Corrigendum

Volume 114, Number 1 (1988), in the article "Primitive Ideals and Nilpotent Orbits in Type G_2 ," by T. Levasseur and S. P. Smith, pages 81-105:

It was falsely claimed in 2.6 that $\pi(\mathcal{N}_1) \subseteq \mathcal{N}_2$. We are grateful to P. Torasso for bringing this error to our attention. He pointed out that $X := X_{\eta_1 - \eta_2} + X_{-\eta_3}$ is in \mathcal{N}_1 (being conjugate to $X_{\eta_1 + \eta_3} + X_{\eta_2}$), but that $\pi(X) = cX_{x_1} + dX_{-x_1}$ ($0 \neq c, d \in \mathbb{C}$) is not nilpotent in g_2 (for the same reason that $\begin{cases} 0 & c \\ d & 0 \end{cases}$ is not nilpotent in sl(2)).

The "fact" that $\pi(\mathcal{N}_1) \subseteq \mathcal{N}_2$ is only used in the proof of Proposition 2.6. Nevertheless, Proposition 2.6 is true as stated, and a proof is obtained by replacing the first sentence of the old "proof" by the following three sentences.

"Certainly $X_{\eta_1-\eta_2} \in \mathbf{O}_{\min}$, whence $G_2 \cdot X_{\eta_1-\eta_2} \subseteq \mathbf{O}_{\min}$. But $\pi(G_2 \cdot X_{\eta_1-\eta_2}) = G_2 \cdot \pi(X_{\eta_1-\eta_2}) = G_2 \cdot X_{\alpha_1} = \mathbf{O}_8$, so $\dim(G_2 \cdot X_{\eta_1-\eta_2}) \ge 8 = \dim \mathbf{O}_{\min}$. <u>Therefore</u> $\overline{G_2} \cdot X_{\eta_1-\eta_2} \subseteq \overline{\mathbf{O}}_{\min}$, and this forces $\pi(\overline{\mathbf{O}}_{\min}) = \overline{\pi(G_2 \cdot X_{\eta_1-\eta_2})} \subseteq \overline{\pi(G_2 \cdot X_{\eta_1-\eta_2})} = \overline{\mathbf{O}}_{\min}$."