
K-Theory 8: 65-80, 1994. 65 
© 1994 Kluwer Academic Publishers. Printed in the Netherlands. 

The Four-Dimensional Sklyanin Algebras 
S. P. SMITH* 
Department of Mathematics, University of Washington, Seattle, WA 98195, U.S.A. 
e-mail: smtih@math.washington.edu. 

(Received: February 1993) 

Abstract. The four-dimensional Sklyanin algebras are certain noncommutative graded algebras having the 
same Hilbert series as the polynomial ring on four indeterminates. Their structure and representation 
theory is intimately connected with the geometry of an elliptic curve (and a fixed translation) embedded 
in p3. This is an account of the work done on these algebras over the past four years. 
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1. Introduction 

This is an expanded version of the talk I gave at the meeting in honour of M. Artin, 
held in Antwerp during May 1992. 

Our  purpose is to introduce the nonexpert to the structure and representation 
theory of the noncommutat ive algebras defined by Sklyanin in 1982. Of  more 
importance than the algebras themselves are the methods and techniques used to 
study them. These methods suggest that there is a subject of 'noncommutat ive 
algebraic geometry': the Sklyanin algebras are a particularly interesting and sugges- 
tive example of what such a subject is about. 

It  is appropriate  to discuss such matters at this conference in honour of M. Artin. 
As the historical account in the last section of this article makes clear, he has been 
at the forefront of the development of these new methods. 

2. Definitions 

Fix an elliptic curve E = C/7/<~ Z~7 over C, and a point z ~ E which is not in the 
four-torsion subgroup E4. For  each such pair (E, ~) we will define a graded algebra 
A(E, z). There are several possible definitions, but the following has the advantage of 
being short, and easy to work with. 

D E F I N I T I O N  2.1. [16] Fix a degree 4 line bundle L~ ° on E, and set V = H°(E, ~ ) .  
Identify V ®  V with H°(E ! E, LP[]LP). Define the shifted diagonal 
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At .'= {(x, x + z) fx e E}. Denote by M the set of fixed points for the involution 
(x, y) ~ (y + 3, x - z) on E x E. We say that a divisor D on E x E is allowable if D 
is stable under this involution, and M occurs in D with even multiplicity. The 
four-dimensional Sklyanin algebra associated to (E, 3) is defined to be the quotient of 
the tensor algebra, 

A(E, z),= T(V)/(R),  

where 

R..= { f e  V ®  V [ f =  0, or ( f )  = At + D and D is allowable}. 

This definition was given by Odesskii and Feigin [16] in 1989. However, as the 
name suggests, these algebras were first defined by Sklyanin in 1982 [18]. Sklyanin's 
definition was nothing like the above. He begins with Baxter's 2 x 2 solution to the 
Yang-Baxter equation, and defines an algebra in terms of this. Some manipulations 
yield a description in terms of generators and relations: 

A(E, z) = C[xo, xt,  x2, x3] 

with relations 
X o X  1 - -  X I X  0 = 51(XzX 3 --1-- XaX2) , X o X 1  -~- X I X  0 = X 2 X  3 - -  X 3 X 2 ,  

X o X 2  - -  X 2 X o  = 52(X3X1 -[- XIX3), X o X 2  + X 2 X o  = X a X l  - -  X a X 3 ,  (2.1) 
X o X  3 - -  X 3 X  0 = 53(XIX 2 --l- X2X1) , X o X  3 "-I- X 3 X  0 = X 1 X  2 - -  X 2 X 1 ,  

where ~ = (st, 52, 5a) s C 3 is determined by (E, 3) (see Section 12.4 for details). The 
parameter e lies on the surface 51 + 52 + e3 + 515253 = 0, but not all points of this 
surface arise from some (E, z). 

Let A be an N-graded k-algebra. If M is a Z-graded A-module, we write 
H~t(t) = 2,(dim M,)t" for the Hilbert series of M. If H~t(t) = g(t)(1 - t) -k for some 
g(t) e Z[t, t -1] satisfying 9(1)¢  0, then the Gelfand-Kirillov dimension of M is 
defined to be d(M) ,= k and the multiplicity of M is defined to be e(M) := 9(1). Thus, 
d(M) = 0 if and only if M is finite-dimensional, and in that case e(M) is its dimension. 
If A is a quotient of a polynomial ring, then d(M) is the Krull dimension of M, and 
e(M) is the usual multiplicity. 

An A-module M is d-critical if d(M) = d and d(M/N) < d for all nonzero sub- 
modules N c M. If d e 7/then we define the shift of M by d to be the graded A-module 
Mid] which equals M as an ungraded module, but is graded by M[d]i = Ma+~. 

3. Good Properties 
It has emerged that the Sklyanin algebras are in many respects as well-behaved as 
commutative polynomial rings, except for the fact that they are noncommutative. 

T H E O R E M  3.1 [21]. A(E, z) is a Noetherian domain, and has the same Hilbert series 
as the polynomial ring in four indeterminates. It has global homological dimension 4, 
and is a Koszul algebra, in the sense that Ext,(C, C) ~ A ~ := T(V*)/(R± ). 
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For a noncommutative algebra, having finite global dimension is not as strong a 
condition as it is for a commutative ring. However, A(E, ~) does satisfy stronger 
technical conditions, which play a crucial role in the proof of some of the later results. 

THEOREM 3.2 [12]. Let M be a finitely generated A(E, r)-module. 

(a) Ext,(N, A) = 0 for all submodules N c ExtJa(M, A) and all i < j. 
(b) I f  M ¢ 0 and j(M).'= min{j I Extra(M, A) ¢ 0} then d(M) + j(M) = 4. 

Condition (a) is called the Auslander condition, and a ring which satisfies condition 
(b) is said to satisfy the Cohen-Macaulay condition. 

4. A Problem 

Describe all finite-dimensional irreducible representations of A(E, ~). 

Sklyanin's original motivation for introducing A(E, ~) was that a natural question 
concerning the 'quantum inverse scattering method' could be rephrased as the 
problem of finding all finite-dimensional A(E, ~)-modules. Of course, the first step is 
to find the simple modules. 

Even without Sklyanin's question as motivation, the question of finding the 
finite-dimensional representations of an algebra is a central issue in noncommutative 
algebra. This question arises from the more fundamental question of finding 
solutions in matrices to a system of 'noncommutative polynomial equations', in the 
same way that the question of finding (or understanding) the solutions in some field 
to a system of polynomial equations gives rise to commutative algebra and algebraic 
geometry. In our context there is an obvious bijection 

{d-dimensional A-modules} ~ {solutions Xo, xl, x2, x3 ~ Me(C) to (2.1)}. 

In this talk we wish to emphasize the parallel between the methods of com- 
mutative algebra/algebraic geometry, and the methods which have been introduced 
in the past 5 or 6 years to study certain noneommutative graded algebras. These 
methods are particularly effective for solving the problem stated above. 

It is helpful to think of our problem as analogous to that of finding the points of 
an aMne variety. However, since A(E, ~) is a graded algebra, it is natural to approach 
this question through an analogy with projective algebraic geometry. Thus, the 
graded A-modules are of central interest. These modules will be studied as objects of 
the category Proj(A). 

5. Proj(A) 

DEFINITION 5.1, Let A = A0 • A1 G A~ • .,. be a graded, connected, Noetherian 
algebra over a field k, and suppose that A is generated as a k-algebra by A1. 
('Connected' means that Ao = k.) Define the following categories. 
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GrMod(A) is the category of all finitely generated Z-graded A-modules with 
morphisms being the degree 0 A-module homomorphisms. 

Tors(A) is the full subcategory consisting of the finite-dimensional graded A- 
modules. 

Proj(A) is the quotient category GrMod(A)/Tors(A), which may be formed since 
Tors (A) is a Serre subcategory. 

If A were a commutative algebra, and S the projective scheme determined by A, 
then Serre's Theorem [17] says that the category Proj(A) is equivalent to the 
category of coherent sheaves of (_gs-modules. 

For those somewhat unfamiliar with the formation of a quotient category, we 
remind them that the objects are the same as the objects of the original category, but 
there are more morphisms. In particular, there are more isomorphisms. For example, 
in our case, i f f : M  -~ N is a degree 0 homorphism of graded A-modules, then f is an 
isomorphism Proj(A) if the kernel and cokernel of f are finite-dimensional. 

The finite-dimensional simple A-modules, which are the objects of eventual 
interest, are not graded modules, but the next two results indicate how they are 
related to the irreducible objects in Proj(A). Recall that an irreducible object in an 
Abelian category is an object M whose only subobjects are (isomorphic to) M itself 
and 0. In particular, if F is an infinite-dimensional graded A-module, all of whose 
proper quotients are finite-dimensional, then F is irreducible in Proj(A). Such 
modules are familiar to ring theorists: a 1-critical graded A-module is irreducible in 
Proj(A). 

PROPOSITION 5.2. [20]. Let A be a graded, connected, Noetherian algebra over an 
algebraically closed field k, generated in degree 1. Every nontrivial finite-dimensional 
simple A-module is a quotient of a graded A-module which is irreducible in Proj(A). 
This graded module is unique up to isomorphism and shifting degree, as an object of 
Proj(a). 

The trivial A-module is AlAs + Az + ... .  It is simple since A is assumed to be 
connected. We will always ignore this simple module (cf. the irrelevant prime ideal); 
the words 'simple A-module' will always mean 'nontrivial simple A-module'. 

The reader should be warned that it is possible for an irreducible object in Proj(A) 
to have no finite dimensional simple quotients other than the trivial module. 

PROPOSITION 5.3. [20]. Let A be a graded, connected, Noetherian algebra over an 
algebraically closed field k, generated in degree 1. I f  F is an irreducible object in 
Proj(A) having finite-dimensional simple quotients $1 and $2, then S~and $2 are 
equivalent simple modules in the sense that there is a commutative diagram: 

A ~ ~ A 

M.~(k) .... ~. , M~(k) 
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for some 2ek ,  where ~bxsAut(A) is given by c~x(a)= 2"a for a eA, ,  and 
~/'i: A ~ Endk(S~) ~ Mat(k) is the map induced by the action of A on Si. In particular, 
dim(S1) = dim(S2). 

The equivalence in Proposition 5.3 is the noncommutative analogue of the 
equivalence relation used to construct projective space, viz. two points in atfine space 
are represented by the same point in projective space if and only if they are scalar 
multiples of one another. 

After (5.2) and (5.3) our original problem may be broken into the following 
subproblems: 

(1) find/classify all the irreducible objects in Proj(A); 
(2) decide which of these have a finite-dimensional simple quotient; 
(3) find the dimension of the simple quotients. 

6. Point Modules 

Suppose that R = C[To . . . . .  7",]/,1 is a graded quotient ring of the commutative 
polynomial ring endowed with its usual graded structure. Let ~ ( J )  ~ P" be the 
projective variety cut out by J. To each point p ~ ~r(j)  we may associate the graded 
R-module M(p),= R/I(p) ~- C[T],  where I(p) is the ideal generated by the homo- 
geneous polynomials vanishing at p. Since C[T]  is a domain, every proper quotient 
of M(p) is finite-dimensional, whence M(p) is an irreducible object in Proj(R). It is an 
easy exercise to see that every irreducible object in Proj(R) is isomorphic to one of 
this form. This familiar example motivates the following definition. 

D E F I N I T I O N  6.1 [4]. A point module is a graded A-module M such that 

(1) M is cyclic, and 
(2) Hu(t) = (1 - t)-1. 

Even if A is not commutative, a point module still determines a point of the 
projective space P(A~) of lines in A~, namely (AnnA (Mo))l: since d im( too)=  

1 

dim(M1) = 1 and M is generated by Mo, the kernel of the map A1 -~ Hom(Mo, M1) 
is of codimension 1. 

The relevance of this definition to our problem is that every point module is an 
irreducible object in Proj(A). This is easy to see, since a point module is 1-critical: if a 
submodule contains M~ then it contains Mj for all j >/i since M is cyclic and A is 
generated in degree 1, whence the quotient is finite dimensional. Thus it is natural to 
determine the point modules, as a first approximation to understanding Proj(A). 

T H E O R E M  6.2. [21]. The point modules for A(E, z) are in bijection with 

E w {Co, el, e2, e3} = P(A*) = P(H°(E, Zf)*) ~- p3, 

where E is identified with its image in p3 obtained via the ample line bundle ~ ,  and the 
four points e~ are the singular points of the four singular quadrics which contain E. 



70 S.P. SMITH 

Notation. Write M(p)  for the point module corresponding to the point 
p~Eu {eo,. . . ,  e3}. 

From now on we will always identify E with its image in P(A*). The reader should 
be aware of the following well-known facts. Firstly, E is defined by two quadratic 
equations, and consequently there is a pencil of quadric surfaces containing E. 
Exactly four of these quadrics are singular, and they may be labelled Qi in such a way 
that ei = Sing(Q~). 

The generators for the algebra given by (2.1) have the property that xj(ei) = 6 u. 
Thus, M(e~) ~ A / A x  i + AXk + Ax,  where {i,j, k, l) = {0, 1, 2, 3}. These are the 'obvi- 
ous' point modules, and have as quotients all the one-dimensional simple A- 
modules (i.e. the simple modules which are the easiest to find). 

Theorem 6.2 shows that E, which was used in defining A(E, z), may be recovered 
from knowledge of the point modules. So can z. If p ~ E then the submodule of M(p)  
consisting of the degree ~> 1 part is generated by M1, and has Hilbert series 
t(1 - t)-1. Hence, if we shift degree it becomes a point module. It is isomorphic to 
M(p - z). In other words, there is a short exact sequence 

0 ~ M ( p  - z ) [ -  1] ~ M(p) ~ C ~ O, 

Hence, one recovers z fl'om the point module data. For a commutative ring, a 
nonzero submodule of a point module is isomorphic to (a shift of) the original point 
module. Hence, the noncommutativity of A is due to z and can be recognized from 
the point modules. There is also a short exact sequence 

0 ~ M(e~)[- 1] -~ M(ei) ~ C ~ 0. 

From the penultimate short exact sequence, one sees that if z is of finite order, n 
say, then there is a nonzero degree n map ¢: M(p) ~ M(p). It is not difficult to show 
that for each 0 ~ ) ~  C, the cokernel of 1 - 2¢ ~ EndA(M(p)) is a simple A-module of 
dimension n, and that these are the only finite-dimensional simple quotients of M(p). 
In particular, if z is not of finite order, then M(p) has no nontrivial simple quotients. 
This confirms the earlier comment that an irreducible object in Proj(A) may have no 
finite-dimensional simple quotients. The details of these arguments appear in [13, 
Section 5]. 

Define 

by 

F c P(A~') ! P(A~') ~ ~3 ! ~3 

r := {(x, y)I~ a s.e.s, of point modules 0 ~ M(x) [ -  1] ~ M(y)  ~ C ~ 0). 

Such a definition may be made for any graded algebra A. If the image of f e A1 ® A 1 
in Az under the multiplication map is zero (i.e. if f is a quadratic relation of A) then 
f must vanish on F. For the algebras A(E, z), Theorem 6.2 says that F ~ At, the 
shifted diagonal occurring in our definition of A(E, z). This is not surprising when 
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A(E, z) is defined as in Definition 2.1, but is a surprise when A(E, ~) is defined as in 
Sklyanin's original paper [18], or when A(E, ~) is defined by generators and relations. 
This is one reason why the Odesskii-Feigin definition is to be preferred, but see also 
Section 12.5. 

7. Fat Points 

We remarked in Section 6 that for the commutative ring R = C[To, ..., T,I/J,  the 
point modules are all the irreducible objects in Proj(R). However, for a noncom- 
mutative algebra there may be other irreducible objects in Proj. This is analogous to 
the fact that simple modules over a noncommutative algebra need not be 1- 
dimensional (even if the base field is algebraically closed). The other irreducible 
objects of Proj are called fat points. 

PROPOSITION 7.1 [4]. Let A = A(E, z). Every irreducible object in Proj (A) has a 
representative F ~ Gr Mod(A) such that 

(1) F =- Fo G F1G ...; 
(2) F is generated by Fo; 
(3) dim Fj is a constant, dim F] = e(F), the multiplicity of F; 
(4) F has no nonzero finite dimensional submodule. 

The proof of this result uses the homological properties of A(E, z) given in 
Theorem 3.2. 

DEFINITION 7.2. If F has the properties in Proposition 7.1 and e(F) > 1 we call F 
a fat point module, and its isomorphism class in Proj(A) a fat point. 

Hence, our original problem of finding the finite-dimensional simples reduces, after 
(5.2), (5.3) and (7.1), to the problem of finding the fat points, and their simple quotients. 

8. Line Modules 

Our search for the fat points proceeds by first understanding another important class 
of modules, the line modules, and obtaining the fat points as quotients of these. 

DEFINITION 8.1. A graded A-module M is a line module if 

(1) M is cyclic and 
(2) H•(t) = (1 -- t) -z. 

For the commutative algebra R = C[To . . . .  , T,]/J, the line modules are in 
bijection with those lines in P" which lie in q/~(J). Even in the non-commutative case, 
each line module determines a line in P(A*), namely (Annal(M0)) t. 

THEOREM 8.2. [13] The line modules for A(E, z) are in bijection with those lines in 
P(A*) which are secant lines to E. 
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Notation. If p, q e E then the secant line through p and q is denoted pq and the 
corresponding line module is denoted M(p,  q). We also write M(1) for the line module 
corresponding to a line I. 

DEFINITION 8.3. If F is an irreducible object in Proj(A(E, z)), and I is a secant line 
we say that F lies on l, or that I contains F, if there is a non-zero (degree 0) map 
M(/) --, F. (Since F is irreducible in Proj(A), the image of the map is isomorphic to F 
in Proj(A).) 

PROPOSITION 8.4 [22]. Every fa t  point lies on a secant line. 

Definition 8.3 is consistent with the geometry, since a point module lies on a secant 
line if and only if the secant line passes through the point in question. For example, if 
p, q e E there is a short exact sequence 

0 --* M ( p  + z, q - z ) [ -  13 --* M(p,  q) ~ M(p)  ~ O. 

Similarly, if ~ passes through one of the singular points el there is a short exact 
sequence 

0 ~ M ( p  - z, q - z ) [ -  1] ~ M(p,  q) --* M(ei) --* O. 

There are no other ways in which a point module can lie on a secant line. These 
results are proved in [13]. 

After Proposition 8.4 our search for fat points proceeds by asking which lines 
contain fat points. The next result reduces this to the problem of understanding the 
maps between line modules. 

PROPOSITION 8.5 [22]. Let  C be an irreducible object in Proj(A) of  multiplicity e. 
By  Proposition 8.4 we may assume it is a quotient o f  a line module, say M(p,  q). Then 
there exists another line module M(1) and a short exact sequence 

0 --* M ( l ) [ - e ]  ~ M(p,  q) ---r C ~ O. 

9. Central Elements and Analogies 

Sklyanin [18] found two linearly independent element of degree 2 in A(E, z), which 
we shall label f~,  f12. The linear combinations of these elements are analogous to the 
defining equations of the quadrics containing E. 

Two results confirm that this is a good analogy. The first is that B .'= A/(F21, ~ 2 )  
has as its point modules precisely the M(p) for p e E, and so in this respect resembles 
the homogeneous coordinate ring @n~>o H°(E, ~o®,). Actually, this is a small part of a 
result of Artin and van den Bergh [6] which states that Proj(B) is equivalent to the 
category of coherent (gE-modules. 

The second piece of evidence for the reasonableness of the analogy comes from 
finding quadratic elements in A(E, z) which annihilate line modules. The pencil of 
quadrics containing E may be labelled Q(z) (z ~ E) in such a way that Q(z) = Q ( - z )  
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and 

U 
p+q=z 

(Of course, this depends on placing the identity at a particular place on E: the 
identity is placed so that four points of E ~ p3 are coplanar if and only if their sum is 
zero.) Thus, the next result is an analogue of the tautology that the defining equation 
of Q(z) vanishes on the secant lines p-~ for which p + q = _ z and on no others. 

T H E O R E M  9.1 [13]. I f  z ~ E then there exists 0 ~ f~(z) ~ Cf~l + C~'~2 (unique up to 
scalar multiple) such that 

f 2 ( z ) ' M ( p , q ) = 0 - c ~ p + q = z  or p + q = - z - 2 z .  

The only equalities are f~(z) = f2(-  z - 2z). 

The fact that f~(z) = f~ ( - z  - 20  is another manifestation of the noncommutativ- 
ity: the central element f2(z) annihilates line modules corresponding to lines lying on 
two different quadrics, namely Q(z) and Q ( - z  - 2z) (one ruling from each quadric). 
Consideration of annihilators of line modules allows one to sharpen Proposition 8.5 
as follows. 

P R O P O S I T I O N  9.2 [22]. Let C be an irreducible object in Proj(A) of multiplicity 
e > 1, and suppose C is a quotient of M( p, q). Then 

(1) there is a short exact sequence 

0 ~ M( p - ez, q - e z ) [ -  e] --* M( p, q) --* C --+ 0 

(2) /f  2ez # 0 then p + q = co + (e - 1)z .for some co ~ E2. 

We will not discuss how one determines when there exist nonzero maps between 
line modules, but after that is done one may classify all the fat points. The next two 
sections give the results obtained. 

10. When • is of  Infinite Order 

The next result solves our original problem when z is not of finite order. 

T H E O R E M  10.1 [22]. Suppose that z is of infinite order. Let E2 denote the 2-torsion 
subgroup of E. 

(1) The fat points may be labelled as {F(co + kz) Io9 ~ E2, 0 ~< k e Z}. 
(2) F(co + kz) lies on the secant line ~ if and only if  p + q = co + kz. 
(3) e(F(co + kz)) = k + 1. 
(4) For each o9 ~ E2, f(co) _~ M(e~) where ei = Sing Q(co). 
(5) F(co + kz) has a 1-parameter family of (k + 1)-dimensional simple quotients (cf 

Proposition 5.3). 
(6) These are all the fn i te  dimensional simple A(E, z)-modules. 
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Thus, for each d ~ N, there are four 1-parameter families of d-dimensional simple 
A(E, z)-modules, one for each element of E2. All the simples within a particular 
1-parameter family are equivalent in the sense of Proposition 5.3, and there are no other 
equivalences. 

This result tells us that there is a similarity between the representation theory 
of A(E, ~) and that of both U(gI(2)), the enveloping algebra of gI(2), and Uq(~l(2)), 
the quantized enveloping algebra of ~1(2). Recall that for each d e N, there is 
a 1-parameter family of simple d-dimensional gI(2)-modules, and if q is not a root 
of unity, then for each d there are precisely 4 simple Uq(~l(2))-modules of dimension 
d. It is not inappropriate to think of the line modules M(p, q) as analogous to 
Verma modules, and if we write V(co + k~) for a suitable simple quotient of 
F(co + kz) then co + kz is like a 'highest weight'. This analogy is made clearer in 
[14]. 

As we will now explain, the similarity to U(gl(2)) and Uq(~l(2)) is not too 
surprising. Recall that when A(E, z) was defined in Section 2, we required 4~ ¢ 0. 
However, let's look at what happens when z is 2-torsion. If z = !(1 + q) then 
a, = 0 for all i; to see this one needs the description of the a~ in Section 12.4. From 
Equation (2.1) one sees that Xo is now central, and that A / ( X o -  1 ) ~  U(~o(3)), 
and since our base field is C, this is isomorphic to U(~I(2)). The representa- 
tion theory of A(E, !(1 + t/)) is governed by that of U(~I(2)) - for precise details 
see [14]. Hence, we may think of A(E,!(1 + t/)) as the homogenization of 
U(~l(2)), or as a graded version of U(gl(2)) which is also of Gelfand-Kirillov 
dimension 4. 

Now suppose that z e E2 but v ¢ !(1 + t/). In this case exactly one ~ = 0, and it is 
not difficult to see that there are elements K+, K_ e A1 such that K+K_ is central. 
Furthermore A/(K+K_ - 1) - Uq(~I(2)) for a suitable q. The details of these state- 
ments are in [21, Section 1]. As one varies E so does q change, and every Uq(~l(2)) 
occurs as a quotient of one of the algebras defined by relations (2.1). 

Thus it is not inappropriate to think of A(E, z) for a general • as a 'deformation' of 
U(gl(2)) or of U,(~I(2)). 

As the next section will show there is a distinct difference between the cases when 
is of finite and infinite order. This is due to the fact that the center is 'small' when ~ is 
of infinite order, and 'large' when v is of finite order. In particular, compare the next 
two results. 

T H E O R E M  10.2. [13]. When z is of infinite order, the center of A(E, z) is C[f~I, ~t'~2]. 

11. When T is of Finite Order 

Write n for the order of z and s for the order of 2z, 

T H E O R E M  11.1 [20] [23]. I f  z is of finite order, then A(E, z) is a finite module over 
its center. 
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THEOREM 11.2 [20]. Suppose that • is of finite order n, and let s be the order of 2~. 

(1) A(E, ~) satisfies a polynomial identity of degree 2n. 
(2) I f  g = Ho,,kf~(o)+ k~) where the product is taken over all ~ E2 and all 

0 <~ k < s - 1 then A[#- l ]o  is an Azumaya al#ebra of rank s 2 over its center. 
(3) A[# -1] is Azumaya of rank n 2 over its center. 

THEOREM 11.3 [20]. Suppose that • is of finite order, and let s be the order of 2T. 

(1) All fat points are of multiplicity <<.s. 
(2) The fat points of multiplicity s are parametrized by a rational 3-fold. 
(3) The only fat  points of  multiplicity <s are the fat points {F(co + kz)too ~ E2, 

0 < k < s - 1} described in Theorem 10.1. 

THEOREM 11.4 [20]. Suppose that "c is of finite order n, and let s be the order of 2~. 

(1) I f  F is a fat point of  multiplicity s, then F has a t-parameter family of  simple 
quotients of  dimension n (an equivalence class in the sense of 5.3). 

(2) Each M(ei) has an equivalence class of 1-dimensional simple quotients. 
(3) I f  p ~ E then M(p)  has an equivalence class of  n-dimensional simple quotients, 

and no others. 
(4) I f  F = F(o9 + k~) for some ~o E Ee and 0 < k < s - 1 as in Theorem 10.1, then F 

has an equivalence class of  (k + 1)-dimensional simple quotients. 

Theorem 11.2.2 is best understood in the following context. Let S denote the pro- 
jective scheme determined by Z(A) the center of A. Then we may construct a sheaf ~¢ of 
@s-algebras as follows. For each homogeneous 0 ~ f ~ Z(A) the sections of ~¢ over 
S(,) = Spec(Z(A)[f-110 ) is A [ f - 1 ] 0 .  Because A is a finite Z(A)-module, ~¢ is a co- 
herent (gs-module. Hence, (11.2.2) describes a dense open set over which s¢ is Azumaya. 

By Theorem 11.2.1, or by Theorem 11.3.2 and Theorem 11.4.1, there is a 
four-dimensional family of n-dimensional simple A-modules, and no simple modules 
of dimension > n. To give a more precise classification of these we must classify the 
fat points of multiplicity s. This is done as follows. 

First, since a fat point lies on some line it is annihilated by some f~(z), so we may 
fix z and parametrize the fat points killed by each f2(z). The classification depends on 
whether or not f~(z) divides the element 9 defined in 11.2.2. For this discussion, let's 
suppose that f~(z) does not divide 9. 

The fat points will be classified in terms of which lines they lie on. Let L(z) denote 
the set of secant lines {p~] p + q = z}. We say that two secant lines are equivalent [1] 
if they contain infinitely many fat points in common. In turns out that (for this choice 
of z) the equivalence class of ~-q ~ L(z) is [p-~] = {p + 2i~, q - 2i~li ~ 7/}. If F is a fat 
point killed by f~(z) then F lies on a line in 11 e L(z) and on a line lz ~ L( - - z  - 2r), 
and 11 and Iz are unique up to equivalence. Conversely given lines 11 ~ L(z) and 
Iz ~ L ( -  z - 2z) there is a fat point lying on both these. Hence, the fat points killed by 
f~(z) are in bijection with pairs ([ll], I/el). 
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If c r : E ~ E  is defined by a ( p ) = p + ~ ,  then (c r2)*~-- -~  where 5¢~= 
£,a ® a*2 '  ® ... ® (o'*)~-1~. We define ~ '  to be the descent of c~ to E ' =  E/(2r)  
(see [23]), and identify E' with its image in P ' =  P(H°(E ', ~ ' ) * ) ~  p3 under the 
obvious embedding. Again there is a pencil of quadrics containing E' and if z' 
denotes the image of z in E', then the hypothesis on ~q(z) ensures that 

Q(z') = U{P'q'{P' + q' = +_z'} 

is a smooth quadric containing E'. Let L(z') and L ( - z ' )  denote the two rulings on 
Q(z'). Hence, the equivalence classes of lines in L(z) are in bijection with the lines in 
L(z'). Similarly, the equivalence classes of lines in L ( - z  - 2~) are in bijection with 
the lines in L( -z ' ) .  

It is now possible to establish a bijection between the fat points killed by f~(z) and 
the points of Q(z')\E' as follows. First observe that there is a bijection between points 
of Q(z') and points of L(z') x L(--z'): a point corresponds to the line pair which 
intersects at that point. Hence, if F is a fat point killed by f~(z), lying on 11 • L(z) and 
on 12 • L ( - z  - 2z), then F corresponds to the point [11] c~ [12] • Q(z'). 

12. Further Remarks 

These final remarks add some detail to issues which were treated rather cursorily in 
the main text. 

(1) An A-module M is called a Cohen-Macaulay module if Ext,(M, A ) =  0 
whenever i 4 j ( M )  (see Theorem 3.2 for the definition ofj(M)). By [13], the point 
modules and line modules are precisely the Cohen-Macaulay modules of G K  
dimension 1 and 2 respectively which are of multiplicity 1. Thus these are precisely 
the modules with the nicest homological properties. We remind the reader that over 
the commutative polynomial ring R = k[To . . . . .  T,] the Cohen-Macaulay modules 
of multiplicity 1 are precisely the modules R/ (y t , . . . ,  y,,) where the yi are linear 
forms, i.e. such modules are in bijection with the linear subspaces of P". 

(2) Generalizing Definitions 7.2 and 8.1, one may also define plane modules for 
A(E, ~), By [13] these are exactly the Cohen-Macaulay modules of G K  dimension 3 
and multiplicity 1, and they are in bijection with the planes in p3. We call any cyclic 
graded module having the same Hilbert series as a polynomial ring, a linear module. 
It can be shown that if L is a linear A(E, z)-module, then L ~ A / A W  where W c A1 is 
the space of linear forms vanishing on L. This is easy to prove for plane modules 
once one knows the Hilbert series of A, and that A is a domain. It is also fairly easy 
to prove for point modules. However, the only proof I know for line modules uses 
the fact that A has the Cohen-Macaulay property and satisfies the Auslander 
condition. This is (to me) somewhat unsatisfying. 

(3) The two proofs of Theorem 11.1 in [20] and [23], showing that A is finite over 
its center, are completely different. The proof in [23] (which is modelled on that in 
[3]) is direct, first determining the center of B := A/(f~l,  ~2)  (which mainly involves 
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geometric arguments), and then pulling the result up to A using the fact that f~l, f~2 
is a regular sequence. The proof in [20] is indirect. It first shows there are enough 
finite dimensional simple A-modules of bounded dimension to separate elements of 
A, whence A satisfies a polynomial identity. Thus A[z-1] is finite over its center for 
some central z e A. However, since A has good homological properties, one may 
apply a result of Stafford [24] to conclude that A is a maximal order, and hence 
finite over its center. 

(4) The coefficients ei in the defining equations (2.1) are 

= \Ool(z)O o( )J " 

= - \0oo( )01o( )J ' 

= - \Ooo( )Ool(r)J 

where the 0,b are Jacobi's four theta functions with respect to 7/@ 7/t/having zeroes 
at 

(5) In [13] there is another geometric definition of the defining relations of A(E, z): 
the space of relations for A(E, ~) is precisely the subspace of V ® Vconsisting of those 
f which vanish on As and on all (ei, ei). Conversely, the subvariety of p3 x p3 cut out 
by the defining relations is As w {(e~, e~)}. Since this is the graph of an automorphism 
of E u {e~}, it follows from [4] that the point modules are in bijection with the points 
of E w {e~}. We also remark that As u {(ei, e~)} is the variety F defined at the end of 
Section 6. 

13. A Brief History 
Around 1985-1986 M. Artin and W. Schelter [2] classified all three-dimensional 
regular graded algebras (the definition of 'regular' is not the usual commutative 
one - the only commutative algebra which belongs to their class is the polynomial 
ring). The classification includes a classification of all graded algebras A = k[x, y, z], 
generated by 3 degree 1 elements, such that 

(a) A has the same Hilbert series as the commutative polynomial ring, 
(b) every A-module has a projective resolution of length 3, 
(c) Ext,(k, A) = 0, if i < 3 and, k if i = 3. 

They prove that the algebras satisfying (a)-(c) fall into 6 classes, the most interesting 
of which is the one they labelled 'Type A'. The algebras in this class are now called 
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three-dimensional Sklyanin algebras since they resemble the four-dimensional 
Sklyanin algebras. We will briefly discuss the Type A algebras. 

Although Artin and Schelter were able to show that the generic Type A algebra is 
regular (in their sense), they were unable to determine precisely which Type A 
algebras were regular. This problem was solved by Artin, Tate and van den Bergh 
[4]. Among the new methods which they introduced was the notion of a point 
module. The point modules for a Type A algebra are parametrized by an elliptic 
curve, E say, lying in p 2  = P(A*). Shifting the grading on a point module corre- 
sponds to translation by a point z e E (cf. Section 6). The algebra A can be defined in 
terms of the data (E, r) as follows. Let Ra denote the subspace of A1 ® A1 consisting 
of those bilinear forms which vanish at all points (x,x + z) ,xeE.  Then 
A ~- T(A 1)/(RA >. In [5] the notion of a line module is also introduced and it is 
shown that the line modules are in bijection with the lines in pz. Furthermore, a 
point module is a quotient of a given line module if and only if the corresponding 
point lies in the intersection of E with the corresponding line. 

One of the main steps in understanding A is the passage to the ring B := A/(9>, 
where 9 is a homogeneous cubic central element, first found by Schelter's program 
'ANne'. The algebra B is a 'twisted homogeneous coordinate ring' of E; such algebras 
are studied by Artin and van den Bergh [6], and it follows from their work that the 
category Proj(B) is equivalent to the category of coherent OE-modules. Thus, B is 
well understood. 

The structure of A depends delicately on whether or not z is of finite order. If z is 
of infinite order, then the center of A is k[9], whereas A is a finite module over its 
center when z is of finite order. The latter is the more complicated case, since then A 
must have a three-dimensional family of finite-dimensional simple modules, and it is 
a natural problem to understand these. One approach to doing this is to construct 
from A a sheaf d of (gs-algebras where S is the projective scheme determined by the 
center of A: if 0 ~ u is a central element of A then 

@s(S(,)) = Z(A)[u-1]o and d(S(~)) = A[u-1]o. 

The center ~ of A is defined by Y'(S(,)) = Z(S(,))) and the scheme Spec Y" is defined 
in the usual way. In [1] Artin shows that Spec Lr - p2 if the order of z is not 
divisible by 3; it is not always the case that S ~ p z  For more complete information 
on the center see [23]. In studying d ,  Artin introduced the notion of a 'fat point', 
and it plays a central role in his proof that Spec Lr _-_ pz. 

The other strand of our story begins in 1982-1983 with two papers of E. K. 
Sklyanin [18, 19]. In these papers, Sklyanin defined and began a study of the 
algebras A(E, ~). He defined A(E, "c) in terms of Baxter's solution to the Yang-Baxter 
equation [7]. Baxter's solution is given in terms of certain theta functions on an 
elliptic curve E, and the coefficients in the defining relations of Sklyanin's algebras 
are also given in terms of theta functions evaluated at a certain point -c of E. Sklyanin 
was interested in finding all the finite-dimensional irreducible representations of 
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A(E, z), and although he found many finite-dimensional representations he was 
unable to show they were simple, and did not know whether he had found them all. 
Despite Sklyanin's work, little was known about the structure of A(E, z). For 
example, Sklyanin conjectured that the Hilbert series of A(E, ~:) is the same as that of 
the polynomial ring in 4 variables. In 1989, J. T. Stafford and the present author were 
able to verify this conjecture [21]. The methods used to verify the conjecture were 
those introduced by Artin, Tate, and Van den Bergh. In particular, the proof 
proceeds by finding the point modules for A(E, ~), and passing to the ring B := 
A/(f~l, f~2 ) where f~l, f~2 are central dements found by Sklyanin. As for the Type A 
algebras, B is a twisted homogeneous coordinate ring of E, so good properties of B 
can be pulled back to A. 

In a separate development, around 1989, Odesskii and Feigin [15, 16], gave a 
more geometric definition of Sklyanin's algebra which did not refer to the Yang- 
Baxter equation. In doing so they were able to construct a much larger class of 
algebras (on n generators with ([) relations), depending on an elliptic curve E and a 
point z • E, which included both the Artin-Schelter Type A algebras and the algebras 
of Sklyanin. They also showed that these algebras have point modules parametrized 
by E (and perhaps some other points) and shifting degree corresponds to translation 
on E. They also introduce the notion of line modules, plane modules etc., and show 
how these are related to the geometry of E embedded as a degree n curve in P" -1  
These two papers are full of fascinating observations and working out the details of 
the structure of these higher dimensional Sklyanin algebras will be an interesting 
project. 

In a different direction, I. Cherednik [10, 11] used Belavin's [8, 9] generalization 
of Baxter's solution to the Yang-Baxter equation, to construct generalizations of 
Sklyanin's algebras. Cherednik constructs a family of graded algebras on n 2 
generators (again depending on an elliptic curve E and a point ~). Just as Sklyanin's 
algebras (n = 2) can be seen as deformations of U(gt(2)) (see Section 10), so are 
Cherednik's algebras deformations of U(gl(n)) in an analogous way. Our understand- 
ing of Cherednik's algebras is rather poor. 
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