong to cat- 
egory a (5.3b), but there is a "unique"' nonsplit extension which is explicitly 
described in (5.1 1). 

Example 5.1. A finite-dimensional module need not be semisimple. Set u(x) = 

2(X- l)x(x+ 1), So f(x) = x(x+ 1) . The submodules of V(0) depend on the 
j E N satisfying u(l) - u(I - j) = 0. But u(I) - u(l - j) = 23j(l - j)(2 - j), 

which is 0 at j = 0, 1, 2. Hence there are two 1-dimensional simple modules 
at the top of V(0). In particular, there is a nonsplit extension 0 -* L(-1) 
M -+L(O) -*0. Note that dimc L(O) = dimc L(- 1) = 1 . 

In fact, Ann M = (A, B 2, H(H + 1)), and R/ AnnM the ring of upper 
triangular 2 x 2 matrices over C. 

Lemma 5.2. Let M E . If 0 - L() -* M -+ L(v) -O0 is a nonsplit exact 
sequence, then either M or 3M is a highest weight module. Furthermore, M 
has a central character. 
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Proof. Suppose that neither M nor dM is a highest weight module. Note that 
there is an exact sequence 0 -O L(v) -- 5M - L(A) 0, also nonsplit. 

Choose a weight vector v E M such that the image of v in L(v) is a highest 
weight vector. Then v is of weight v, and M = Rv . By hypothesis, A-v $4 0. 
Hence 0 54 Av E L(i) is of weight v + 1. Therefore v + 1 < A. The same 
argument applied to 5M shows that A + 1 < v. 

This contradiction shows that either M or 5M is a highest weight module. 
Since a Verma module has a central character, so does a highest weight module. 
Finally, if N has a central character so too does 5N. o 

Corollary 5.3. (a) If dimL(y) = dimL(v) = ox, then Ext,(L(v), L(i)) = 0. 
(b) If 0 -O L(A) - M -- L(A) - 0 is a nonsplit exact sequence, then M is 

not in &. 

Proof. (a) This follows from (5.2) because a highest weight module has only 
one infinite-dimensional composition factor. 

(b) This follows from (5.2) because the A-weight space of a highest weight 
module is of dimension at most one. o 

It is not necessarily true that dim L(A) = dim L(v) = ox =* ExtI(L(v) , L(i)) 

= 0. Together, (5.2) and (5.3) say that if Ext (L(v), L(A)) : 0, then at least 
one of the modules is finite-dimensional, and this extension occurs either at the 
top of V(v) (when v > A) or at the bottom of 5 V(A) (when A > v). 

Lemma 5.4. Let Y be a highest weight module of highest weight v. Let 0 
L(A) -- M -- Y -- 0 be a nonsplit exact sequence, with A 54 v . Then M E & 

Proof. If the sequence splits the result is certainly true, so suppose not. It is 
clear that M is of finite length and is a locally finite-dimensional C[A]-module 
since L(i) and Y have this property. Hence it suffices to prove that M is a 
semisimple C[H]-module. Write 0: M -- Y. 

Decompose M into its C[H]-primary components, i.e., M = e M" where 
M' = {m E M I (H -I)km = 0 for k > 0}. As L(i) and Y are semisimple 
C[H]-modules My = {m E M I (H - j)2m = 0}. Clearly Mv ? L(A). Let 
m E MV\L(A), so that 0(m) is a highest weight vector for Y. 

If (H - v)m 0 L(A), then 0((H - v)m) is a highest weight vector for Y, 
so M = L(i) + R(H - v)m. But then M is the sum of its weight spaces, and 
the proof is complete. 

Suppose that (H-v)m e L(A). Since 0((H-v)m) is a highest weight vector, 
A-(H-v)m E L(i). But (H-v)2M = 0, so 0 = A(H-v)2M = (H-v- 1)2 Am. 
Since L(i) is a semisimple C[H]-module, it follows that (H - v - 1 )Am = 0. 
Thus A(H - v)m = 0. Hence (H - v)m is a highest weight vector for L(A). 
Thus A = v. However, this contradicts our initial hypothesis. o 

Corollary 5.5. Suppose that L(A) and L(v) are distinct finite-dimensional sim- 
ple modules. Then 

(a) Ext (L(v), L(i)) :$ 0 X u(A+ 1) = u(v+ 1) and either A = v+dimL(A), 
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or v = A + dim L(v) . In this case dim Ext (L(v), L(i)) = 1, and 

(i) if v > A the extension is a quotient of V(v), 
(ii) if v < A the extension is a submodule of J V(); 

(b) Ext (L(v), L(A)) = Ex4(L(v), L(A)); 
(c) Ext (L(v), L(i)) = 0 X Ext'(L(A), L(v)) = 0. 

Proof. (a) (<=) If u( + 1) = u(v + 1) and A = v + dimLQ(A) , then a nonsplit 
extension exists by (2.8). If u(A + 1) = u(v + 1) and v = A + dim L(v), then a 
nonsplit extension exists by (2.8). 

(a) (=>) Let 0 -- L() -- M -- L(u) -O 0 be a nonsplit extension. By 
hypothesis, A :# v, so (5.3) applies with Y = L(v). Thus M E a (whence 
(b)), and by (5.2) either M or (M is a highest weight module. If M is a 
highest weight module then there is a surjection V(v) -- M. If (M is a 
highest weight module then there is a surjection V(A) -- 6M, and hence an 
injection M -- 6V(A). Hence (i) and (ii) hold, and the other statements are 
consequences of this and the results in ?2. 

(b) Apply (5.2) and (5.4). 
(c) This follows because M is split X (M is split. o 

Hence to understand extensions between finite-dimensional simples, the only 
case still to consider is ExtI(L(11), L(i)) . Before considering ExtI(L((A), L((A)) 
some possibilities are given below as Examples 5.6a and 5.6b. 

Example 5.6a. One can have ExtI(L(A), L(i)) 54 0. Suppose that u(x) = 

3x(x- 1)(2x- 1), thus f(x) = X 2. Set I = RA+RB+RH. This is a 
2 

2-sided ideal of R, and L(0) R/II. Set J = RA + RB + RH . This is also a 

2-sided ideal and R/J C[t]/(t ). The sequence 0 -- I/J -- R/J -- R/I -- 0 
is a nonsplit extension of L(0) by itself. Note that R/J does not have a central 
character: since u(H + 1) + u(H) = 1 

H(4H2 + 2), it follows that Q - I H E I, 
hence (Q - a)(R/J) 54 0 for all a E C. In fact, whenever f(x) = x' , there is 
a unique 1-dimensional R-module and there are always nonsplit extensions of 
it by itself. 

Example 5.6b. In (a) the nonsplit extension 0 -- L(O) -- M -- L(O) -- 0 
was such that M did not have a central character. We now show that when 
f(x) = x3 one can have a nonsplit extension 0 -- L(0) -- M -- L(O) -- 0 such 

that M has a central character. Set M = RII where I = (A, B, H2). Since 
f(x)= x3, u(x)= x2(x-1)2. Since u(H+1)+u(H)=H2(H2 +1)eI it 
follows that Qe I, and QM = 0. 

Theorem 5.7. Fix d + 1 E N. Suppose that every zero of u(x+ 1 )-u(x-d ) occurs 
with multiplicity 1. Suppose that dime L(i) = d + 1. Then Ext'(L(A), L()) = 
0. 

Proof. It suffices to show that J(A)2 = J(A)). By (3.4) it is enough to show that 

J(,)0 C J(A)2 . Set z = Q-u(A+ 1) and y = (H-)A)(H-)A+ 1)... (H-)A+d). 
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For O < i < d + 1, set ai = (H- A)(H- A + 1) ..(H-A+d - i)A' and 

bi = (H- ' +i) (H - A + d - 1)(H - A + d))B'. Then aibi E J(A)2 and 
jA2. biai E J() . Using the expressions for A'B' and B'A' given in the appendix, 

it follows that 

a bi = (1) i(H _ )2 (H - A+ 1)2 ..(H- A +d - j)2 2~~~~~ 

x (Q - u(H))(Q2 - u(H - 1)) ... (Q - u(H - i + 1)) 
and 

biai = (')(H - A + j)2 (H - 2 
+ i + 1)2* (H - A + d)2 

2~ ~~~~~~~~~ x (Q - u(H + 1))(Q - u(H + 2)) ..(Q - u(H + i)). 

We must show that in C[H, Q], (y, z) = (y2, yz, z2, a bi, b ai, I < i < 
d + 1). It is enough to work locally at the maximal ideals which lie in the 
support of (y, z)/(y2, yz, z 2). Fix 0 < j ? d, and consider the ideal I = 

(Y2 , z Z2, a bi, b aI, < i < d + 1) locally at m = (H - A + j, z). Taking 
the elements ad-j+lbd-j+i and bj+1aj+1 of I shows that Im contains 

(Q - u(H))(Q - u(H - 1)) (Q - u(H - d + j)) 

and 
(Q - u(H + 1))(Q - u(H + 2)) ..(Ql - u(H + j + 1)). 

These elements may be rewritten as 

(z +u(l + l) -u(H))(z +u(A + l) -u(H - 1)) 
* (z+u(A+ l)-u(H-d+j)) 

and 

(z + u(A + 1) - u(H + 1))(z + u(A + 1) - u(H + 2)) 
* (z+u(A+ l)-u(H+j+ 1)). 

Since dimcL(A) = d + 1, it follows from (2.3) that u(A + 1) = u(A - d) 
and for all 0 < k < d, u(Q + 1) 7 u(Q - k). Hence, if 0 < k < d, then 
u(A + 1) - u(H - k) is divisible by H -A + j if and only if j + k = d or 
j+k = 0. Similarly, if 0 < m < d, then u()+ 1) - u(H+m) is divisibleby 
H-A+ j if and only if ] - m = d or j - m = 0. 

Thus each of u(A+ 1) -u(H), u(A+ 1 )-u(H-l)1 ),. . ., u(A+1)-u(H-d+j+ 1) 
is a nonzero scalar modulo H - A + j, and it follows that 

(z + u(A+ 1)-u(H-d+ j)) E Im. 

Similarly, each of u(A+ 1) - u(H+ 1), u(A+ 1) - u(H+ 2), ... , u(+1)-u(H+j) 
is a nonzero scalar modulo H - A + j, and it follows that 

(z + u(Q + 1)-u(H +j+ 1)) E Im* 

Therefore, u(H + j + 1) - u(H - d + j) E Im. This element of C[H] is 
divisible by H - A + j, but only with multiplicity 1 by hypothesis. Hence 



308 S. P. SMITH 

H - + +E Im. However, (z + u(L + l) - u(H - d + j)) E Im and H - A + j 
divides u(A + 1l) - u(H - d + j), so z E Im . Since I. contains H - A + j, which 
divides y, Y E Im. Thus Im = (y, Z)m Since j was arbitrary, it follows that 
I = (y, z) as required. 0 

Corollary 5.8. Fix d + 1 E N, and suppose that dimcL(A) = d + 1 < oo. 
Consider the following statements: 

(a) for each j E N, there are n simple modules of dimension j; 
(b) each zero of u(x + 1) - u(x - d) occurs with multiplicity 1; 
(c) there exist n distinct highest weight modules of dimension d + 1; 

(d) Ext' (L(A)), L(i)) = 0. 
Then (a) =* (b) X (c) =* (d). 

Proof. After (2.1) it is clear that (b) X (c) . That (c) =>* (d) is proved in (5.7). 
Finally, (a) =>. (c) is obvious. 0 

Corollary 5.9. Suppose that for each j E N, there are precisely deg(f) simple 
modules of dimension j. Then everyfinite-dimensional R-module is semisimple. 

Proof. Let L(i) be finite-dimensional. By (5.8), ExtI(L(A), L(A)) = 0. On the 

other hand, if A 0 v , and L(v) is finite-dimensional, then Ext I(L(v), L(A)) # 
0 implies by (5.5a) that either length V(1) > 3 or length V(v) > 3. But this is 
impossible by (2.3c). o 

In ?2, I expressed the expectation that the equivalent conditions of (2.5) 
would always hold. If that expectation is fulfilled, then a modification of (5.8) 
and (5.9) would say that "most" finite-dimensional R-modules are semisimple. 

Example 5.10. Set u(x) x'+1, with n > 2. It is instructive to compare the 
properties of R and U(sl(2)). We will show that (i) for each k E N there are 
precisely n simple modules of dimension k, and (ii) every finite-dimensional 
R-module is a direct sum of simple modules. 

Set Z = {wv E C I )'n+l = l, G c 1}, and Z = {(wc- 1)-' I WcE Z} = 

{z1,..z - n}. 
(a) Claim. V(i) has a quotient module of dimension j E N X) A + 1 = 

j(z + 1) for some z E 2 . The nonsimple V(A) are precisely {V V() I A + 1 E 
(z + I )N for some z E I} . These Al lie on n (real) lines (passing through the 
point - 1) in the complex plane C, which do not intersect i.e. they are distinct. 
Hence there are precisely n distinct highest weight modules of dimension j, 
by (a) :* (c) of (5.8). 

Proof. Set p(Z) (Z + l)n+l _ zn+l E C[z]. Then u(, + 1) - u( - j + 1)= 
n+ 

Ip(j I( + 1) - 1). Hence V(A) has a submodule isomorphic to V(A - j) 
(and a quotient module of dimension j) if and only if p(j (A + 1) - 1) = 0. 
But p(z) =0 t z = ( - 1)1 for some co E Z zE 2. Hence, VQ() has 
a j-dimensional quotient X j (A + 1) - 1 E 2 X)A = j(z + 1) - 1 for some 
z ES. 
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To see that the lines (z + l)R - 1 (z E 2) distinct, it is enough to show 
that arguments of the complex numbers z1 + 1, ..., zn + 1 are distinct. If 

o=cosO+isin6 (6=27rm/(n+1), l <m<n) then zm+l =(w -l) I+ 
1 = -(1 i(sin 0)( 1 - cos 0) 1) It is clear that these have distinct arguments. 
Therefore the lines (zk + 1)R distinct. 

(b) Claim. Each V(i) is of length < 2. 

Proof. Fix A. Suppose that length V(A) > 2. Then there exist il :A j2 and two 
distinct zl, Z2 E 2 (after renumbering the roots) with A + 1 = '1z1 = j2z2. 
Hence the lines z1R and z2R are not distinct, contradicting (a). So, for all 
A EC, length V(A) <2. 

(c) Claim. (i) For each i E N, there are precisely n simple modules of 
dimension j. (ii) Every finite-dimensional R-module is semisimple. 

Proof. (i) By (a) there are precisely n distinct V(A) having a j-dimensional 
quotient. By (b) such a quotient must be simple. 

(ii) Apply (5.9). o 

Consider the case u(x) = x 8; that is, f(x) = (x + 1)8 _ X8 . The points 
in the set {. E C I dimc L(A) < oo} are plotted in Figure 1. These are the 
points (Zm + 1)N - 1 which lie on the lines (Zm + 1)R - 1, where Zm + 1 = 

I(1 - sin(Om)(l - cos(om)F1) and tm = 27rm/8, 1 < m < 7. Beside each 
point A is written dimc L(A). 

Proposition 5.11. Fix d + 1 E N. Suppose x = A is a zero of u(x+ 1l)-u(x-d) of 
multiplicity > 1. Suppose that dime L(A) = d+ 1 . Then Ext (L(A), L(A)) = C, 
and the "unique" nonsplit extension of L(A) by itself is R/I where I = RA + 

d+12 RB + R(H )2. 

Proof. Now I c I' RA + RBd+l + R(H - A)), and I' is the annihilator of 
the highest weight vector in L(A), whence R/I' L(A). Similarly, I'/I is 
generated by the image of (H - A) which is annihilated by I', so there is a 
surjective map L(A) - * I'/I. The next step is to show that I $ I'. 

It suffices to show that (H - A) 0 I. Consider 

InRo =RBA+R Ad+l Bd+l + RO(H - A)2. 

Recall that Ro = C[H, Q], BA = 2(Q - u(H + 1)), and Ad+Bd?l 
= (2)d+1 (Q?-u(H))(Q-u(H- 1)).* (Q?-u(H-d)) . Hence, InRo is generated 

2~~~~~~~~ 
by Q - u(H + 1), (H _ A)2, and (f - u(H))(Q - u(H - 1))... (f - u(H - d)) 
as an ideal of Ro . By hypothesis, u(H + 1) - u(H - d) e ((H - A)2) . Hence 

Q-u(H-d) E (Q-u(H+1), (H-)2) . Thus InRo = (Q-u(H+1), (H-A)) . 
Since Q and H are algebraically independent, it follows that (H-)A) 0 In Ro. 

Thus I $ I', and I'/I L(A). Hence there is a short exact sequence 
0 -+ L(A) R/I -+ L(A) O-. It is clear that this is nonsplit, since if it 
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\2 

5 

4 

FIGURE 1. The points A E C such that dimc L(A) < oo 
when f(n) = (x + 1)8 _-X 

were R/I would be the sum of its weight spaces; this is not the case, since 
(H - A)2E I but (H-A) 0 I. 

It remains to show that R/I is the only nonsplit extension of L(i) by L(A). 
Suppose that 0 -* L(A) -* M -* L(A) -O 0 is nonsplit. We will make use of the 
C[H]-primary decomposition of M. Choose e E M such that h E ML L(A) 
L(i.) is of weight A. Thus (H - A)e E L(A). By (5.3), M is not in 6, so M 
is not the sum of its weight spaces. Therefore M is not generated by a weight 
vector. Hence, (H - A)e 0 O. Therefore there exists e E M\L(A) such that 
(H - A)2e = 0, and (H - A)e$ 0. Now 0 = A(H - A)2e = (H-A- 1)2 Ae, but 
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the (H - A - 1)-primary component of L(A), and hence of M, is zero. Thus 
Ae = 0. A similar argument, using the fact that there is no (H - A + d + 1)- 

primary component, shows that B d+e = 0. Since M is nonsplit M = Re 
R/ Ann(e) . But we have just shown that I c Ann(e), and the result follows 
from the first part of the proof. o 

6. THE CASE degree(f) = 2 

After (1.1), if deg(f) < 1, then R is "known." Hence the first new case is 

deg(f) = 2, or equivalently deg(u) = 3. In this section we study this case in 
detail. 

It is necessary only to study R up to isomorphism, so, as the next lemma 
indicates, we can assume that f is of a special form. Fix c E C, and set u(x) = 

X3 + cx . Then f(x) = I (Au) (X) = I (3x2 + 3x + I + c). Any f(x) of degree 2 

can be brought into this form by a change of the form f(x) e af(x + f,); the 
point of (6.1) below is that such a change to f does not change the isomorphism 
class of R. Hence, if deg(f) = 2, then there exists c E C such that the R 

determined by f is isomorphic to the R determined by u(x) =X3 + cx. The 

case u(x) = x3 is part of (5.10). So throughout ?6, take u(x) = X3 + cx. 

Lemma 6.1. For i = 1, 2, let fi E C[x]. Set Ri = C[Ai, Bi, H] subject to the 
usual defining relations with [Ai, Bi] = fi(Hi). 

(a) If af1 = f2 for 0 $= a E C, then R1 R2 via A1 - aA2, B1 B2, 
H1 - H2. 

(b) If fi(x + ce) = f2(x) for 0 $A a E C, then R1 R2 via A1 A2, 
B1 ,B2, H1I H2+a. 

Proof. Easy. o 

Remarks. (1) Note that af1 = f2 is equivalent to auI = u2, and f1(x +a)= 

f2(x) is equivalent to ul (x + a) = u2(x) - 

(2) I believe it will be very difficult to understand precisely when R, 
- R2. 

Nevertheless, if the conjecture in ?2 is correct then R does determine deg(f) 
because the number of j-dimensional simple modules is precisely n for j > 0 

Since u(x) = x 3+cx, u(x+ 1)-u(x+ 1 -y) = y{ 3(x+ 1)2 -3(x+ l)y+y2 +c}. 

For j E N, the set of V(i) with a j-dimensional quotient is precisely 

{ V(A) I 3(A + 1) - 3(A + l)j + j + c = 0}. 

Since deg(u) = 3, there are at most three Verma modules with a given central 
character, a Verma module has length at most 3 (2.2a), and for each j E N there 
are at most two simple modules of dimension j. 

(a) Claim. R has a Verma module of length 3 if and only if there exist 

distinct i, k E N such that c = -_(i2 - ik + k 2). Suppose that (i k) E N2 

isasolutionto c= -(i 2-ik+k 2),with i> k. Then V(I(i+k)- 1) has 

composition factors L( 
I (i + k) - 1), which is of dimension k; L( Q(i - 2k) - 1 ), 
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which is of dimension i - k; and L( I (k -2 i) - 1), which is infinite-dimensional. 
Furthermore, one has c = -(i2 -i(i-k)+(i-k)2), so V( Q(2i-k)- 1) is also of 
length 3. This has composition factors L( (2i - k) - 1), which is of dimension 
i - k; L( 4 (2k - i) - 1i), which is of dimension k; and L( 4 (- i - k) - 1), which 
is infinite-dimensional. 

Proof. Let A E C. From the above, V(A) is of length 3 X there exist quotients 
of V(A) of dimensions k and i say, with k > i X there are distinct i, k E N 
such that 3(A+ 1)2 - 3(A+ I)i+ i2 +c = 3(A+ 1)2 - 3(A+ 1)k +k2 +c = O. 
Now (j - i)(j - k) = 3(A + 1)2 _ 3(A + l)j + j2 + c i + k = 3(A + 1), and 
ik = 3(A + 1) 2 +c CX# C = _3I(i2 _ ik +k 2) and A + I = (i +k). 

Finding the composition series is obvious. 0 

There are at most a finite number of V(A) of length 3, because there is only 
a finite number of ways to write c as c = - 1 (i2 - ik + k2) with i, k E N. 

(b) Fix j E N. Claim. There are two distinct highest weight modules of 
dimension j X c$A _ j2. 

4~~~~~~~~~~~~~~~~~~~~~ 
Proof. V(A) has a j-dimensional quotient X x = A is a zero of 3(x + 1)2 
3(x + 1)j + j2 + c. Hence there are two distinct j-dimensional highest weight 
modules X the discriminant of this polynomial in x does not vanish., c $ 

1 .2 
_4] . 0 

(c) Claim. Suppose that c = j2 Then there is either (when j is odd) a 
unique j-dimensional simple module, namely, L( j - 1), or (when j is even) 
no j-dimensional simple module. 

Proof. V(A) has a j-dimensional quotient X 3 (+ 1) -3 (+ 1)j+j2 +c = 0 X 

3(A + 1)2 - 3(A + l)j +j2 _j2 = O =ri = Ij - 1 . The module V(4j - 1) has a 

quotient of dimension i 3 3(Ij)2 - 3( j)i + i2 _ fj2 = 0 X (j - i)(j - 2i) = 0. 
Hence, if j is odd, V( 4j - 1) has only one finite-dimensional quotient, namely 
L(j - 1), which is of dimension j. However, if j is even, then V(j - 1) 
is of length 3 (see case 4 below); the composition factors of V( j - 1) are 
L(I j - 1), which is of dimension 'j, L(- 1), which is of dimension j, and 
L(- I j - 1), which is infinite-dimensional. o 

It is now possible to analyze all the possibilities. Define 

F={- (j-jI 2+j_)ij2 , j2eN} and A={ _ j2IeN}. 

(1) Suppose that c 0 A and c 0 F (this is the generic case and, in par- 
ticular, will occur whenever c > 0). There are precisely two simple modules 
of dimension j for every j E N, and every finite-dimensional R-module is 
semisimple. This follows from (b) and (5.9). 

(2) Suppose that c 0 A and c E F (e.g., c = -7/3). By (b), there are pre- 
cisely two highest weight modules of dimension j for every j E N. However, 
some of these will not be simple. If c = - 1 (k2 _ ik + i2) with i > k EN, then 
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V( (i+k) - 1) and V( 3 (2i-k) - 1) are both of length 3 and have i-dimensional 
quotients which are not simple. Note that i :$ 2k, else c E A. There are 
no simple modules of dimension i, because the two distinct i-dimensional 
highest weight modules are the length 2 quotients of V(3 (i + k) - 1) and 
V( 3(2i - k) - 1) . After (5.5a) the nonsplit finite-dimensional modules of length 
2 arise from the Verma modules of length 3. By (5.7), ExtI(L(A), L(A)) = 0 
for all finite-dimensional L(A) . 

(3) Suppose that m E N and that c = 4(2m+ 1)2 E A. A simple calculation 
shows that c 0 F. There is exactly one simple module of dimension 2m + 1, 
namely L(m). For every other j E N, there are exactly two simple modules of 
dimension j. There is a unique nonsplit finite-dimensional module of length 
two, and it arises as 0 -O L(m) -* M -* L(m) -* 0. 

(4) Suppose that m E N and that c = -I(2m)2 E A. A simple calculation 
shows that a solution to c = -3(k2 _ ik + i2) with i, k E N is given by 
i = 2m, k = m (there may be other solutions). There is no simple module of 
dimension 2m. For every other j E N there is at least one simple module of 
dimension j; there will be two simple modules of dimension j unless there is 
a solution to c = _ I (k2 - jk + j2) with j > k E N. The two m-dimensional 
simple modules are L(m - 1) and L(- 1), and there is a nonsplit extension 
0 -* L(-1) -* M -* L(m - 1) -0 which occurs at the top of V(m - 1) . This 
extension is in some sense "trying to be the missing 2m-dimensional simple 
module." 

APPENDIX 

Useful identities: 

f(x) + f(x - 1) + + f(x - j + 1) = (u(x + 1) - u(x - j + 1)) forj E N. 

g(H)A = Ag(H + 1), 
g(H)B = Bg(H- 1), 
[g(H), A] = A(g(H + 1) - g(H)) = AA(g(H)), 

[g(H), B] = B(g(H- 1) - g(H)) = -BA(g(H- 1)), 

H 
5)A =At H ), 

AB -BA =(u(H + 1 )-u(H)), 

AB+BA = Q- l(u(H+ l)+u(H)), 

AB =(Q- u(H)), 

BA-= (Q-u(H+ 1)), 

AkBk = 'A k-I (Q - u(H))Bk-I 
k-i 

= 'Ak-lBk (Q-u(H-k+ 1)) 

= )k(Q - un _H))r( - u(Hz - 1) . .. (Q-u(H-k- k 1)AA 
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BkAk = 2 Bk-I (K - u(H + 1))Ak-i 

- l Bk-(Ak-I (Q-u(H + k)) k 1 

= ( 
1)k(n 

_ u(H + 1))(Q - u(H + 2)) ..(Q - uH+k) 

[g(H), Ak] = A k(g(H + k)-g(H)), 

[g(H), Bk] = B k(g(H-k)-g(H)). 
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