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ABSTRACT. Let A be a noetherian Auslander regular ring and é the canonical dimension function
on A-modules, which is defined as 6(M) = d — j(M) where d is the global dimension of A and j(M)
is the grade of M. An A-module is s-pure if §(N) = s for all its non-zero noetherian submodules N,
and is essentially s-pure if it contains an essential submodule which is s-pure. Consider a minimal
injective resolution of A as an A-module
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We say A has a pure (resp. essentially pure) injective resolution if I? is (d — i)-pure (resp. essentially
(d — i)-pure). We show that several classes of Auslander regular rings with global dimension at most
4 have pure or essentially pure injective resolutions.
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0. Introduction.

The initial motivation for this work came from [Aj] where the purity of resolution was used
in a crucial way to answer a question of M. Artin on the residue complex for quantum planes.
Recently, Yekutieli [Ye] has incorporated the purity property in his proposed definition for the
residue complex of a noncommutative graded ring.

It is well-known that if 0 — R — [I® is a minimal injective resolution of a commutative
noetherian ring R, then

e @ BR R,
pESpec R
where E(—) denotes an injective hull, k(p) denotes the residue field at p, and the multiplicity
pi(p) = dim (p) Extjép (k(p), Ry). If injdim R < oo, then every F/(R/p) occurs somewhere in the
resolution. If R is local and Gorenstein, then pu;(p) is 1 if height p = 4, and is zero otherwise; so
each R/p appears exactly once in the injective resolution, and I* is the direct sum of the injective
hulls of R/p where p runs through the set of prime ideals of height i. Thus there is a certain

homogeneity to I' which we refer to as purity: every non-zero finitely generated submodule of I°
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has Krull dimension equal to (Kdim R—1¢). There is a similar notion of purity for noncommutative
rings (which we define below), and one can ask if a minimal injective resolution of an Auslander-
Gorenstein ring is pure. In [ASZ, 4.2] we showed that an Auslander-Gorenstein, grade-symmetric
ring satisfying a polynomial identity has a pure injective resolution. On the other hand, M. Artin
and J. T. Stafford gave examples of Auslander regular rings which do not have essentially pure
injective resolution [ASZ, 5.2 and 5.3]. In this paper we show that minimal injective resolutions
of some noncommutative rings of low global dimension (< 4) are pure or essentially pure.
Definition 0.1. Let A be a ring. The grade of an A-module M is

F(M) := min{ i | Ext'y, (M, A) # 0}

or oo if no such 7 exists.

Definition 0.2. We say that a ring A

e is quasi-Frobenius (QF) if it is left and right artinian and left and right self-injective;

e satisfies the Auslander condition if for every noetherian A-module M and for all ¢ > 0,
F(N) > i for all submodules N C Ext'(M, A);

e is Auslander-Gorenstein (AG) if A is left and right noetherian, satisfies the Auslander
condition, and has finite left and right injective dimension;

e is Auslander regular if it is Auslander-Gorenstein, and has finite global dimension.

Let 0 be a dimension function on A-modules, in the sense of [MR, 6.8.4]. Recall that 0 is
called exact if 9(M) = sup{d(N),0(M/N)} whenever N is a submodule of M. Krull dimension
(Kdim) in the sense of Rentschler-Gabriel is always, and Gelfand-Kirillov dimension (GKdim) is
often, exact.

By [Za, Lemma A], the injective dimension of the module A 4 is equal to the injective dimension
of the module 4A if both are finite. If A has injective dimension d < oo, we define §(M) =
d— j(M) for all A-modules M. Note that § is not a dimension function in general. It is a simple
observation that for any ring A, and any A-module M, j(M) > inf{j(N),j(M/N)} whenever
N is a submodule of M. Therefore, for any ring A of finite injective dimension, the inequality
5(M) < sup{d(N),5(M/N)} always holds, whenever N is a submodule of M. It follows that ¢
is automatically exact whenever it is a dimension function. If A is AG, then § is known to be
an exact dimension function, by [Le, 4.5] and [Bj, 1.8]; we call it the canonical dimension

function.

Definition 0.3. Let A be a noetherian ring with finite injective dimension. We say that a
module M is

e s-pure if §(N) = s for all non-zero noetherian submodules N C M;

e essentially s-pure if it contains an essential submodule which is s-pure;

e s-critical if it is s-pure and 6(M/N) < s for all non-zero submodules N C M.

Let
0—A—I1"—...—T14 50 (0-1)

be a minimal injective resolution of A as a right A-module. We say this resolution is
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e pure if each I* is (d — 7)-pure.

e essentially pure if each I’ is essentially (d — i)-pure.

Definition 0.4. We say that A is Cohen-Macaulay with respect to a dimension function
0 (or, 9-CM, in short) if
(M) +0(M) = 0(A) < oo

for every non-zero noetherian A-module M. When we say A is Cohen-Macaulay (CM) without
reference to any dimension function, we mean A is Cohen-Macaulay with respect to GKdim

(assuming tacitly that A is an algebra over a field).

Note the following simple facts. Trivially, an AG ring is CM with respect to the canonical
dimension function 4. If a ring A is CM with respect to a dimension function @, then 0 is
automatically exact. If A is a ring with finite injective dimension, then A is CM with respect
to some dimension function 0 if and only if § is a dimension function; indeed, then (M) =

d(M) + (0(A) — d). Our main results are the following.

Proposition A. 1. If A is a domain of GK-dimension 2, generated by two elements subject to
a quadratic relation, then A has a pure injective resolution.
2. The enveloping algebra of a Lie algebra of dimension < 3 has an essentially pure injective

resolution.
For graded algebras, we prove the following results, the first of which extends [Aj, 3.2].

Theorem B. FEvery Artin-Schelter graded regular ring of dimension 3, generated by three ele-

ments of degree 1, has a pure graded injective resolution.

Theorem C. 1. The homogenization of the universal enveloping algebra of a 3-dimensional Lie
algebra has an essentially pure graded injective resolution.

2. The 4-dimensional Sklyanin algebra has an essentially pure graded injective resolution.

3. The 4-dimensional Sklyanin algebra has a pure graded injective resolution if and only if it

satisfies a polynomial identity.

The organization of the paper is as follows. Sections 1 and 2 contain preparatory results. In
section 1 we examine the effect of localization on injective dimension and injective resolutions.
Generally, injective dimension does not behave well under arbitrary localizations, but the situa-
tion is good when localizing at normal elements (Proposition 1.3). The rings we examine later (in
sections 3 and 4) tend to be Auslander-Gorenstein and/or Cohen-Macaulay, and section 2 contains
some general results about localizations of such rings. For example, the Auslander-Gorenstein
condition is preserved under arbitrary localizations, and the Cohen-Macaulay condition is pre-
served under certain kinds of localization. In sections 3 and 4, we study the purity of resolutions
for ungraded and graded algebras respectively, and prove our main results. The final result in
the paper deals with the purity of four-dimensional Sklyanin algebras. The main step is a com-
putation of Exth(L, N) where L is a line module and N a point module. This computation is
of independent interest. Indeed, it is important to compute all Extil(L, N) when L and N are

linear modules over a quantum polynomial ring A.
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1. Preliminaries

We begin by examining the behavior of injective dimension under localization. If S is a mul-
tiplicatively closed Ore set of regular elements in a right noetherian ring A, then injdim AS=1 <

injdim A because every finitely generated right AS~!'-module is of the form MS~!, and
Ext)y o1 (MS™' AS™Y) = AS™! @4 Exty (M, A), (1-1)

where we have used the fact that AS~! is a flat A-module. Despite this, the injective dimension
of a module does not always behave well under localization because a localization of an injective
need not be injective. In [GJ1] and [GJ2] Goodearl and Jordan showed that one must localize at
normal elements for injective dimension to behave well.
Let A be noetherian, and S a multiplicatively closed Ore set of regular normal elements. If
E is an injective A-module, then FS~! is an injective AS~!-module [GJ1, Theorem 1.3] and,
if L C M is an essential extension of A-modules, then LS~™! ¢ MS~' is an essential extension
of AS~!'-modules [GJ2]. It follows that if 0 — M — F* is a minimal injective resolution of an
A-module M, then 0 — MS~! — E*S~! is a minimal injective resolution of the AS~!'-module
MS~1. Therefore
injdim MS™! = min{n | EF"S~" = 0} < injdim M. (1-2)

Proposition 1.3 describes more precisely the relation between these two injective dimensions.

First we recall the following version of the well-known Rees’ Lemma.

Lemma 1.1. Let M and N be A-modules. Let g be a non-unit regular normal element of A,
acting faithfully on M, and annihilating N. Then

Ext'y () (N, M/Mg) = Ext' (N, M)

Proof. This follows from the collapsing of the spectral sequence

Ext?

% (NS Ext (A (g), M) = Ext’y (N, M).

0

The isomorphism in Lemma 1.1 is as abelian groups, but there is a stronger isomorphism when
M is the ring itself. Given an automorphism o of A, and a right A-module M, define the twisted
module M? by m x a = mo(a) for all m € M and a € A. Then M —— M? is an automorphism
of the category of right A-modules. If M is a bimodule, so is M7, and the corresponding functor

is an automorphism of the bimodule category.

Lemma 1.2. Let g be a regular normal element of A and o the automorphism determined by
ag = go(a) for all a € A. If N is a right A/(g)-module, then there are natural left A/(g)-module
isomorphisms

Ext’y ;) (N, A/(9)) 2 BExtif (N, A7) = Ext’f 1 (N7, A)

for all 1 > 0. (|
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Proposition 1.3. Let S be a multiplicatively closed Ore set of regular normal elements in a

noetherian ring A. If M is a right A-module on which each g € S acts faithfully, then

injdim M = max{injdim 4q-1 MS™", injdim 4,y (M/Mg) + 1| g € S}. (1-3)

Proof. 1t g € S, then injdim 4, M/Mg < injdim M — 1 by Lemma 1.1. Combining this with
(1-2), we have

injdim M > max{injdim MS™!, injdim(M/Mg) + 1| g € S}.

Let 0 - M — E° — ... be a minimal injective resolution of M, and define Q' := ker(E* —
E*Y). Let d < injdim M. If F4S~! = 0, then E¢ contains a non-zero submodule N such
that Ng = 0 for some g € S. Replacing N by N N Q% # 0, there is a non-split extension
0— Q%1 5 F— N =0, whence

0 # Extly (N, Q77") 2 Ext’y (N, Q77%) 2 ... = Ext4 (N, M) = Ext’ (N, M/Myg),

whence 1+ injdim 4, M/Mg > d. On the other hand, if F4S~! £ 0 for d < injdim M, then
injdim M S~ > d because F*S~! is a minimal resolution for M.S~!. Thus the reverse inequality
also holds, hence the result. O

Proposition 1.3 is used in sections 3 and 4 in the following way: the rings there have sufficiently
many normal elements, so to a large extent questions about A can be reduced to questions about
A/(g) which has lower injective dimension.

Write Q; for the image of the boundary map 7*~! — I* in (0-1). Thus Q¢ = A, and there are
exact sequences

0—Q,, —I'1—50,—0

for all s=1,---,d, with each I® an essential extension of 2;. Recall the following basic facts.

Proposition 1.4. [ASZ, 2.4 and 2.5] Let A be a right noetherian ring with injdim A4 = d, and
let N be a noetherian right A-module.

1. If N embeds in ;, then Exti(N, A) # 0, whence j(N) < i.

2. If every non-zero submodule of N is (d — 7)-critical, then N embeds in £2;.

3. 1° is essentially d-pure (and d-pure if § is exact).

4. If A has a QF quotient ring @, then I° = () is d-pure and every torsion module M (i.e., a
module such that M ® 4 Q = 0) has j(M) > 1. As a consequence, Q is (d — 1)-pure, and I' is
essentially (d — 1)-pure. Furthermore, if A is semiprime and § is exact, then I' is (d — 1)-pure.

5. If Ais AG, then I is a direct sum of injective hulls of 0-critical modules, hence is essentially

0-pure. U

2. Localization of Auslander-Gorenstein and Cohen-Macaulay rings

In this section, we study localizations of Auslander-Gorenstein and Cohen-Macaulay rings.
The final result shows that Cohen-Macaulay condition implies the Auslander-Gorenstein condi-
tion if injdim A < 3.
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Note that if S is a multiplicatively closed Ore set of regular elements in a right noetherian
ring A, and M is a right noetherian A-module, then it follows from (1-1) that

J(Ma) < j(MS5g0). (2-1)

Levasseur [Le] notes that the Auslander-Gorenstein property is preserved when factoring out

by a normal regular element; it is also preserved under arbitrary localizations.

Proposition 2.1. Let A be an AG ring. If S a multiplicatively closed Ore set of regular elements
in A, then AS™! is AG; and if g is a regular normal element of A, then A/(g) is AG.

Proof. By (1-1), for any AS~!'-submodule L of Exti(MS_l, AS~1), there is a submodule K of
Ext'(M, A) such that I = S~'K. For all j < i, Ext’(L, AS~™!) = Ext’ (K, A) ® AS~! = 0 by the
Auslander condition for A, so AS~!is AG.

Let M be a right A/(g)-module. For every left A/(g)-module N C Ext;/(g)(M, All(g)) =
ExtF1 (M7, A), we have

Ext/F (TN, A) = Ext/t (N, 7 A) = Ext/t (N, A) = 0

for all § < 7, by the Auslander condition on A. By Rees’ Lemma, EXtix/(g) (N,A/(g)) = 0 for

Jj<i,s0 A/(g)is AG. O

Lemma 2.2. Let A be AG and S a multiplicatively closed subset of regular normal elements.
1. If every simple A-module M with j(M) = injdim A is S-torsion (equivalently, Mg = 0 for
some g € S), then injdim AS™! < injdim A.
2. If M is a noetherian S-torsion-free critical A-module, then j(MS™') = j(M).

Proof. 2. Write s = j(M); by Proposition 1.4.2, there is an injective map M — €, hence an
injective map MS™1 — Q,S~!. By Proposition 1.4.1 applied to MS™! j(MS™!) < s = j(M),
so we obtain equality by (2-1).

1. If d = injdim A, then injdim AS~! < d by (1-2). Since AS™! is AG, it suffices to show
that j(H) < d for all non-zero AS~!'-modules H. Suppose to the contrary that j(H) = d. By
[ASZ, 1.3], H is artinian, so we may assume that H is simple. If M is a finitely generated critical
A-submodule of H, then H = M S~! because H is simple. By Proposition 1.3, j(M) = j(H) = d,
so M is artinian by [ASZ, 1.3]. Therefore the hypotheses ensure that Mg = 0 for some g € S,
whence 0 = MS~! = H, which is a contradiction. O

Next we show that the CM condition is preserved under certain kinds of normal localizations.
A finite dimensional subspace W C A is a subframe if 1 € W. We say z € A is a local normal
element if for every subframe W C A, there is a subframe W' O W such that W' = W'z [LMO,
p. 209]. Trivially, every central element is local. By [LMO, Thm 2], a multiplicatively closed
subset S of A, consisting of regular local normal elements, is Ore and GKdim (AS~!) = GKdim A.

The next lemma says that this statement is also true for modules.
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Lemma 2.3. Let S be a multiplicatively closed subset of A consisting of regular local nor-
mal elements. If M is an A-submodule of an AS~'-module N such that N = MS~!, then
GKdim (N 45-1) = GKdim N4 = GKdim My.

Proof. Since we are working with GKdim, we may assume that both M and N are finitely
generated. Let V C M be a generating set of M as an A-module (so it is also a generating set
of N as an AS~™!-module). Every subframe of AS™! is generated by W U {t~1|t € T} where W
is a subframe of A and where T'is a finite subset of S. Let 2 = [[,cyt (so z € S). Let W' be a
subframe of A containing W and z such that 2W' = W'z. Every subframe of AS™! is generated
by W' U {z71}. Hence

GKdim(N) = sup lim log, {dim(V(W U {z~'})™)}

WITL—H)O
?

and
GKdim M = sup lim log, {dim(VW")}
W n—oo

where z € S and W is a subframe of A such that zW = Waz. Note that the dimension of a
vector space over k is always denoted by dim. It is clear that GKdim(/N 45-1) > GKdim M 4. By

direct computation, we have
VIwu{z"')".z" c VIV
Hence GKdim (N 49-1) < GKdim M 4. O

Theorem 2.4. Let A be an AG ring, and S a multiplicatively closed set of local normal elements

in A. If A is CM, so is AS~!.

Proof. Since A is CM, GK-dimension differs from the canonical dimension by a constant, so is
exact and finitely partitive on A-modules, and is therefore exact and finitely partitive on AS~!-
modules by Lemma 2.3. By noetherian hypothesis, to prove that AS~! is CM, i.e., GKdim N +
J(N) = GKdim AS~! for all noetherian AS~!-modules N, it suffices to show this equality for
some nonzero AS~!-submodule N’ C N. Let M be a critical A-submodule of N. Then j(M) =
J(MS~1) by Lemma 2.2, and GKdim M = GKdim M S~! by Lemma 2.3. Let N' = MS~!; we
have

GKdim N’ + j(N') = GKdim M + j(M) = GKdim A = GKdim A5,

Therefore AS~! is CM. O
Theorem 2.5. [ASZ, 6.2] A noetherian CM ring with finite injective dimension has a QF quo-
tient ring. O

We finish this section by showing that the CM property implies the AG property in low
dimensions. We will use Ischebeck’s spectral sequence: if A is noetherian with injdim A = d, and
M a noetherian right A-module, there is a convergent spectral sequence
0 ifp#g,
M ifp=yq.

Thus, on the E..-page only the diagonal terms can be non-zero. To simplify notation later, we

EY? = Extf, (Exty (M, A),A) = HP~¢(M) := { (2-2)

have used a non-standard indexing of F3?; with our indexing, the boundary maps on the E,-page
are EP? — pptrath
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Proposition 2.6. Let A be a noetherian ring which is CM with respect to some dimension
function. Then A is AG if

1. injdim A < 2, or

2. injdim A = 3 and A has a QF quotient ring.

3. injdim A = 3 and A is CM (with respect to GKdim).

Proof. First, recall that if A is CM with respect to a dimension function 9, then 0 and ¢ are
both exact and differ by a constant.

1. For injdim A < 2, the proof is easy, so we assume that injdim A = 2. By the spectral
sequence (2-2), the Ey table for M is

EOO EIO E20
EOI Ell E21
EOZ EIZ E22

with B2 = E02 = E'0 = F20 — 0 and E%' < E?? and E° — E?!. Hence §(Ext*(M,A)) < 0
for all M. Since § is a dimension function, §(N) < 0 for all N C Ext*(M, A). Now E°' is a
submodule of F?? and §(F??) < 0, hence §(E®') < 0. If E°' # 0, then Ext*(E°', A) # 0. But
this contradicts the fact E**(Ext'(M, A)) = 0. Hence E®' = 0 and §(Ext' (M, A)) < 1. Since §
is a dimension function, §(N) < 1 for all N C Ext' (M, A). Therefore A is AG.

2. By the spectral sequence (2-2), the Fjy table for M now looks like

EOO EIO E20 E30
EOI Ell E21 E31
E02 E12 E22 E32
E03 EIS E23 E33

with B3 = F03 = F30 = p20 = 0, E92 - E?3 and EF'? < E33. Since Q = FractA is
self-injective, Exti(]W7 A)®aQ = Exti(M ® Q,Q) = 0if i > 0. Hence, by Proposition 1.4.4,
E% := Hom(Ext‘(M, A), A) = 0 if i > 0. Therefore £?* = 0 and it follows that 6(E3(M)) <0,
whence §(E'?) < 0. If E'? £ 0, then E*'? := Ext®(E'?, A) # 0; but F3'2 = E3(Ext?(M, A)) =
EY(Ext*(M, A)) = Ext' (E°?, A) = 0, a contradiction. Hence E'* = 0. Combining all these, we
have proved that §(Ext'(M, A)) < 3 — i for all i. Since § is a dimension function, we also have
§(N) < 3 — i for every submodule N C Ext'(M, A), so A is AG.

3. Follows from part 2 and Theorem 2.5. (|

3. Purity for ungraded algebras

In this section we examine purity questions for some noetherian domains having injective

dimension < 3. First, we recall the following result.

Theorem 3.1. [ASZ, 4.2] An Auslander-Gorenstein, Cohen-Macaulay ring satisfying a polyno-

mial identity, has a pure injective resolution.

By Proposition 1.4, every AG ring of injective dimension < 1 has an essentially pure injective

resolution.
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We now consider what happens for injective dimension 2. As [ASZ, 5.5] shows, there are
noetherian domains of injective dimension 2 which do not have a pure injective resolution. But
we do not know if every noetherian domain with gldim A = GKdim A = 2 has a pure injective

resolution.

Proposition 3.2. Let A be an AG ring with injdim A = 2. If A has a QF quotient ring, then

A has an essentially pure injective resolution.

Proof. By Proposition 1.4, I° is essentially 2-pure,I! is essentially 1-pure, and I? is essentially
0-pure. [l

Next, we show that this ‘essential purity’ result can be improved to a purity result when there
is a plentiful supply of normal elements.
Let A be a noetherian domain. Two normal elements ¢;, g, are equivalent if there is a unit

u € A such that g = ugy. A normal element g € A is completely prime if A/(g) is a domain.

Notational Remark: Whenever S, = A — g A is a right and left Ore set of regular elements we

write

A = AS; T =571 4;

we will drop the subscript g from S, if there is no confusion. If N is a set of normal regular
elements, then there is an Ore set consisting of 1 and the products of the elements of N; by abuse
of notation we denote the localization of A with respect to this set by AN ~!. Notice that A is a
subring of A, and AN,

Lemma 3.3. Let A be a noetherian domain and write () = Fract A.

1. For every completely prime normal element g, S; = A—gA is an Ore set and A, is a local
algebra with gldim A, = 1.

2. Let N C A be aset of inequivalent completely prime normal elements, and write B = AN !,

Let 0 be an exact dimension function on A-modules. Then there is an exact sequence
0—>A—>Q—>Q/B@€Bg@VQ/A(g) — EF—0 (3-1)

where I/ is a module with (M) < 0(A) — 2 for all finitely generated submodules M C E.

Remark: The graded version of Lemma 3.3 also holds. In fact, [Aj, §2] proved the following: let
A be a connected graded noetherian domain and let g € A be a completely prime homogeneous
element of positive degree; then the set S of homogeneous elements in A — gA is an Ore set, and
Ay = S=1A is a Z-graded local ring with graded global dimension 1. There is also a graded

version of part 2.

Proof. 1. The proof in [Aj, §2] works in the ungraded case.
2. To prove that (3-1) is exact, it suffices to show that B Nyen A,y C A. For every y €

B Ngen A(y), we can write y = agl_l --+g-1 where @ € A and g; € N; we may assume that

kt3
a ¢ g1 A by assuming n is minimal. Since y € A(,), we can write y as 57'b where b € A and
s € A— g1 A. Hence sa = by, ---¢1 € g1 A, which contradicts the fact that A/gy A is a domain,

unless n =0 and y = a € A. Hence (3-1) is exact.
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Now we prove the last statement in part 2. Denote by N? (¢ > 0) the set consisting of
products of q elements of N, where we also put N° = {1}. Observe that every element z € A can
be written as z = yz where y € N? (for a unique value of ¢) and z € Nyen S,. This and the fact
that elements of N are completely prime imply that (Q/A(;)) ®4 B =0and (Q/B)®4 Ay =0
for all g € N, and (Q/A(,)) ®a A(yy = 0 for two inequivalent elements g, g’ € N. Now tensoring
the exact sequence (3-1) with B and A, we see that F®4 B = F®4 A, = 0 forall g € N.
For every finitely generated submodule M of ¥, M ® 4 B = 0. Hence there is a y € N? such
that My = 0. By replacing M by its Kdim-critical subquotients, we may assume that Mg =0
for some g € N. But M ® A(, = 0 implies that Ms = 0 for some s € A — gA. Hence M is a
quotient of A/(gA + sA) which has 9-dimension at most 9(A) — 2. a

As a consequence of Lemma 3.3, we obtain the following.

Proposition 3.4. Let A be an AG domain of injdim A = 2, and suppose that every simple
module M with §(M) = 0 is annihilated by some completely prime normal element of A. Then

A has a pure injective resolution.

Proof. Let 0 - A — I° — I' — I? — 0 be a minimal injective resolution. By Proposition 1.4, I°
and I' are pure and I? is essentially pure, so it remains to show that I? is pure, or equivalently,
§(M) = 0 for all finitely generated M C I?. Let N be the set of all non-equivalent completely
prime normal elements. By Lemma 2.2, B = AN ~! has injective dimension < 1. By Lemma 3.3,
injdim A(4 = 1 whenever g € N. Hence Q/B and Q/A(, are injective modules over B and A,
respectively. By [GW, 9.16], these are injective A-modules, so

0—A—Q —>Q/B@@§€NQ/A(£J) — I —0

is an injective resolution of A. Thus K 22 I? (see (3-1)), and purity follows from Lemma 3.3. O

Next we describe some domains to which Proposition 3.4 applies. Let A be a domain, generated
by two elements z, y subject to a relation of degree two, say az?+bxy+cyzr+dy* +ex+ fy+g = 0,
with (a,b,c,d) # (0,0,0,0). We assume that k is algebraically closed from now until Corollary
3.6. By changing variables, the relation can be put in one of the following forms:

(1) zy — qyz where ¢ # 0,

(2) zy — qyz — 1 where ¢ # 0,

(3) oy - yo — 22,

(4) zy —yz —2* — 1,

(5) oy - yo — o,

We denote by R; the algebra subject to the relation (i). If ¢ = 1, then R; is the commutative
polynomial ring and R, is the first Weyl algebra, both of which have pure injective resolutions

by Theorem 3.1 and Proposition 1.4. So we further assume that ¢ # 1 in cases 1 and 2.
Proposition 3.5. R; is Auslander regular, CM, and has a pure injective resolution (i = 1,...,5).

Proof. 1f we filter R; in the obvious way by defining degz = 1 and deg y = 2 then the associated
graded algebra is isomorphic to either ky[z,y| or k[z,y]. Therefore, by [SfZ, 4.4], R; is an

Auslander regular, Cohen-Macaulay, noetherian domain of GKdim 2.
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If R; satisfies a polynomial identity the result is given by Theorem 3.1. So suppose R; is not
PI: thus, in cases (1) and (2) we assume ¢ is not a root of 1, and in cases (3)-(5) we assume that
char k = 0. We will show that R; has at most two completely prime normal elements, and every
simple R;-module of GKdim 0 is annihilated by one of them; the result will then follow from
Proposition 3.4. Because the annihilator of a GKdim-zero simple module is a non-zero prime
ideal it suffices to show that every non-zero prime ideal contains a completely prime normal
element. We proceed case-by-case.

Case 1: Ry = k(z,y)/(2zy — qyz). It is easy to see that z and y are the only completely
prime normal elements of Ry. We will show that every non-zero prime ideal contains either z or
y. Suppose I is a non-zero prime ideal of R; such that I does not contain z and y. Consider

the conjugation by z (i.e., the map a — 27!

az), which is determined by z — z and y — qy.
Let f(z,y) be an element in [ with minimal degree in y. Then z f(z, qy) = f(z,y)z € I. Since
z is normal and = ¢ I, f(z,qy) € I. Hence f(z,qy) — ¢*f(z,y) (where d = deg,(f(z,y))) has
lower degree in y. By the choice of f(z,y), f(z,qy) = ¢®f(z,y) which implies that f(z,y) is of

the form g(z)y?.

If d # 0, then g(z) € I because y ¢ I and [ is prime. Repeating the same
argument for g(z), this time using conjugation by y, we obtain that g(qz) = ¢%g(z) if g(z) has
a minimal degree in z among all such elements in 7. Hence g(z) = cz?. But z is normal and [
is prime, thus z € I, which is a contradiction. As a consequence, note that every non-zero ideal
of R; contains z'y’ for some 1, j.

Case 2: The only completely prime normal element in Rj is g := zy — yz. We will prove that
every non-zero prime ideal contains g. The subalgebras By = k(z, g) and By = k(y, g) are skew
polynomial rings of the type examined in Case 1. The algebra R, is Z-graded if deg(z) =1 and
deg(y) = —1. Let I be a non-zero prime ideal of Ry which does not contain g. Since ga; = ¢‘a;g,
for all a; of degree 7, I is graded. Hence I N By is not zero. By Case 1, every non-zero ideal of B;
contains z'g’ for some 7, j. Hence I contains z* because g ¢ I and I is prime. By the induction
on ¢ and the relation zy — qyz = 1, we obtain 1 € I, so I = Ry. This is a contradiction.

Cases 3,4,5: We consider the algebra R = k(z,y)/(yz — 2y —r(z)) for some polynomial r(z).
Since k is algebraically closed, r(z) = [[,(z — a;)". It is easy to check that z — a; are completely
prime normal elements. We claim that every non-zero prime ideal I of R contains some z —a;. If
not, then conjugating by z — a;, we can show (as we did in Case 1) that I contains a polynomial
f(z). Hence I contains yf(z) — f(z)y = f'(z)r(z). Since r(z) is normal in R and I contains no

x — a;, I contains f'(z). By induction on deg f(z), we obtain I = R, a contradiction.

Corollary 3.6. The enveloping algebra of a 2-dimensional Lie algebra over an algebraically

closed field has a pure injective resolution.

Proof. Such a Lie algebra is either abelian or solvable, so its enveloping algebra is isomorphic to
either Ry (with ¢ = 1) or Rj5. a

Next we study algebras with injective dimension 3. First we need a lemma.

Lemma 3.7. Let A be a right noetherian ring with injdim A4 = d, and let M be finitely
generated uniform module. Then M embeds in ; if and only if for every 0 # N C M, the
natural map Exti(M, A) — Exti(N, A) is non-zero. In particular, M does not embed in I* if and
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only if im xcar Ext’ (N,A)=0.

Proof. (=) This is trivially true if 4 = 0, so suppose that i > 0. By [ASZ, 2.1.1], Exti(M, A) =
Extl(M, Q;_1). If M embeds in €;, then there is a nonsplit exact sequence

0 — Q1 —F—M—0. (3-2)

Let 0 # f € Ext'(M,Q;_;) correspond to this extension. If 0 # N C M, and E' C E is the
preimage of N under (3-2), then the image of f under that natural map Ext(M, A) — Ext'(N, A)
corresponds to the extension 0 — Q;_y — E/ —+ N — 0. This is still non-split since €;_; is
essential in E, and hence in E'. Therefore Ext‘(M, A) — Ext*(N, A) is non-zero.

(<) Conversely if M does not embed in €;, then every map from M to €; has a non-zero
kernel. By [ASZ, 2.2], there exist fy,---, f, € Hom(M, Q;) and submodule N :=nker(f;) C M
such that the natural map Ext'(M, A) — Ext’(N, A) is zero. But each ker(f;) is non-zero and

M is uniform, so N = Nker(f;) is non-zero. a

Proposition 3.8. Let A be an AG ring, and let N be a set of regular normal elements in A.
Then A has an essentially pure injective resolution if and only if AN~ and A/(g), for all g € N,
do.

Proof. (<) We suppose that I’ is not essentially (d — i)-pure, and seek a contradiction. By
Proposition 1.4.1, I' contains a critical submodule M with §(M) > d — i or j(M) < i. If
MN~Y #£0, then MN 1 is a submodule of I'N~! and j(MN~!) = j(M) < i by Lemma 2.2.2,
so AN~! does not have an essentially pure injective resolution, a contradiction. If MN~! = 0,
then Lg = 0 for some g € N and some 0 # L C Mj since g is regular, §(L) < d, so j(L4) > 0;
by Lemma 3.7 and Proposition 1.3,

. i—1 ~ 1 7
Jl}énL Ext’s (N, A4/ (g)) = Jl}énL Ext (N, A) # 0.

So, by Lemma 3.7 again, L 4/(, is contained in the I'"'_term of a minimal injective resolution
of A/(g). But j(Layg)=37(La)—1<i—1,s0 A/(g) does not have an essentially pure injective
resolution, a contradiction.

(=) The proof of the converse also splits into two cases: either AN~! does not have an
essentially pure injective resolution, or some A/(g) does not have an essentially pure injective
resolution. In each case, the argument in the previous paragraph works in the reverse direction.

O

Proposition 3.9. Let A be an AG domain with injdim A = 3. Suppose every simple module of
grade 3 is annihilated by a non-zero completely prime normal element. Then A has an essentially

pure injective resolution.

Proof. Let N be the set of all inequivalent completely prime normal elements of A. By Lemma
2.2.1, and Proposition 1.3, AN~ and A/(g) (g9 € N) have injective dimension < 3. Since AN 1
and A/(g) are AG domains they have essentially pure injective resolutions by Proposition 3.2,

so the result follows from Proposition 3.8. O
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Proposition 3.9 applies to enveloping algebras of 3-dimensional Lie algebras over an alge-
braically closed field k. Such a Lie algebra L is isomorphic to one of the following;:
(1) L1 = Loy = kx + ky + kz with [Lgp, Lab] =0.

(2) Ly =sly = ke + kf + kh with [e, f] = [h,e]_Qe [h, f]= —2Ff.
(3) Lz = kx + ky + kz with [z,y] = 2, [z, 2] = [y, 2] =

(4) Ly = kz + ky + kz with [z,y] =y, [z, 2] = [y, 2] =

(5) Ls = kx + ky + kz with [z,y] =0, [z, 2] = bz, [y, ]—ywhereb;éO
(6) Le = kz + ky + kz with [z,y] =0,[z,z] =2 4+ y,[y, 2] = y.

Lemma 3.10. Let k be an algebraically closed field with chark = 0, and A a k-algebra.

1. If g is a central element of A, then for every finite dimensional simple A-module M, there
is an a € k such that M(g—a) = 0.

2. Ify € A is normal yz — zy = y for some z € A, then y annihilates every finite dimensional

simple A-module.

Proof. Let M be a finite dimensional simple A-module.

1. Consider g as a k-linear map of M. By Cayley-Hamilton theorem there is a polynomial f
such that M f(g) = 0. But k is algebraically closed, so M (g — a) = 0 for some a € k.

2. There is a polynomial f (and we can assume that the degree of f is minimal) such that
Mf(y) = 0. Then M(f(y)s — 2(y)) = 0, and fz — 2f = yf'(y). Since y is normal, M f'(y) 0,
and M is simple, therefore M f'(y) = M. Then My = M f'(y)y = Myf'(y) = 0. O

Theorem 3.11. Over an algebraically closed field, the enveloping algebra of a 3-dimensional

Lie algebra has an essentially pure injective resolution.

Proof. 1If chark > 0, then U(L) satisfies a polynomial identity, so has pure injective resolution
by Theorem 3.1. We now assume that char k = 0.

We check that U(L;) satisfies the conditions in Proposition 3.9. The universal enveloping
algebras are known to be Auslander regular and CM. Hence GKdim M = §(M) for all finitely
generated modules. Now to verify the last condition in Proposition 3.9, it is sufficient (in view
of Lemma 3.10) to check that, in A = U(L;), there is a central element g such that A/(¢g — a) is
a domain for all @ € k, or there is a completely prime normal element y and an element z such
that yz — zy = y. We check case-by-case. Case 1 is trivial, since then U(L) is a commutative
polynomial ring. In case 2, U(sly)/(€2 — a) is a domain, where € is the Casimir element. In case
3, z is central element and U(Ls)/(z — a) is either the first Weyl algebra or the polynomial ring,
hence a domain. In case 4, z is central and U(Ly4)/(z — a) is isomorphic to the algebra Rs in the
previous section, which is a domain. In cases 5 and 6, y is a completely prime normal element

and satisfies the condition yz — zy = y. O

4. Purity for graded algebras

We now study the purity of the minimal graded injective resolution for some connected graded
algebras of injective dimension < 4. Unless otherwise specified, all modules, rings, and operations

are graded and homomorphisms preserve the degree.
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There are graded versions of the concepts and results appearing in sections 1 and 2 for ungraded
rings and modules; for the most part these are obvious, and can be obtained by adding the word
‘graded’ in the appropriate places. There is a notion of minimal graded injective resolution of
A, and we still denote it by (0-1). By [Le, 3.3], for a connected algebra, the graded injective and
global dimensions equal the ungraded injective and global dimensions, respectively. When A is
graded, and M and N are graded modules with M finitely generated, Extil(M, N) has a natural
grading; and in this case we denote it by Ext’, (M, N).

We recall the basic facts. Let A be a connected graded k-algebra. The linear dual A* :=
@, Homg(A_,, k) is an injective hull of the trivial module k. We say that an A-module M is
m-torsion (where m = @;504;), if M is a union of finite dimensional submodules. We use M|[/]
to denote the shift of M by degree [; thus, M[l] = M as an A-module, but the grading is defined
by M[l]; = M4+;. Every m-torsion injective module is a (possibly infinite) direct sum of shifts
of A*. As a consequence, an essential extension of an m-torsion module is m-torsion. If A is
connected and AG with injdim A = d, then by [Le, 6.3] A is Artin-Schelter-Gorenstein, and by
[Zh2, 0.3(3)], I? is isomorphic to A*[l] for some [ € Z. In particular, I? is 0-pure.

The GK-dimension of a module over a CM ring is an integer. By [Le, 3.1], if A is graded AG,
then A is ungraded AG. Also, by [Le, 5.8], if A is graded AG and CM then A is ungraded CM.
Finally, note that if A is CM with GKdim A = injdim A, then GKdim M = §(M) for all finitely

generated modules M.

Proposition 4.1. Let A be a connected graded CM algebra with GKdim A = injdim A = 2.

Then A is AG and has a pure graded injective resolution.

Proof. By the graded version of Proposition 2.6.1, A is graded AG. Hence, by [Le, 3.1 and 5.8],
Ais AG and CM as an ungraded ring. Let 0 — A — [ — ' — [? — 0 be the minimal
graded injective resolution of A. By Proposition 1.4, I° is 2-pure, and I' is essentially 1-pure;
so it suffices to show that GKdim I’ < 1. By Theorem 2.5, A has a QF quotient ring ), and I°
is the graded quotient ring of A, which embeds in @, so GKdim I°/A < GKdim Q/A < 1. Thus
GKdim I'' = max{GKdim I°/A, GKdim I*} < 1. O

Theorem 4.2. 1. Let A be a connected graded CM algebra with GKdim A = injdim A = 3.
Suppose that A contains a homogeneous regular normal element g of positive degree.

(a). A is AG and has an essentially pure graded injective resolution.

(b). If A/(g) is a domain, then A has a pure graded injective resolution if and only if Alg™!]
does.

2. The three dimensional Artin-Schelter regular algebras which are generated by three elements

of degree one over an algebraically closed field have pure graded injective resolutions.

Proof. 1(a). By Proposition 2.6.3, A is AG. By [Le, 5.10], A/(g) is AG and CM of injective
dimension 2. By Proposition 4.1, A/(g) has a pure graded injective resolution. By Theorem
2.5, A has a QI quotient ring, say Q. Note that Q@ = Fract A[g~!] too. By a graded version of
Lemma 2.6.1, injdim A[g~!] < 2, and by Proposition 2.5, A[g~'] is AG. By a graded version of
Proposition 3.2, A[g~!] has an essentially pure graded injective resolution. Thus, by a graded

version of Proposition 3.8, A has an essentially pure graded injective resolution.
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1(b). Since A/(g) is a domain and g is regular, A is a domain. Write (), for the graded ring
of fractions of A. By part 1(a), the minimal graded injective resolution of A is essentially pure;
let

0—A—Q, —I'—I"—1"—0

be this resolution. The last term I? is A*[{] which is pure of GKdim zero. Since I' @4 Q,, = 0,
GKdim I' < 2,s0 I' is pure. Hence A has a pure injective resolution if and only if GKdim 1% < 1.

The graded minimal injective resolution of A[g~!] is
0—Alg7' ] —Qyp — I'lg7' ] — IPlg7'] —0 (4-1)

and this is essentially pure by the proof of part 1(a). Since ¢ is a homogeneous normal element
and A is locally finite, g is local normal, whence A[g™']is AG and CM (Theorem 2.4). Therefore
GKdim I'[¢g7'] = 2. Now I?[g7!] is the injective hull of a module having GK-dimension one.
Thus A[g~!] has a pure injective resolution if and only if GKdim I*[¢g~!] = 1.

Since I'[g~!'] is an injective A[g~!]-module, it is an injective A-module. Therefore I'[g~1]
is the injective hull of Q,,./A[g™'] both as an A[g~']-module and as an A-module. By Lemma
3.3.1, gldim A(y) =1, 50 Q4 /A(y) is a graded injective Ay -module, and hence a graded injective
A-module. By the graded version of Lemma 3.3, there is an exact sequence

0—A—Qu — Qu/Alg™' 1 Qyr /Ay — E — 0. (4-2)

Thus I' 2 Q. /A(y) ® I'[g7"]. Lemma 3.3 also gives GKdim F < 1.
Consider the cosyzygy modules Qg = ker(/* — I*t!'). From (4-1) and (4-2) we obtain an
exact sequence 0 — E — Qy — I*[g7'] — 0. Now

GKdim I? = max{GKdim Q,, GKdim I’} = GKdim Q, = max{GKdim F, GKdim I*[¢g~']}.

Thus GKdim I%? < 1 if and only if GKdim I2[g~!] < 1, from which the result follows.

2. If Ais PI, it has a pure graded injective resolution by Theorem 3.1. Suppose A is not PL. If A
is an elliptic algebra, the result is proved in [Aj, 3.2]. If A is not elliptic, then there is a completely
prime normal element g € Ay by [ATV]. By [Zh1, 2.12], replacing A by a suitable twist by an
automorphism, g becomes central. Since twisting is a category equivalence [Zhl1, 3.1], twisting
preserves the minimal injective resolution. By [Zh1, 5.7] twisting preserves GK-dimension, and
hence the purity of the injective resolution A. Hence we may assume that ¢ is central. Since A
is generated by three elements in degree 1 and is defined by three relations of degree 2, A[g™!]
is isomorphic to Bylg, g~!] where By is a domain generated by two elements and defined by one
relation. By Proposition 3.5 and the discussion prior to it, By has a pure injective resolution. By
adjoining [g,¢97!] we obtain a pure graded injective resolution of A[g~'] = By[g,¢~']. By part
1(b), A has a pure graded injective resolution. O

By homogenizing U (sly)/(2) in [ASZ, 5.5], we obtain a connected, graded AG and CM ring
A, with GKdim A = injdim A = 3, which does not have a pure graded injective resolution. We
conjecture that every connected graded algebra of global dimension 3 has a pure graded injective
resolution. For 4-dimensional regular algebras we do not have purity in general, because the
homogenization of U(sly) is not pure [Aj, Example after Proposition 2.5]. Next we prove that

some familiar 4-dimensional regular algebras have essentially pure injective resolutions.
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Lemma 4.3. Let A = ®,czA, be a strongly graded algebra.

1. Let M be a noetherian graded A-module and M, the degree zero part of M. Then
J(M) = j(My). As a consequence, A is graded AG if and only if Ay is AG.

2. A has a pure (respectively essentially pure) graded minimal injective resolution if and only

if Ag has a pure (respectively essentially pure) minimal injective resolution.

Proof. By the category equivalence (—)¢ from graded modules over A to modules over Ag [NV,
A.1.3.4], we have Ext’ (M, A)y = Extilo (Mo, Ag) for every graded A-module M. A graded A-
module L is zero if and only if Lo = 0. Hence j(M) = j(My). Again by the equivalence,
F(N) = §(No) for all N C Ext‘(M, A). Hence A is graded AG if and only if Ay is AG. Part 2

follows from the category equivalence and part 1. O

By [SmSf], the 4-dimensional Sklyanin algebra is AG and CM. By standard results on Rees
rings, homogenized universal enveloping algebra H (L) of a finite dimensional Lie algebra L is

AG and CM.

Theorem 4.4. Let k be an algebraically closed field.
1. The 4-dimensional Sklyanin algebra has an essentially pure graded injective resolution.
2. The homogenized universal enveloping algebra H (L) of a 3-dimensional Lie algebra L has

an essentially pure graded injective resolutions.

Proof. 1. Let A denote the 4-dimensional Sklyanin algebra. By [SmSf], there are central elements
Qy,Q, € Ay such that {Q4,} is a regular sequence. It follows that A/(afs 4 b€2;) is a domain
for all a,b € k. In particular, A/(€4) is a graded domain having a regular central element €.
By Theorem 4.2.1, A/(£21) has a graded essentially pure injective resolution. By a graded version
of Proposition 3.8, it remains to show that B = A[Ql_l] has a graded essentially pure injective
resolution.

Now B is strongly Z-graded, and AG by Proposition 2.1, so By is AG by Lemma 4.3.1.
By Lemma 4.3.2, it suffices to show that By has an essentially pure injective resolution. Note
that g := Q;'Q, is a central element in By. For every a € k, g — a = Q7'(Qy — ay) so
Bo/(g — a) embeds in the ring of fractions of A/(Q2 — af21); thus By/(g — a) is a domain. By
Lemma 3.10, for every finite dimensional simple Byp-module M, M(g — a) = 0 for some a € k.
Write N = {9 —a | a € k}. By Lemma 2.2.1, injdim By = gr.injdim B < injdim A — 1 < 3, and
injdim (By N ~!) < injdim By—1 < 2. By Proposition 1.3, injdim (By/(g—a)) < injdim(Bg)—1 < 2.
Therefore by a graded version of Proposition 3.2, ByN~! and By/(g — a) have essentially pure
injective resolutions. Hence by Proposition 3.8, By has an essentially pure injective resolution.

3. There is a central element ¢ in H (L) such that H(L)/(t) & k[z1, 22, 23] and H(L)[t™'] =
U(L)[t,t7']. By Theorem 3.11, U(L) has essentially pure injective resolution, and so does
U(L)[t,t71]. Since k[zy, 22, 73] also has a pure graded injective resolution, therefore H (L) has
an essentially pure graded injective resolution by Proposition 3.8

O

Proposition 4.5. The minimal graded injective resolution of the 4-dimensional Sklyanin A(F, )

is pure if and only if the ring is PI.
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Proof. The Sklyanin algebra is AG and CM, so Theorem 3.1 gives purity in the PI case. Therefore
we will show here that purity fails in the non-PI case.

The failure of purity will be proved by constructing an extension of the form 0 — N[-1] —
X — M({) — 0 where N is a suitable point module, M ({) is a suitable line module and X
contains N[—1] as an essential submodule. By [LeSm] a point module is pure of GK-dimension 1
and a line module is pure of GK-dimension 2, so the injective envelope of N, which appears in the
minimal graded injective resolution of A by a graded version of [ASZ, 2.], has finitely generated
submodules of GK-dimension > 2, whence purity fails.

Let A be the 4-dimensional Sklyanin algebra. Fix a line module M (f) and a point module
M (p). The minimal projective resolution of M (¢) looks like

(3)

O A1) @ A[-1] s A = M(£) = 0

0 — A[-2]

where a,b, ¢, d € Ay are such that V(e,d) = ¢ and V(a,b) = ¢/ where ¢’ is a line in P(A}) which
corresponds to some line module. Thus Ext!, (M (£), M(p)); is the homology of

M (p)[2]; & M(p)[1]; & M(p)[1); &= M(p);.

where & (m', m") = am' + bm" and &(m) = (cm, dm). Recall that, for i > 0, M(p)>; is again a
shift of a point module; for brevity we write p; for the point satisfying M (p;)[—i] = M (p)>;. Also
remember that if 0 # m € M(p)o and = € Ay, then zm = 0 if and only if p € V(). Therefore

0 ifj<-1, 0 ifp;elorj<0
if p; or ,
dim (kerdy), = ¢ 1 if pjyq ¢ ¢ and j > -1, dim (Im &), = { . Pi J ,
I ) , I 1 ifpj¢fand j>0,
2 ifpjy €0 and j > —1,

)
0 if p; ¢ £ and pjy1 ¢ ¢/ and j > 0,
or j < —1;
dim Ext!y(M(€), M(p)); =4 2 ifp; € Land pj4y € £ and j > 0,
or pjy1 € ¢ and j = —1;

1 otherwise.

We adopt the usual conventions and notations (see for example [LeSm] and [SmSn]). Thus
A = A(F,T) is determined by the elliptic curve £ and the point 7 € E/. We can write £ = 7s, the
secant line to F spanned by r,s € E. Hence by [LeSm, Proposition 4.4], ¢/ = r+7s+ 7. The
point modules are of two types:
e the ‘standard’ ones, those of the form M (p), p € E, and
e the ‘exceptional’ ones, of which there are four, one corresponding to each 2-torsion point
w € F, say M(ey), where e, € P(A}) is the singular point of the cone which is the union of

the secant lines {75 | r + s = w}.
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If p € F, then p; = p — ir, whereas for the exceptional ones (e,); = e,. Therefore, for the

standard point modules we have

0 if p—jré{r,s,r4+2r,s+ 27} and j >0,
or j < —1;
dim Exth (M (), M(p)); =4 2 ifp—jre{r,sin{r+2r,s+2r}and j >0,
orpe{r+r,s+7}and j=—1;

1 otherwise,
and for the exceptional point modules we have

0 ifwég{r+sr+s+2r}and 7 >0,
or j < —1;
dim Extly (M (£), M(e,)); = { 2 ifo=r+s=r+s+2randj>0,
orw=r+s+ 27 and j = —1;

1 otherwise.

Notice the different behavior of the two kinds of point modules when 7 has infinite order:
Ext!, (M(¢), N) is finite dimensional if N is a standard point module, but may be infinite di-
mensional when N is exceptional.

Recall that A satisfies a polynomial identity if and only if 7 is of finite order, so suppose 7
is not of finite order. Fix a 2-torsion point w, and fix r,s € F such that r + s + 27 = w; write
N = M(e,)[—1]; then Ext' (M (78), N)o = Ext!,(M(75), M(e.))_1 = k*; so we may choose a
non-split extension

0>N—-X—M7T5—0

in which the maps are of degree zero. Let ¢ € Extly(M(Fs), N)o represent the extension. To

show that NV is essential as a graded submodule of X, it suffices to show that the sequence
0—+N—=>N+Az - A7 =0 (4-3)

is non-split whenever z is a homogeneous element of X not in /V; here T denotes the image of z
in M(7s). If Q = M(7s)/AzZ, then there is an exact sequence

Hom 4, (A%, N) — Ext!, (Q, N) — Ext (M(75), N) — Ext, (A%, N),

so it suffices to show that & does not lie in the image of Ext' (@, N)o, because then its image in
Ext!, (A%, N) is non-zero.

By [SmSn, 4.4], since r + s = w — 27, Q has a finite filtration by graded submodules, the
successive quotients of which are either finite dimensional or shifts of point modules; moreover,
using the fact that r + s = w — 27, it follows from [LeSm, §5] that these point modules are
standard ones. Since N is exceptional, Hom , (AT, N) = 0.

There are two linearly independent central elements in As, say €27 and €2y every standard point
module is annihilated by €2; and €2, but an exceptional point module is not. Hence, there is a

homogeneous central element ¢ such that ¢ = 0, but ¢V # 0. It follows that ¢ acts faithfully on
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N. By a graded version of Rees’ Lemma, Ext} (Q, N) = Hom 4 () (@, N/cN)[d], where d = deg c.

But @ is a cyclic module generated in degree zero, and the degree d component of N/¢N is 1-

dimensional (because N is generated in degree 1), so Hom 4 () (@, N/eN)q = k. Thus the image

of Ext}(Q, N)o in Ext'y(M(78), N)o is a 1-dimensional subspace of this 2-dimensional space. As

x varies, so does (), and the various () obtained form an inverse system. Hence the EXt},{(Q, N)o

form a directed system, so their union is a 1-dimensional subspace of Ext!i(M(75), N)y. By

choosing & not in this union, we ensure that (4-3) does not split. This completes the proof that

the minimal resolution is not pure. O
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