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Chapter 1

Categories

We assume the reader is comfortable using category theory as a language, or
framework, in which to express basic results about algebraic objects such as
groups, rings, modules, et cetera. At that level, the definitions of category theory
take center stage and there is no need for deep results on abelian categories.
Deeper results begin to play a role once one enters into the more modern parts
of group representation theory, finite dimensional algebras, and the theory of D-
modules. More profound properties of abelian categories play a prominent role
in algebraic geometry. The needs of algebraic goemetry were the stimulus for
Grothendieck’s Tohoku paper [94]. Thus one also expects that the foundations
of non-commutative algebraic geometry will also require some of the deeper
results on abelian categories. Much of this foundation was laid in Gabriel’s
thesis [88]. It is not unreasonable to view Gabriel’s thesis is the first paper on
non-commutative algebraic geometry.

This chapter and the next present the categorical results that provide the
foundation for non-commutative algebraic geometry.

Since category theory provides a framework for a wide range of subjects it
is necessarily abstract and technical. We will provide some relief by illustrating
the ideas with examples relevant to non-commutative algebraic geometry.

1.1 Definitions and Examples

Definition 1.1 A category C consists of the following data:
e a set Ob(C) whose members are called the objects of C;

e for every pair of objects X and Y, a set Hom¢(X,Y) whose elements are
called morphisms from X to Y;

e for every triple of objects X,Y, Z, a map
o:Homc(Y, Z) x Home(X,Y) = Home (X, Z)
called the composition law.

In addition these data are required to satisfy the following conditions:

3



4 CHAPTER 1. CATEGORIES

e the composition law is associative;

e for every object X, there is an element idx € Homc(X, X) such that
foidx = f and idx oh = h for all f € Hom¢(X,Y) and h € Hom¢ (Y, X),
and all objects Y. We call idx the identity morphism. ¢

The zero category has a single object, denoted 0, and the identity morphism
idg is the only morphism.

Definition 1.2 A subcategory of C is a category D such that Ob(D) C Ob(C) and
for every pair X,Y € Ob(D), Homp(X,Y) C Hom¢(X,Y). It is also required
that the composition law in D agree with that in C, and that the identity
morphisms be the same. If Homp(X,Y) = Hom¢(X,Y) for all X,Y € Ob(D),
we call D a full subcategory of C. ¢

Notation. It is usual to denote a morphism f € Homc(X,Y) by an arrow:
either f: X - Y or

x 1 v

It is permissible to drop the subscript from Homc if the category in question is
clear.

For most categories it is a routine matter to check that the axioms are
satisfied.

Example 1.3 The category Set has as its objects all sets, and as its morphisms
all maps between sets. The identity idx is the map such that idx(z) = z for
all z € X. The empty set, denoted ¢, is an object in Set. We define Hom(¢, X)
to consist of a single morphism called the empty function. The empty function
¢ — X is the inclusion of the empty set as a subset of X. If X is not empty we
define Hom(X, ¢) to be empty. ¢

Foundations and Conventions. In order to avoid paradoxes involving
the set of all sets which are not members of themselves (Example 3.5) we fix
a universe, that is, some suitably large set of sets, in which to work—see [155,
Chapter I, Section 6] for the definition of a universe. One axiom is that if a
set belongs to the universe, then so does its power set. Sets belonging to our
fixed universe, are called small sets. With this in mind, we modify the above
definition of the category Set: its objects are all small sets. It is important to
realize that the collection of all objects in Set is not itself a small set.

A category is said to be small if the set of all its objects and the set of all
its morphisms are both small sets. When we wish to form the category of all
categories we take care to form the category of all small categories.

When we discuss collections of objects in some category, we will often make
the tacit assumption that the index set is small. This is especially relevant when
we discuss products, coproducts, limits, colimits, and so on.
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Example 1.4 The category of abelian groups, denoted Ab, has as its objects
all abelian groups, and as its morphisms all group homomorphisms. Each
Homap(G, H) can be given an abelian group structure by using the group
law in H and defining the addition pointwise. The composition of morphisms
(f,g9) = fogis now bilinear. A category with such a structure is called pre-
additive. We say more about pre-additive categories in the next chapter. ¢

Example 1.5 If R is a ring, then we may form a category with one object,
say *, and morphisms Hom(x,*) = R with composition being the product in
R. The additive structure on R makes this a pre-additive category. Indeed, a
pre-additive category with a single object is of this form. Thus a pre-additive
category can be seen as a generalization of a ring. ¢

Example 1.6 If R is a Z-graded ring, we may form a category with objects
the set of integers, and morphisms Hom(m,n) = R,,_, with composition the
product in R. This is a pre-additive category. One can picture the category as
being laid out in the plane, with the homogeneous components of R distributed
over the lattice points. The component R; appears at the points (n + i,n) on
the shifted diagonal. o

Example 1.7 Let I be a set. An I-algebra A is a collection of abelian groups
A;; indexed by the elements of I x I together with an associative bilinear mul-
tiplication

Aij X A = Aibjk,

and elements e; € A;; such that e;a = a = ae; for all a € A;;. A shorter
description of an I-algebra is that it is a pre-additive category with the objects
indexed by i € I. Thus A;; is Hom(j,4) and e; is the identity in Hom(Z,¢). The
previous example shows how to associate to a Z-graded ring an I-algebra with
I = 7. Thus I-algebras generalize graded rings. ¢

Example 1.8 The category of rings with identity, denoted Ring, has as objects
all rings with identity, and as morphisms all ring homomorphisms that send
the identity to the identity. The zero ring is allowed because the zero element
functions also as the identity element. However, if R is not the zero ring, then
1 # 0. For any ring R, Hom(R,0) consists of a single element. If R is not the
zero ring, then Hom(0, R) is empty because the map sending 0 to 0 does not
send the identity to the identity. ¢

Example 1.9 Let k£ be a commutative ring with identity. A k-algebra is a ring
R with identity together with a ring homomorphism 7 : k — R sending 1 to 1
such that the image of & is contained in the center of R. We call 5 the structure
map. A homomorphism of k-algebras ¢ : R — S is a ring homomorphism
that commutes with the structure maps. The category of k-algebras Alg(k) has
objects the k-algebras and morphisms the k-algebra homomorphisms. The zero
ring becomes a k-algebra in the obvious way. ¢
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Example 1.10 Let R be a ring with identity. The unital right R-modules to-
gether with the R-module homomorphisms forms a category, denoted ModR.
When R is right noetherian the full subcategory modR consisting of the noethe-
rian modules plays an important role. The category of left R-modules will be
denoted ModR°P; that is, it will be realized as the category of right modules
over the opposite ring. The category of unital modules over the zero ring is the
zero category.

We sometimes need to consider modules over rings without identity. A
typical example is a ring R which is a union of subrings Ry C Ry C ... such
that each R; has an identity element e;. For example, R, might be the ring of
n x n lower triangular matrices over the field &, or R might be a direct sum of
rings. Then one might consider those R-modules M such that M = ). Me;;
thus e; acts as the identity on Me;. 9

Example 1.11 The category of graded vector spaces over a field k, denoted
GrModk, has as objects all k-vector spaces, V say, which are endowed with
a decomposition V' = @, V» as a direct sum of distinguished subspaces. A
single vector space endowed with two different decompositions gives two distinct
objects in GrModk. The elements of Hom(U, V) are the k-linear maps f: U = V
such that f(U,) C V,, for all n € Z. ¢

Example 1.12 Fix a group G. A G-set is a set X endowed with an action of
G such that (gh).x = g.(h.z) for all g,h € G and all z € X, and such that
l.x = x for all x € X. The G-sets form a category Setg with morphisms the
maps [ : X — Y satisfying f(g.x) = g.f(z) for all g € G and all z € X. The
morphisms are called G-equivariant maps. ¢

Example 1.13 Let X be a topological space. The objects of OpenX are the
open subsets of X, including the empty set and X itself. Let U and V be open
subsets of X. If U ¢ V then Hom(U,V) is empty. If U C V then Hom(U,V)
consists of a single morphism, namely the inclusion map zg U - V. O

Example 1.14 Even if the objects in a category are sets, the morphisms need
not be set maps. A correspondence from a set X to a set Y is a subset C' C X XY
such that pr;(C) = X where pr; : X XY — X is the projection map. We say
that z € X corresponds to those y € Y such that (z,y) € C. The category
Corres of correspondences has the same objects as Set, and the morphisms from
X to Y, denoted Corres(X,Y), are the correspondences from X to Y. The
composition of correspondences

is
D o C := {(z,2) | there exists y € Y such that (z,y) € C and (y,2) € D}.

The identity correspondence idx is the diagonal Ax = {(z,z) | z € X}. A map
f X — Y between two sets determines a correspondence I'y := {(z, f(z)) | z €
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X} from X to Y called the graph of f. One has 'y, =T’y oT,. In the language
of section 1.4 this provides a functor from Set to Corres. We may view Set as a
subcategory of Corres. O

Example 1.15 Let G be a group. Define a category with a single object x
and Hom(*,*) = G, with composition of morphisms being the product in G.
Thus, groups are categories with a single object in which every morphism is an
isomorphism. More generally, a category with a single object is the same thing
as a monoid. O

Example 1.16 A groupoid is a category in which every morphism has an in-
verse. For example, the category in the previous example is a groupoid. With
that example in mind a groupoid may be thought of as “a group with several
objects”. If X denotes the set of objects in the groupoid, and A the set of
arrows, then there are two maps from A to X, namely s : A — X which sends
a morphism f to its domain, and ¢t : A — X which sends a morphism f to its
codomain. The letter ¢ suggests “target” and s suggests the “start” of the ar-
row. One may define a groupoid by starting with the data A, X, s, and ¢, then
imposing some axioms. For example, composition of morphism means there is
a partially defined map A x A — A, and so on.

If X is a set and R C X x X an equivalence relation, then there is a
corresponding groupoid, the objects of which are the elements of X, and the
morphisms are the elements of R with composition law (z,y) o (y,2) = (z, 2)
whenever (z,y) and (y, z) are in R, and inverses (z,y) ! = (y,7) if (z,y) € R.
Another important example of a groupoid arises from the action of a group G
on a set X. In this case, the objects of the groupoid are the elements of X, and
the morphisms are the pairs (g,z) with ¢ € G and = € X, such a pair being
thought of as a morphism gz — x; the inverse is (g,7)~! = (g7 %, gz) and the
composition law is (g, z) o (h,y) = (hg, z) if gz = y. O

Example 1.17 A category P in which all Hom-sets have at most one element
is called a preorder. We may define a binary relation < on the objects of P by
saying p < ¢ if Homp(p,q) # ¢; i.e., if there is a morphism p — ¢. Among
the preorders are the partial orders, namely those preorders in which p < g and
g < p implies p = gq. o

Definition 1.18 The product of two categories C and D is denoted by C x D and
is defined as follows. Its objects are ordered pairs (L, M) with L an object in C
and M an object in D. A morphism (L, M) — (L', M') in C x D is by definition
a pair (f, g) consisting of a morphism f : L — L' and a morphism g : M — M'.
Composition of morphisms is defined by (f1,91) o (f2,92) = (fif2,91,92). ¢

Definition 1.19 Let C be a category. The dual or opposite category, denoted C°P,
is defined by Ob(C°P) = Ob(C) and

Homcer (X, V) = Homc (Y, X).
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The composition
- : Homeer (Y, Z) X Homeer (X,Y) = Homeer (X, Z)

is defined by f-g := go f, where g o f is the composition in C. The identity
morphisms remain the same. 4

Example 1.20 The category of affine schemes may be defined as the opposite
of the category of commutative rings. The objects are usually written as pairs
(Spec R, ©), where Spec R = {prime ideals of R} is endowed with the Zariski
topology, and O is the sheaf of rings on Spec R whose stalks are the localizations
R,. The empty scheme is the pair (¢,0). One is sometimes a little careless in
using Spec R to denote both the underlying topological space and the pair.

The category of affine schemes is a subcategory of the category of ringed
spaces, the objects of which are pairs (X, R) consisting of a a topological space
X and a sheaf of rings (with identity) R on X.

If k is a commutative ring one defines the category of affine k-schemes as the
opposite of the category of commutative k-algebras. Thus an object is a pair
consisting of an affine scheme X and a morphism « : X — Spec k, the structure
map. We call X a scheme over Speck. ¢

EXERCISES

1.1 Show that the identity morphism idx € Homc¢ (X, X) is unique.

1.2 Show that the category OpenX of open subsets of the topological space X, defined in
Example 1.13, satisfies the category axioms.

1.3 Check that the composition of correspondences is associative, and hence that Corres is a
category.

1.4 View an equivalence relation R on a set X as a correspondence from X to itself. Show
that R o R = R. Does this property characterize the equivalence relations among the
correspondences?

1.5 In the language of Definition 2.1, which correspondences are monics, epics, isomorphisms?
Which correspondences have a left inverse and/or a right inverse?

1.2 Special types of morphisms and objects

Definition 2.1 A morphism f: X — Y in Cis

e monic, or a monomorphism, if whenever g;,g> : W — X are morphisms in
C such that fg1 = fg2, then g; = go;

e epic, or an epimorphism, if whenever ¢1,¢9> : Y — Z are morphisms in C
such that g1 f = g2 f, then g1 = go;
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e an isomorphism if there exists g € Homc(Y, X) such that f o g =idy and
go f =idx . If such a g exists it is unique, and is denoted by f~'; we call
it the inverse of f. Objects X and Y are isomorphic in C if there exists
and isomorphism f: X - Y in C. O

Definition 2.2 A morphism f: X — Y is a split monic if there is a morphism
g:Y — X such that gf = idx. A morphism f: X — Y is a split epic if there
is a morphism g : Y — X such that fg =idy. ¢

Example 2.3 A map f: X — Y in Set is a monomorphism (respectively, an
epimorphism) if and only if it is injective (respectively, surjective). O

Example 2.4 An epimorphism in the category of topological Hausdorff spaces
need not be surjective. The inclusion f :  — R of the rationals in the reals,
both being given their usual topology, is an epimorphism. To see this, suppose
that g1, 92 : R = Z are continuous maps such that g, f = g=f.

We put the product topology on products of spaces. The Hausdorff hypoth-
esis ensures that the diagonal

A:={(z,2)|2€Z}yCZxZ

is closed. The map g := (g1,92) : R X R — Z x Z is continuous, so g~(A)
is closed. By hypothesis g~ (A) contains Ag := {(¢,q) | ¢ € Q}. Hence g1
contains the closure of Ag which is Ag := {(r,7) | r € R}. Thus g1(r) = g2(r)
for all r € R, so g1 = g2. The general principle illustrated by this example is
that the inclusion of a dense subspace is an epimorphism. ¢

Example 2.5 An epimorphism in the category of rings need not be surjective.
The inclusion f : Z — Q is an epimorphism. If g1, g> : Q = R and g1 (n) = g2(n)
for all n € Z then, for n # 0 we have

1=g1(n.2) = g1 (n)g:(3),

from which it follows that g, (L) = go(2) for all n # 0. From this, it follows that
g1(m/n) = ga(m/n) for all m € Z. That is, g1 = g». Exercise 5 generalizes this
example. The general principle illustrated by this example is that the inclusion
of a commutative domain in it field of fractions is an epimorphism. ¢

The notion of isomorphism depends on the category in question: two objects
in a subcategory D C C may be isomorphic as objects of C but non-isomorphic
as objects of D. This happens when Homp (X, Y") or Homp (Y, X) fails to contain
the morphism implementing the isomorphism.

An isomorphism is both monic and epic (Exercise 6) but, as Examples 2.4
and 2.5 show, a morphism which is monic and epic need not be an isomorphism.

Definition 2.6 Let X be an object in a category C.
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A subobject of X is an equivalence class of pairs (A,a) consisting of an
object A and a monomorphism « : A — X; two such pairs (4, a) and (A’,a')
are equivalent if there is an isomorphism ¢ : A" — A such that o' = au.

A quotient object of X is an equivalence class of pairs (B, ) consisting of an
object B and an epimorphism § : X — B; two such pairs (B, ) and (B',a')
are equivalent if there is an isomorphism ¢ : B — B’ such that 8’ = 1. ¢

Definition 2.7 An object Z in a category C is

e an initial object if Homc(Z, X) is a singleton for all X € Ob(C);

e a terminal object if Homc (X, Z) is a singleton for all X € Ob(C);

e a zero object if it is both an initial and a terminal object.
A zero object is denoted by 0 and, for every pair of objects X and Y, the
composition of morphisms X — 0 — Y is called the zero morphism and is
denoted by 0, or Oxy if necessary. O

Initial, terminal and zero objects are all unique up to unique isomorphism.
Hence the definition of the zero morphism 0xy does not depend on the choice
of zero object.

The empty set is the unique initial object in Set. Any set consisting of a
single element is a terminal object in Set. The ring of integers Z is an initial
object in the category of rings with identity, and the zero ring is a terminal
object. Thus the zero ring is not a zero object in the sense of Definition 2.7.
More generally, a commutative ring k is an initial object in the category of
k-algebras, and the zero ring is a terminal object.

Definition 2.8 Suppose that C has an initial object. An object in C is irreducible
if it is not an intial object but its only subobjects are the initial object and
itself. %

In the category of topological spaces the empty space is an initial object,
and the singletons are the terminal objects. Thus the irreducible objects are the
singletons. In the category of affine schemes SpecZ is a terminal object, and
the empty space is the only initial object. Hence the irreducible objects in the
category of affine schemes are the spectra of fields (Speck, k) (i.e., the reduced
points).

EXERCISES

2.1 Show that the composition of two monomorphisms (respectively, epimorphisms) is a
monomorphism (respectively, an epimorphism).

2.2 Let f € Home(X,Y). Show that f is monic if and only if f, viewed as a morphism
f°P : Y — X in the dual category, is epic.

23 If g: W — X and f: X — Y are morphisms show that f is epic if fg is, and that g is
monic if fg is.

2.4 Let f: X — Y be a morphism.
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(a) Show that f is monic if and only if the induced map Hom(W, X) — Hom(W,Y),
g — fg, is injective for all W.

(b) Show that f is epic if and only if the induced map Hom(Y, Z) — Hom(X, Z), h — hf,
is injective for all Z.

2.5 Let R be a commutative ring and S a multiplicatively closed subset consisting of regular
elements. Show that the inclusion f : R — Rg of R in the localization is an epimorphism
in the category of rings (cf. Example 2.5).

2.6 Show that an isomorphism is both a monomorphism and an epimorphism. Show the
converse is false. [Hint: why are the maps f in Examples 2.4 and 2.5 not isomorphisms?]

2.7 Show that the inclusion R — C is not an epimorphism in the category of fields.

2.8 In the category OpenX of open subsets of a topological space X, show that X is a terminal
object, and that the empty set is an initial object.

2.9 Suppose that C has a zero object. Let f : W — X and ¢g : Y — Z be morphisms in C.
Show that Oxy o f = 0wy and goOxy =0xz.

2.10 Show that a functor need not send irreducible objects to irreducible objects. [Hint: con-
sider the linearization functor L : Setg — ModkG in Example 6.8.]

1.3 Products and coproducts

Definition 3.1 Let {X, | @ € I} be an indexed set of objects in a category C.
A product of the X, is an object [[ X, together with distinguished morphisms
Do : [[ Xa = X, called projections such that, if Y € Ob(C) and g : Y — X,
are morphisms, then there is a unique morphism f : Y — [[ X, making the
following diagram commute for all « € I:

Yy L5 [1x.

2

Xa
%

Example 3.2 Suppose that X [ X exists. By its universal property there is
a unique map A : X — X [[ X, called the diagonal, such that its composition
with each projection X [[ X — X is the identity idx. O

Definition 3.3 Let {X, | @ € I} be an indexed set of objects in a category
C. A coproduct (or direct sum) of the X, is an object [] X, together with
distinguished morphisms i, : Xo — [[ X called injections such that, if Y €
Ob(C) and j, : Xo — Y are morphisms, then there is a unique morphism
g : ]I Xo = Y making the following diagram commute for all a € I:

Xo —2 [[ Xa
lg (3-1)
Y
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O

The product and coproduct of a family of objects M, in C can be charac-
terized by the existence of isomorphisms

Homc (N, [ [ Ma) = [] Homc (I, Ma)

and
HOmc(H My, N) = HHomc(Ma,N)

for all objects N in C.

The product of a collection of objects in C is the coproduct of those objects
in C°P, and vice versa.

The definitions do not assert that products and coproducts exist.

Example 3.4 Small products and coproducts exist in Set. The product of a
family of sets X, is their cartesian product and the maps p, : [[ Xo = X
are the obvious projections. The coproduct is the disjoint union and the maps
ia 1 Xo = [ X are the obvious inclusions.

Products and coproducts with the empty set require care. Let I be any set.
If Y is non-empty, then Hom(Y, #) is empty so Hom(Y, ¢ x I) must also be
empty, whence ¢ x I = ¢. On the other hand, ¢[[I = I. If x is a singleton
set, then x x I = I. Notice that the projection ¢ x I — I is not epic when I is
non-empty. 0

If a product or coproduct exists it is unique up to unique isomorphism, so we
shall speak of the product and the coproduct. The uniqueness up to isomorphism
may be proved directly, or as a consequence of Yoneda’s Lemma (Example 5.7),
or as a consequence of the fact that a product is a special case of a limit, and
hence a terminal object in an appropriate category (Section 1.7).

Foundational issues arise when we try to form the product of all sets. Recall
that we are working in a fixed universe, and the objects of Set are those sets
belonging to the universe.

Example 3.5 The product of all non-empty sets does not exist in Set. Suppose
to the contrary that P € Ob(Set) is a product of all sets. Then the power set,
@ say, of P also belongs to Set. Let 7 : P — () be the associated projection. It
is surjective (Exercise 2). The subset X = {z € P | z ¢ w(x)} of P is a member
of @, so there is some y € P such that 7(y) = X. If y € X, then by definition
of X,y ¢ m(y) = X, a contradiction. However, if y ¢ X, then by definition of
X,y en(y) =X, a contradiction. Thus P cannot exist. O

The problem is that the index set for this product, Set itself, is too large:
the collection of all objects in Set is not a small set.
Convention. From now on we tacitly assume that all index sets we use are

small. This convention applies to products and coproducts, and later on will
apply to limits, colimits, direct limits, and so on.
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Definition 3.6 A category is complete if every small set of objects in it has a
product, and is cocomplete if every small set of objects in it has a coproduct.
We sometimes indicate this by saying that products, or coproducts, exist in C.

0

Example 3.7 The category of groups has products and coproducts. The prod-
uct of a collection of groups G; is their Cartesian product endowed with the
componentwise product. Their coproduct is the subgroup of the product con-
sisting of all elements having only finitely many components that are not the
identity.

The definition of products and coproducts imposes no restrictions on the
index set. The index set could be empty. What is the product and coproduct
in C of the empty collection of objects?

If I and J are disjoint sets indexing families X, a € I, and Xg, 8 € J, then
it follows from the universal properties that

x« x J[Xs=]]X
I J

1uJ

If I is empty, then
X« x J[Xs=]]Xs (3-2)
) J J

Suppose that T is an object in C such that T x X exists for some X, and
the projection T'x X — X is an isomorphism. Then for all Y,

Hom(Y, X) = Hom(Y, T x X) = Hom(Y, T) x Hom(Y, X)

so Hom(Y,T) must be a singleton set. Hence T is a terminal object in C. But
(3-2) shows that T' =[] 4 Xo has this property provided the product exists. We
conclude that the product over the empty set is a terminal object if one exists,
and does not exist otherwise.

Passing to the dual category, one sees that the coproduct over the empty set
is an initial object if one exists, and does not exist otherwise.

Example 3.8 Products and coproducts exist in ModR. The product is the
cartesian product made into an R-module by r.(x,) = (rz.), and the p, are
the projections. The coproduct is the submodule of [] X, consisting of those
elements (z,) for which z, is non-zero for only finitely many «. That is, the
coproduct is the direct sum of the X,, denoted € X,. If the index set is finite,
then [[ Xo = [[ Xa-

In the full subcategory of finitely generated R-modules products and coprod-
ucts do not always exist: for example, the product of infinitely many non-zero
vector spaces is not finite dimensional. O

Give an example in GrModA showing that the product is not the
Cartesian product.
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Example 3.9 Products and finite coproducts exist in the category Alg(k) of
k-algebras and in the category of commutative k-algebras. In both cases the
product is the cartesian product with component-wise addition and multiplica-
tion, and the k-algebra structure arising from the diagonal embedding of & in
the product. In the category of commutative k-algebras the coproduct is the
tensor product over k, whereas in Alg(k) the coproduct is the free coproduct,
defined as follows. If A = k(X )/I and B = k{(Y')/J are written as quotients of
free algebras, then
ATI B := KXIIY)/(I, J).

k

(This is independent of the presentation of A and B.) O

Lemma 3.10 A product of monics is monic.

Proof. Suppose given a family of morphisms f, : M, — N,, and suppose
that the products [ M, and [ N, exist. For each § there is a composition
[I Mo — Mg — Ng. Hence by the universal property of [] Na, there is a map
[I Mo — [] Na. This is called the product of the morphisms f, and is denoted
by [ fa- It is elementary to show that [] f» is monic if each f, is [241, Prop.
3.1, Ch. IV, pg. 85). O

Corollary 3.11 Let f. : B — A be a fully faithful functor having a left adjoint
f*. If A is cocomplete, so is B.

Proof. Because f. is fully faithful the counit ¢ : f* f, — idg is an isomorphism.
Let M; be a set of objects in B. By hypothesis [] f.M; exists. If N is in B, then

Homg (f*(] ] £.M:), N) = Homa ([ £.M;, N) = [ | Homa(f.M;, £.N) = [ | Homs(f* £.M:, N).

However, f*f.M; = M; because f, is fully faithful, so the displayed isomor-
phisms show that f*(]] f«M;) is a coproduct of the M;. O

Example 3.12 A product of epics need not be epic. Let Tors denote the full
subcategory of Ab consisting of the torsion abelian groups. If M, is a collection
of torsion abelian groups, then their product in Tors is the torsion subgroup of
their product in Ab (Exercise 8). To distinguish these two products we denote
them by [[1.. Mo and []5, Ma.

For each m > 1 there is an obvious epimorphism f,, : Zom — Zs. Hence
there is a commutative diagram

0 —— HTorsZ2m —_— HAb Ziom

! !

0 —— HTorsZ2 I l_IAbZ2
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Consider (1,1,...) € [[tosZ2- It is the image of an element (ai,as,...) €
[1ap Zom provided fm(am) = 1 for all m. However, if fp,(am) = 1, then the
order of a,, is 2™, so (a1, as, ... ) is not torsion. Thus (1,1,...) is not the image
of any element in []1, Z2m. We conclude that [] f, is not an epimorphism in
Tors. O

Interpreting Lemma 3.10 and Example 3.12 in the opposite category, we
conclude that a coproduct of epics is epic, but a coproduct of monics need not

be monic.

EXERCISES

3.1 Prove that (X [IY)[]Z = X [[(Y [] Z) whenever these products exist.

3.2 Consider a product [] Xo. If the index B is such that Homc(Xg, Xa) # ¢ for each «,
show that the projection pg is an epimorphism. For example, in Set, pg is surjective if
Xp is non-empty.

3.3 If T is a terminal object in C, prove that X [[T 2 T[[ X = X for all X € Ob(C).

3.4 Suppose that J C I are index sets. If the products exist, show there are morphisms
0:1]; Xa = I]; Xa and ¢ : [[; Xa — [[; Xa such that 8p = id. Hence show that if I
is the disjoint union of J and K, then []; Xo = (IT; Xa) [I(ITx Xa)-

3.5 Show that any finite length subobject of [J; Xo naturally embeds in []; Xo for some
finite subset J C I.

3.6 Verify the claims in Example 3.9 regarding the existence and description of the product
and coproduct in the categories of commutative k-algebras and all k-algebras.

3.7 What is wrong with the following argument? Let C denote the category of commutative
k-algebras, and let Aj,...,An be in C. For each o = 1,... ,n define fo : Ao — [], Aa
by fa(z) = (0,...,0,2,0,...,0), where the z is in the Ay-position. By the universal
property of the coproduct, there is a morphism

9:[J4a = 4a = [] 4=

such that fo = gia, where iq : Ay — [[An isthe map in(z) =1®...10z®1...Q 1.
Therefore g(1® ...®z®...®1) =(0,...,z,...,0) for z € A,. But this is ambiguous if
=1

3.8 Let Tors denote the category of torsion abelian groups. Verify that the product in Tors is
the torsion subgroup of the product in Ab.

3.9 Is the product over all closed points p € P! of the epics Op1 — Op epic?

3.10 Is every P'-module a subquotient of a direct product of copies of Op1?

1.4 Functors

A recurrent theme in mathematics is to assign to the objects being investigated
objects in another category, the assigned object being in some sense an invari-
ant of the original one. The classical example is the fundamental group of a
topological space. It is even better if, in addition, one assigns to morphisms in
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the original category morphisms in the other category. This idea is formalized
by the notion of a functor. Functors are the appropriate morphisms categories
whose objects are themselves categories.

Definition 4.1 A covariant functor F' : C — C' between two categories consists
of the following data:

e amap F : Ob(C) — Ob(C');

e for all X,Y € Ob(C) a map Fxy : Homc(X,Y) — Home (FX,FY), the
image of f € Hom¢(X,Y) being denoted by F(f).

This data is subject to the conditions:

e if f and g are morphisms in C, then F(fog) = F(f)o F(g) whenever fog
is defined;

e F(idx) =idpx for all X € Ob(C).

A contravariant functor F' : C — D is a covariant functor C°? — D from the
dual category. That is, if f : X — Y then F(f) : FY — FX, and the obvious
analogues of the conditions for a covariant functor are satisfied. O

Example 4.2 Spec is a contravariant functor from the category of commutative
rings to the category of topological spaces. If ¢ : R — S is a homomorphism of
commutative rings and p is a prime in S, then ¢~1(p) = {r € R| (r) € p} is a
prime in R. The functor sends the zero ring to the empty space.

This functor does not extend to non-commutative rings because ¢~ (p) need
not be a prime ideal; for example, if ¢ is the inclusion of the diagonal matrices
k*™ in the full matrix algebra M,,(k), then ¢~1(0) is not prime.

Example 4.3 Let X be a scheme over Z. For each commutative ring R, write
X(R) = Hom(Spec R, X)

for the set of morphisms of schemes Spec R — X . This gives a covariant functor
from commutative rings to sets. We call X (R) the R-valued points of X. By
the Yoneda Lemma (see section 1.5), this functor completely determines X as
a Z-scheme. Hence we can think of schemes as certain types of functors from
the category of commutative rings to Set. It is often an important problem to
recognize whether a given functor is of the form X (—), and if so to describe X
as completely as possible. For further discussion see [78, ?77]. 0

Definition 4.4 A covariant functor F: C — D is
o faithful if all Fxy are injective;

o full if all F'xy are surjective;
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e fully faithful if it is both full and faithful.
A fully faithful functor is called an embedding. ¢

If C is a subcategory of D, the inclusion C — D is faithful.

Example 4.5 The functor Set — Corres that sends each set to itself and sends
aset map f: X — Y toits graph {(z, f(z) ;| € X} is faithful, but not full. ¢

Example 4.6 (Hom functors) Fix an object X in a category C. Define the
covariant functor Hom (X, —) : C — Set by Hom(X, —)(Y) = Hom¢(X,Y) and
for f € Homc(Y1,Y2) define Hom(X, f) : Homc(X,Y1) — Homc(X,Y2) by
Hom(X, f)(9) = f o g. There is a similar contravariant functor Homc(—, X).
Notice that Homc (X, —) preserves terminal objects, and Homc(—, X) sends
initial objects to terminal objects. ¢

Example 4.7 Associated to a ring homomorphism ¢ : R — S are three func-
tors. The extension of scalars functor

f*=—®grS :ModR — ModS

sends a right R-module M to the right S-module M ®pg S, and sends an R-
module homomorphism « to f*(a) := 1 ® a. The restriction functor

f+ = Homg(S, =) : ModS — ModR

sends an S-module N to N viewed as an R-module via the action n.x = ne(z).
An S-module homomorphism is automatically an R-module homomorphism, so
f+« sends an S-module map to the same map viewed as an R-module map. The
third functor is

f' = Hompg(S,—) : ModR — ModS.
For more about these functors see Example 6.4. ¢

More generally, if gpBgs is a bimodule over the rings R and S, then there are
functors — ® g B : ModR — ModS and Homg (B, —) : ModS — ModR. When
¢ : R — S we may take B = S to obtain f* and f,.

Definition 4.8 The category Cat has as its objects the collection of all small
categories, and as morphisms the functors between them. Actually it is better
to think of Cat as a 2-category. See 777. O

Example 4.9 There is a functor Ring — Cat sending a ring R to ModR, the
category of left R-modules, and a ring homomorphism ¢ : R — S to the functor
f*, defined in Example 4.7. There is also a contravariant functor Ring — Cat
which sends R to ModR, and sends a homomorphism ¢ to f.. ¢
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Example 4.10 Let R be a ring. Let R be the category with one object %, and
Hom(x,%x) = R. Let F : R — Ab be a covariant functor. Then F(x) is an
abelian group; let’s call it M. If r € R, then F(r) : M — M is an abelian
group homomorphism; if we write rm for F(r)(m), then r(sm) = (rs)m. If we
also assume that F' is an additive functor (Definition 2.7?), then F(r + s) =
F(r) + F(s), so (r + s)m = rm + sm, whence M becomes a left R-module.
Conversely, if we are given a left R-module M, then it determines an additive
functor R — Ab in an obvious way. Thus left R-modules are the same things
as additive functors R — Ab; right R-modules correspond in a similar way to
additive functors R°? — Ab. From this point of view R-module homomorphisms
are the same things as natural transformations between the functors involved
(Exercise 7). ¢

The previous example suggests that for any category C it might be useful to
consider the functors C — Ab. One should think of this as the representation
theory of the category C. This point of view is that taken in the representation
theory of quivers. There the category has objects the vertices and morphisms
the arrows of the quiver and the functors from C to Modk are the k-valued
representations of the quiver (see section 3.3.5. If G is a group and C is the
category with one object * and Hom(x,*) = G, then the functors C — Modk
are the same things as the representations of G defined over k. At a more
primitive level the functors from C to Set are the same things as G-sets.

Example 4.11 Let OpenX be the category of open subsets of a topological
space X (Example 1.13). Let F : OpenX — Ab be a contravariant functor
Write pl; = F(i;) : F(V) = F(U) whenever U C V. Then F together with the
maps p}; gives F the structure of a presheaf of abelian groups on X. Conversely
a presheaf of abelian groups on X gives a contravariant functor F : OpenX —
Ab. Therefore such contravariant functors are the same things as presheaves of
abelian groups on X. O

Definition 4.12 Let F,G : A — B be covariant functors. A natural transformation
7 : F — G is a class of morphisms 75y : FM — G M, one for each object M € A,
such that, for each f € Homa (M, M') the diagram

v 29 pap

lTM lrM,
am -SG9 qur

commutes. If each 77 is an isomorphism, 7 is said to be a natural equivalence or
isomorphism, F' and G are said to be naturally equivalent, and we write F = G.
We write Nat(F, G) for the set of natural transformations from F' to G.

Categories C and D are equivalent if there are covariant functors ' : C — D
and G : D = C such that F'G = Idp, and GF = Idc.
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There are similar definitions for contravariant functors, except that if F' :
C — D and G : D = C are contravariant functors such that F/G = idp and
GF =idc, we say that F' is a duality. O

Example 4.13 The standard example of a natural equivalence is duality of fi-
nite dimensional vector spaces. Let modk be the category of finite dimensional
vector spaces over the field k, and define * : modk — modk to be the contravari-
ant functor sending a vector space to its dual, and a linear map ¢ : V — W
to its transpose ¢* : W* — V* defined by ¢*(f)(u) = f(¢(u)). Composing
this functor with itself yields a covariant functor F' : modk — modk sending V
to V**, and sending ¢ to ¢** which is given by ¢**(a)(f) = a(¢*(f)) where
u €V, f e W*and a € V**. Tt is an easy exercise to show that the rule
ty : V. — V** defined by ty(u)(f) = f(u) for w € V and f € V*, yields a
natural equivalence t : F' — idmodk-

The functor V — V* is a duality from modk to itself. ¢

Natural equivalence allows one to recognize two categories of different sizes
as being essentially the same. Before elaborating on this, we first define a
skeleton of a category C to be a full subcategory D such that each object in C is
isomorphic to a unique object in D. For example, the full subcategory of modk
consisting of all k™ is a skeleton. If D is a skeleton for C, then the inclusion
F : D —» Cis an equivalence of categories. Since we do not usually want
to distinguish between isomorphic objects in a category, equivalence is a more
useful notion than isomorphism of categories: categories C and D are isomorphic
if there exist functors F' : C — D and G : D — C such that FF o G = idp and
Go F =idc.

EXERCISES

4.1 Show that the rule which assigns to a set X the free k-algebra k(X) may be made into a
functor from the category of sets to the category of k-algebras.

4.2 Show that the rule which assigns to a k-vector space V the tensor algebra T'(V'), may be
made into a functor from the category Modk to the category of k-algebras. Do the same
with the symmetric algebra S(V) in place of T'(V)

4.3 Can the rule which assigns to a vector space V the projective space P(V) be made into a
functor from Modk to the category of k-varieties?

4.4 (Compare with Exercise ?7.77.27.)

Let A, B, C, D be k-algebras. Show that Homg(—,—) gives a covariant functor
Homy (—, —) : mod(A ® B°P)°P x mod(C ® D°P) — mod(A°P ® B ® C ® D°P).

4.5 Show that a category is equivalent to any one of its skeletons, an equivalence being induced
by the inclusion.

4.6 A group is the same thing as a category with a single object in which all morphisms
are isomorphisms (see Example 1.15). Show that a functor from such a category to the
category of vector spaces is the same thing as a representation of the group.

More generally a representation of a category is a functor to the category of vector spaces.
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4.7 Let id = idmodr denote the identity functor on the category of left R-modules. Show that
Nat(id, id) is a ring isomorphic to the center of R.

4.8 In Example 4.10 show that module homomorphisms are the same things as natural trans-
formations between the functors corresponding to the modules.

4.9 Fill in the details in Example 4.11.

4.10 Let F' : A — B be a functor. Suppose that A, are objects in A. Show there are natural
morphisms F([TAa) — ] F(Aa), and [[ F(Aa) — F(I[ Aa). Give examples to show
these morphisms need not be isomorphisms even when F' is fully faithful.

1.5 Representable functors and Yoneda’s lemma

Definition 5.1 Let C be a category. A functor F' : C — Set is representable if
there is an M in C such that F' is naturally equivalent to Hom¢ (M, —). We say
that F is represented by M, or that M is a representing object. ¢

Similarly, a contravariant functor from C to Set is representable if it is nat-
urally equivalent to Hom¢(—, N) for some N in C.

Example 5.2 If (X, Ox) is a scheme, the global sections functor I'(X, —), de-
fined on the category of quasi-coherent Ox-modules is representable. It is nat-
urally equivalent to Hom(Ox, —) where Ox is the structure sheaf on X. O

Example 5.3 The duality modk — modk which sends a finite dimensional
vector space to its dual and a morphism to its transpose is representable. The
one-dimensional vector space is a representing object. For this reason k is called
a dualizing object for modk. O

The functor category. Let C and D be categories. We define
Fun(C, D),

the category of covariant functors from C to D to have objects the covariant
functors C — D, and morphisms the natural transformations Nat(F, G).

In order for Fun(C, D) to be a category the Hom-sets Nat(F, G) are required
to be small; since Nat(F, G) naturally embeds in [].cop, c Homc (FC,GC), the
smallness of C ensures that Fun(C, D) is a category.

Two functors F' and G are isomorphic in Fun(C, D) if and only if they are
naturally equivalent.

Lemma 5.4 Let 7 : F — G be a morphism in Fun(C,D). Then 7 is monic if
and only if Tar : FM — GM is monic for all M in C. And T is epic if and only
if e 1 FM — GM is epic for all M in C.

The contravariant functor C — Fun(C,Set). We extend the rule M —
Hom¢ (M, —) to a functor. If f € Homc (M, N) the natural transformation

f : Hom¢(N, =) — Homc (M, —)
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is defined as follows: for each A € Ob(C) let
fa : Hom¢(N, A) — Homc (M, A)
be the map f a(h) := hf. This is a natural transformation, and hence the rule
M~ Homc(M,—=) and fe f (5-1)
defines a contravariant functor C — Fun(C, Set).

Theorem 5.5 (Yoneda’s Lemma) The functor C°? — Fun(C, Set) defined by
M — Homc¢ (M, —) is fully faithful.

Proof. Let F': C — Set be a functor, and let M € Ob(C). For each £ € FM
and each A € Ob(C), define {4 : Homc (M, A) — FA by £a(g) := (Fg)(&). Tt
suffices to prove

e £:Homc(M,—) — F is a natural transformation, and
e the rule ¢ — £ is a bijection between FM and Nat(Homc (M, —), F);
e in particular, for each N € Ob(C), the rule & — £ is a bijection

Homc¢ (N, M) — Nat(Hom(M, —), Hom(N, —)). (5-2)

The details can be found in several books. O

Corollary 5.6 The functors Homc (M, —) and Homc (N, —) are naturally equiv-
alent if and only if M = N. In particular, an object representing a functor is
unique up to isomorphism.

Example 5.7 Products and coproducts can be defined by using Yoneda’s Lemma
and the fact that products exist in Set. To see this, let N, be an indexed set of
objects in a category C. If the contravariant functor C — Set defined by

M [[Homc(M, Na)
is representable, we define [[ N, to be a representing object; that is,

Hom(M, [[ Na) = [[ Hom(M, N,).

Similarly, if the covariant functor N — []Homc¢(M,, N) is representable we
define [ M, to be a representing object; that is,

Hom (][ Ma, N) = ][ Hom(M,, N).

Hence the uniqueness up to isomorphism of a product or coproduct follows from
the uniqueness up to isomorphism of a representing object (Corollary 5.6). ¢
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Proposition 5.8 Let f : L — M be a morphism in C. Then
1. f is epic if and only if Hom(f, N) is injective for all N in C;
2. f is split monic if and only if Hom(f, N) is surjective for all N in C.

Proof. The map Hom(f, N) : Hom(M, N) — Hom(L, N) sends « to af.

(1) By definition, f is epic if and only if af and o' f are distinct whenever
a and o are distinct elements of Hom (M, N). This is precisely the condition
that Hom(f, N) is injective.

(2) Suppose that f is split monic. Then there is a morphism g : M — L
such that gf = idg. If 8 € Hom(L,N), then 8 = Bgf, which is the image of
Bg under Hom(f, N). Hence Hom(f, N) is surjective. Conversely, suppose that
Hom(f, N) is surjective for all N. In particular, Hom(f, L) is surjective, so idg
is in its image. Thus gf = idy for some g € Hom(M, L), so f is split monic. O

EXERCISES

5.1 Fill in the details to prove Yoneda’s Lemma. Show that f really is a natural transforma-
tion, then show that fif2 = f2f1, to prove that (5-1) does define a contravariant functor.

5.2 Let F be the functor from commutative k-algebras to groups such that F(R) = SL,(R),
the group of n X n matrices, with entries in R, which have determinant 1. Show that F' is
a representable functor, represented by the k-algebra

A= k:[zn, e ,mnn]/(det —1)
where det denotes the determinant of the n X n generic matrix X = (z;;).

5.3 Let F C k{X) be a set of non-commutative polynomials, and let F' be the functor from
the category of k-algebras to the category of sets given by

F(S) = {solutions in S to the system of equations F = 0}.

Show that F' is represented by k(X)/(F).

1.6 Adjoint pairs of functors

Definition 6.1 Let f : C — D and g : D — C be covariant functors. We say
that f is a left adjoint of g and that g is a right adjoint of f if the covariant
functors Hom¢(—, g—) and Homp(f—, —), taking C°P x D — Set, are naturally
equivalent. For brevity we call (f,g) an adjoint pair; we will always use the
convention that the left adjoint is written first. O

Proposition 6.2 Let f : C— D and g : D — C be functors. Then (f,g) is an
adjoint pair if and only if for all M in C and N in D there are bijections

VMN - HOmc(M, gN) — HOInD(fM, N) (6—1)
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such that if « € Homc(M, M'") and § € Homp (N, N'), the diagram

Homc(M',gN) —22, Homp(fM',N)

Hoal l(—)O(fa)

Homc(M,gN) -2, Homp(fM, N) (6-2)
(98)0(-) | [#eo)
Homc (M, gN') -y Homp(fM,N')

commutes.

The commutativity of (6-2) is equivalent to the condition that
v(Aoa) =v(A\) o fa (6-3)
and

v(gBoN) = Bov(N) (6-4)

for all A : M' — gN. There are similar identities involving v~!.

The maps vy n give a morphism of bifunctors
v : Homc(—,g—) = Homp(f—, —).

The commutativity of (6-2) says that this morphism is a natural transformation
in each variable.

The paradigmatic algebraic example of an adjoint pair is provided by the
tensor and Hom functors.

Example 6.3 If gpBs is an R-S-bimodule, then — ® g B is a left adjoint to
Homg (B, —). In particular, if M is a right R-module and N is a right B-module,
then the map that sends A to the map m ® b — (A(m))(b) is an isomorphism

Hompg(M,Homg(B,N)) —— Homg(M ®gr B, N).

One checks that the diagrams in Definition 6.1 commute by using the explicit
form of the map. ¢

Example 6.4 A ring homomorphism f : R — S induces an adjoint triple of
functors (f*, f«, f') as defined in Example 4.7. We mean that (f*, f,) and f., f')
are both adjoint pairs. The fact that (f*, f) is an adjoint pair is a special case
of Example 6.3 with the bimodule being gSs. The fact that (f, f*) is an adjoint
pair is also a special case of Example 6.3 with the bimodule being sSgr. We call
f* and f, the inverse image and direct image functors associated to f.

If g : S — T is another ring homomorphism, then g, o fx = (g o f)« and
[rog"=(gof)" ¢
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We isolate an important special case of this. Recall that an element y in a
ring R is normal if yR = Ry. Conjugation by y induces an auto-equivalence of
ModR.

Lemma 6.5 Let y be a normal regular element in a ring R. Define 0 € Aut R
by
yr=ry
for allr € R. Let ¢* and o, be the inverse and direct image functors associated
to o. If M is an R-module, then o.M 1is equal to M as an abelian group but
with the R-action defined by
m.r = mre,

where the right-hand action is the original one. Multiplication by y is an R-
module homomorphism M — o*M .

Proof. The description of o, M is simply a restatement of the definition of the
direct image functor (see Example 4.7). Since ¢ is an automorphism of R, it is

easy to see that o* = (0,)~! = (67!),. A simple calculation shows that right
multiplication by y is a homomorphism M — (0~ 1),, so the result follows. O

A forgetful functor is one which simply forgets some of the structure on the
objects in a category. The next few examples illustrate the adage that left
adjoints to forgetful functors solve universal problems. (See Theorem 2.18.2 for
the case of sheaves and presheaves.)

Example 6.6 The left adjoint to the forgetful functor ModR — Set sending a
module to its underlying set of elements is the functor F' sending a set to the
free R-module with that set as basis. That is, for an R-module M and set X,
Homget (X, M) = Hompg(FX, M). 4

Example 6.7 If R is a k-algebra, we may send R to the k-Lie algebra which
is R itself as a k-vector space endowed with the Lie bracket [a,b] = ab — ba.
The left adjoint to this functor sends a Lie algebra to its universal enveloping
algebra. %

Example 6.8 Let G be a group, kG its group algebra, and Setg the category
of G-sets (Example 1.12). The forgetful functor F' : ModkG — Sets which
forgets the linear structure has a left adjoint, namely the linearization functor
L sending a G-set X to the vector space with basis the elements of X endowed
with the kG-action linearly extending the G-action. That is Homg (X, FV) =
HomkG (LX, V) <>

Example 6.9 The forgetful functor sending an abelian group to its underlying
semigroup has a left adjoint. Applying the left adjoint to the semigroup of
finitely generated projective modules over a ring R (with direct sum as the
operation) produces the Grothendieck group Ko(R). The adjoint functor can
either be constructed explicitly, or obtained as a consequence of the Adjoint
Functor Theorem. O
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Example 6.10 Let Sh(X) and PreSh(X) be the categories of sheaves and
presheaves of abelian groups on a topological space X. The left adjoint of the
forgetful functor Sh(X) — PreSh(X) assigns to a presheaf its sheafification. ¢

Example 6.11 Let D denote the category of commutative domains with mor-
phisms being the injective ring homomorphisms. There is a forgetful fully faith-
ful embedding F': F — D of the category of fields into D. This has a left adjoint

@ : D — F which sends a domain D to its field of fractions. ¢
- what happens to this example if we take non-commutative domains

— why is there is no left adjoint???

Proposition 6.12 Let (f,g) be an adjoint pair of functors with f : C — D and
v : Homc(—,9—) — Homp(f—,—) the associated isomorphism of bifunctors.
There are natural transformations

e: fg—idp n:idc = gf
defined as follows. If M is in C and N is in D, then
vy =v t(idsy) M = gfM (6-5)
and
ey = v(idgn) : fgN — N. (6-6)

If « € Hom¢(M,gN) and § € Homp(f M, N) then

v(a) =en o f(a) (6-7)

and
v (8) = 9(B) o nur. (6-8)
Proof. The details are left to the reader. O

Two special cases of (6-9) and (6-10) yield
efmo flnm) =idsm (6-9)
and
g(en) omgn =idgn . (6-10)
Definition 6.13 Let (f,g) be an adjoint pair of functors with f : C — D. The

counit associated to (f,g) is the natural transformation ¢ : fg — idp and the
unit is the natural transformation 7 : id¢ — g f. ¢
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Define natural transformations ids *n : f — fgf by (ids*xn)m == f(num)
and e xidy : fgf — f by (e *ids)m = ey Composing these gives a natural

transformation
exidy
>

AN, f.

The next result says that this and a similar natural transformation

n*idg .

> gfg

idg * €
g \

)

are identities.

Corollary 6.14 Let (f,g) be an adjoint pair of functors. With the previous
notation
(e xidy) o (idf xn) =idy

and
(idg x€) o (n xidy) = id, .

Proof. These follow immediately from (6-9) and (6-10). O

Theorem 6.15 Let (f,g) be an adjoint pair of functors with associated counit
e: fg—id. Then

1. g is full if and only if every epr is split monic;
2. g is faithful if and only if every e is epic;
3. g is fully faithful if and only if every ep is an isomorphism.
Proof. Suppose that f: C — D. Let M and N be in D. The composition
Homp (M, N) —2— Homc(gM,gN) —%— Homp(fgM, N) (6-11)
is equal to Hom(epr, N) because it sends § € Homp (M, N) to
v(gB) = Bov(idgm) = Boen.

Since v is bijective, Hom(e s, N) is injective or surjective for all M and N exactly
when g is faithful or full. However, for a fixed M, Hom(e,s, N) is injective or
surjective for all N exactly when ¢,/ is epic or split monic (Proposition 5.8). O

A short proof of part (2) is obtained as follows. If we set A =id,p in (6-4),
then g(81) = g(B2) if and only if 81 o v(idypr) = B2 o v(idgar), S0 g is injective
on morphisms if and only if v(idgas) is epic. But v(idyar) = em.

Theorem 6.16 Let (f,g) be an adjoint pair of functors with associated unit
n:id = gf. Then

1. f is full if and only if every nn is split epic;

2. f is faithful if and only if every nn is monic;
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3. f is fully faithful if and only if every nn is an isomorphism.
Proof. Suppose that f: C — D. Let M and N be in C. The composition

Hom(M,ny )
—

Homc (M, N) Homc(M, gfN) —%— Homp(fM, fN) (6-12)

is equal to f because it sends @ € Hom¢ (M, N) to

vy o a) = v(nn) o f(e) = f(a).

Since v is bijective, Hom¢(M,ny) is injective or surjective for all M and N
exactly when f is faithful or full. However, for a fixed M, Homc(M,nn) is
injective or surjective for all N exactly when 7y is monic or split epic (cf.
Proposition 5.8). O

A short proof of part (2) is obtained as follows. If we set A = v~ (idsy) in
(6-3), then f(a1) = f(az) if and only if v~ (idsn) oy = v~ (idsn) 0, so f is
injective on morphisms if and only if »=!(id ) is monic. But v~ (idsn) = nn.

Corollary 6.17 Let f, : B — A be a functor having a left adjoint f*, and a
right adjoint f'. The following are equivalent:

1. f. is faithful;

2. M — f'f.M is monic for all M in B;

3. f*feM — M is epic for all M in B.
Theorem 6.18 Let A be an abelian category. Let i, : B — A be the inclusion
of a full subcategory.

1. Suppose that i, has a left adjoint i*. Then

(a) i*i. — idp is a natural equivalence, and

(b) if B is closed under quotients, then M — i.i* M is epic for oll M in
A.

2. Suppose that i, has a right adjoint i*. Then

(a) idg — ‘i« is a natural equivalence, and

(b) if B is closed under subobjects, then i,i'M — M is monic for all M
in A.

Proof. By hypothesis, i, is full and faithful. Therefore (1a) follows from part
(3) of Theorem 6.15, and (2a) follows from part (3) of Theorem 6.16.
(1b) Let M be an A-module, and write C for the cokernel in the exact
sequence
M —id*M - C — 0.
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Since i.i* M belongs to B, the hypothesis that B is closed under quotients ensures
that C' is also in B. Since ¢* is right exact,

"M = "M —i"C — 0

is exact. It follows from (1a) that the natural transformation i*i.i* — ¢* is an
isomorphism. But the composition i* — i*i,i* — * is the identity by Corollary
6.14, so i* — i*i,3* is an isomorphism. Therefore i*C = 0. Hence

0 = Homg(:*C, C) = Homa(C,.C) = Homa(C, C).

It follows that C' = 0.
(2b) The proof is similar, starting from an exact sequence 0 — K — i,i' M —
M. O

Example 6.19 Let Tors denote the full subcategory of Ab consisting of torsion
abelian groups. Let i, : Tors — Ab be the inclusion functor, and ' the func-
tor sending a group to its torsion subgroup. Then (i4,i') is an adjoint pair.
Although i, is exact, it does not have a left adjoint because if it did, then it
would commute with products; but it does not because the product of all Z/nZ
in TorsZ must be torsion, whereas, Z embeds in [], Z/nZ in ModZ. Also see
Exercise 1.8. O

Proposition 6.20 A functor f : C — D has a right adjoint if and only if the
functor X — Homp(fX,Y) is representable for each Y in D.

Proof. If g is a right adjoint of f then the functor is represented by gY'.

Conversely, suppose that the functor is representable. For each Y in D let
gY be a representing object (gY is only determined up to isomorphism, so we
just make some choice) and let ¢y : Homc(—, gY) — Homp(f—,Y) be a natural
equivalence. If f: Y — Y’ is a morphism in D, we define gf : g¥ — gY”’ to be
the unique morphism making the following diagram commute:

Homc¢(—, gY) LA SN Homp(f—,Y)
Homc(—,gf)J' lHomD(f—,f)
Homc(—,gY") —2— Homp(f—,Y").

It is now straightforward to check that g is a right adjoint to f. O

Theorem 6.21 Let f : C — D be a functor. The following are equivalent:
1. f is an equivalence of categories;

2. f is fully faithful and every object of D is isomorphic to an object of the
form fX;

3. f is fully faithful, and has a fully faithful left adjoint;
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4. [ is fully faithful, and has o fully faithful right adjoint.

Proof. [155, Theorem 1, page 99] or [182, Chapter 1, Theorem 5.3]. O

EXERCISES

6.1 Let (f,g) be an adjoint pair. If § € Hom(fM, N), show that
en o fg(0) o f(na) =90.

6.2 Let (f,g) be an adjoint pair with f : B — A. By replacing B and A by their opposite
categories, show that Theorem 6.16 is a consequence of Theorem 6.15.

6.3 Let fi : C — D and f2 : D — E be functors. Suppose that (f1,91) and (f2, g2) are adjoint
pairs. Show that (f2f1,9192) is an adjoint pair.

6.4 If (f,g) is an adjoint pair, show that f preserves initial objects, and g preserves terminal
objects.

6.5 Let f : R — S be aring homomorphism, and (f*, f«) the associated adjoint pair (Example
6.4). Show that fx, which is Homg(S, —) has a right adjoint, namely f' = Hompg(S, —).

6.6 Show that the right adjoint of a functor is only determined up to natural equivalence.
6.7 Prove Proposition 6.12.

6.8 Let B be a set. Show that as functors from Set to Set, — x B is left adjoint to Hom(B, —).
That is,
Hom(M x B, N) = Hom(M, Hom(B, N).

1.7 Limits and colimits

The notions of limit and colimit subsume some familiar ideas. For example,
products, kernels, pullbacks, and inverse limits are special types of limits, and
coproducts, cokernels, pushouts, and direct limits are special types of colimits.

We begin this section by formalizing the notion of a diagram in a category—
a diagram will be a certain sort of functor, but it is really just a fancy way
of saying that we have a collection of objects and morphisms between them
satisfying certain commutativity rules. The formal definition of a diagram is
similar to the functorial definition of a representation of a quiver.

Definition 7.1 A directed graph consists of a set of vertices and, for each ordered
pair of vertices (a, 3), a set Eg of edges from a to f3.

A directed graph is essentially the same thing as a category. The graph
determines a category in which the objects are the vertices, and the morphisms
from «a to 8 are the directed paths from a to 8; we also define the identity mor-
phisms id, as the empty paths e,. Composition of morphisms is concatenation
of paths.
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We denote a graph by G = (V, E) where V is the set of vertices, and E the
set of edges. All our graphs will be small, meaning that both V' and E are small
sets.

If e is an edge from « to 3, we call a the start of e and 8 the end of e, and
indicate this by writing

a —— B.
A directed path from a vertex a to a vertex B is a finite sequence of edges
e1,...,en such that the start of e; is «, the end of e, is # and, for each i =
1,...,n—1, the end of e; is the start of e;;1; we write e,, - - - eae; for the path.

For each vertex «, we define the empty path e, which begins and ends at a; we
declare that ee, = e for any edge e starting at a, and e,e’ = €' for any edge €'
ending at a.

Definition 7.2 Let C be a category. Let G be a graph with associated category
G. A diagram in C of shape G is a functor D : G — C.

Let D be a diagram in C. A tuple (Z,1),) consisting of an object Z in C,
and morphisms 9, : Z — D(«a), one for each vertex «, is called a cone over D,
or a cone from Z to D, if, for all edges e : @ — 8, D(e) 0 ¢y = 5. A morphism
between two cones, say 0 : (Z',9!) = (Z,%4), is a morphism 6§ € Homc(Z', Z)
such that ¥4 0 8 = 4., for all vertices a. The collection of all cones over D is a
category Cone(D).

A limit of the diagram D is a terminal object in Cone(D); we denote it by
lim D, or lim, D(«), if it exists; being a terminal object, it is unique up to
isomorphism.

A small diagram is one arising from a small graph. A small limit is one
associated to a small diagram.

Although a limit consists of an object together with morphisms, we will often
refer to the object itself as the limit.

The terminology ‘cone over D’ should evoke a picture of the diagram lying in
a horizontal plane, with Z sitting above the plane, and maps ¢, down to each
vertex of the diagram in such a way that each triangle having Z as a vertex
commutes.

Example 7.3 (Products) If G = (V,¢) is a graph with no edges, then a
diagram, D say, in C of shape G is just a collection of objects D, indexed by
V. The limit of this diagram is therefore the product of the objects,

limD & HDQ.

Now let D be an arbitrary diagram in C; since there are morphisms lim D — D,
the universal property of the product implies there is a morphism

limD — ] Da-
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Example 7.4 (Equalizers and kernels) A diagram of shape

1l

consists of a pair of objects X and Y, and two morphisms fi, fo : X = Y. The
limit of this is a triple (L, g, h) consisting of an object L and two morphisms
g: L — X and h: L — Y such that f; og = fy o g = h. Notice that the
morphism h carries no extra information: we could say that the limit is a pair
(L,g) where g : L — X satisfies f; o g = f2 o g and the appropriate universal
property holds. We call L the equalizer of f; and f2. In Set the equalizer exists
and is the subset of X where f; and f» agree. In ModR the equalizer exists and
is the kernel of f; — f2; in particular, the kernel of a module homomorphism
f is a special type of limit, namely the equalizer of the pair (f,0). That is, if
f:X =Y, then ker f is the pair (L, g) where L is an R-module, and g : L =& X
satisfies fg = 0 and, if ¢’ : L' — X satisfies fg' = 0, then there is a unique
h: L' — L such that g’ = gh.

Example 7.5 (Pullbacks) A pullback is a limit over a diagram of shape

!

e — > @
The pullback or fiber product of a diagram
X

s

Y —— S
fa

in C is a triple (X xg Y,g1,92) consisting of an object X xgY in C, and
morphisms ¢g; : X XxgY — X and g2 : X XgY — Y such that the diagram

XxgY —2 4 X

| s

Yy — S
fa

commutes and, whenever (Z, hy, ho) is another triple in C with h; : Z — X,
hy: Z —Y and f1 o hy = f2 0 hy, there is a unique map 6 : Z - X XgY such
that hy = g1 060 and hs = g2 0 6. The requirement that lim D be a terminal
object in Cone(D) coincides with the universal property the pullback is required
to possess.
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Theorem 7.6 Set has all small limits.

Proof. Let G be the category associated to a small graph G, and let D : G — Set
be a diagram. Fix a singleton set *, and let L be the set of all cones over D of
the form (x,,). Note that L is small since G is, so L is an object in Set. For
each vertex a, define ¢, : L — D(a) by ¥4 ((*,94)) = pa(*). Thus L is a cone
over D. We will show it is the limit of D.

Suppose that (Z, p,) is a cone over D. For each z € Z, define ¢, : *x —» Z
by ¢.(x) = z. It is easy to see that (*,p4 ©t.) is a cone over D, and hence an
element of L, so we may define 8 : Z — L by 6(z) = (%, pa o t-). Therefore

(Y ©0)(2) = Ya((*, pa © 12)) = pa(iz(*)) = pa(2),

whence po = ¥4 06, thus showing that (L,1),) is a terminal object in Cone(D),
and hence a limit of D. O

Colimits. Colimits are like limits, except that they are initial objects de-
fined in terms of cones having vertex below a horizontal plane containing a
diagram and morphisms going down from the diagram to the vertex of the
cone.

Definition 7.7 Let D be a diagram in C. A tuple (Z, ¢, ) consisting of an object
Z in C, and morphisms ¢, : D(a) = Z, one for each vertex a, is called a cone
under D, or a cone from D to Z, if for all edges e : & = 3, pa = @ o D(e).
A morphism between two cones, say 6§ : (Z',¢)) = (Z,¢a), is a morphism
0 € Homc(Z', Z) such that ¢, = 8 o ¢!, for all vertices a. The collection of all
cones under D is a category Cone(D).

A colimit of the diagram D is an initial object in Cone(D), and we denote it
by colim D if it exists.

Remark 7.8 The terminology ‘cone under D’ should evoke a picture of the
diagram lying in a horizontal plane, with Z sitting below the plane, and maps
o down to Z from each vertex of the diagram in such a way that each triangle
with Z as one vertexr commutes.

The arguments showing that products, kernels, and pullbacks are special
types of limits have analogues showing that coproducts, cokernels, and pushouts
are special types of colimits. For example, if f: X — Y, coker f is the colimit
over the diagram

il o

Y
and a pushout is a colimit over a diagram
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A coproduct is a colimit over a diagram with no edges; for any diagram D, there
is a morphism []_, D(a) — colim D.

Example 7.9 Let R be an equivalence relation on a set X. Write a,b: R —
X for the projections onto the first and second components, then the set of
equivalence classes X/R is the pushout in the following diagram:

R — X

(e

d !

X —— X/R

Example 7.10 Let G be a group acting on a set X. Then the quotient space
X /@ is the pushout in the diagram

GxX — X

d !

X —— X/G
where a(g,z) = z and B(g,x) = gz.

Notice that the quotient spaces X/R and X/G in the previous two examples
arise from groupoids (see Example 1.16).

Definition 7.11 A covariant functor F'

e preserves, or commutes with, limits if F(lim X,) & lim FX, whenever
lim X, exists;

e preserves, or commutes with colimits if F'(colim X,) = colim F X, whenever
colim X, exists;

Theorem 7.12 The functor Homc (X, —) preserves limits, and Homc(—, X)
sends colimits to limits.

Proof. Let D : G — C be a diagram with limit (L,¢s). If (Z,0.) is a
cone in Set over the diagram Hom(X, —) o D, then each ¢, is a set map Z —
Hom¢(X, D(«)). Thus, for each z € Z, the maps p,(z) : X — D(a) make
(X,9a(2)) a cone over D (if e : @« — 3, then pg(z) = D(e) o pq(z) because
v = D(e) o o). Hence there is a unique morphism 6, : X — L in C such
that @ (2) = ¥4 0 0, for all vertices a. Now, defining 6 : Z — Homc(X, L) by
0(z) = 0., we obtain ¢, = 1) 08 for all @. The uniqueness of 4 follows from the
uniqueness of 6. Hence (Hom¢ (X, L), Hom(X, 1)) is a limit of Hom(X, —)oD.

If we write F = Homc(—, X), then F : C°P — Set is the covariant functor
Homcor (X, —), which commutes with limits. But the limit of a diagram D :
G — C°P is the colimit of the ‘same’ diagram D : G — C. Hence the result. O
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Using Yoneda’s Lemma, the existence of limits in Set (Theorem 7.6), and
Theorem 7.12, we can define limits and colimits as the objects representing
suitable functors.

Corollary 7.13 If X is an object in C, and D : G — C is a diagram, then
1. lim D represents the functor X — lim(Hom(X,—) o D), and

2. colim D represents the functor Y — lim(Hom(—,Y) o D).

Corollary 7.14 If (F,G) is an adjoint pair of functors, then F preserves col-
imits, and G preserves limits.

Proof. Let FF : C — D, and let D : G — C be a diagram such that colim D
exists. We must show that F(colim D) = colim(F o D). For an arbitrary Y in
D, we have

Homp (F(colim D),Y) = Homc(colim D,GY) by adjointness,

lim Homc (—, GY) o D

lim Homc (D(a), GY')

lim Homp(F(D()),Y) by adjointness,
Homp (colim(F o D), Y) by Corollary 7.13.

R 1R

IR

Therefore, by Yoneda’s Lemma colim(F o D) =2 F(colim D).
The proof that G commutes with limits is similar (also see Exercise ??). O

Definition 7.15 A category C is
e complete if it has all limits;
e cocomplete if it has all colimits.

(Remembering our convention that all index sets be small, it might be better
to say “small-complete” rather than “complete”.)

Definition 7.16 A category C is filtering if

e for any two objects i,j € C, there exists an object k¥ € C and morphisms
it — kand j — k, and

e given any two morphisms ai,as : i — j, there exists an object k and a
morphism 8 : j — k such that S oa; = o as.

In particular, a directed category if filtering, but not conversely, since there
may be more than one morphism between two objects.

The basics can be found in the appendix to the book of Artin and Mazur
[13].
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EXERCISES

7.1 Consider the empty graph having one vertex and no edges. Show that a limit over this
graph is a terminal object, and a colimit is an initial object.

Pullbacks and pushouts in ModR. Let A, B,C be R-modules.
(a) Show that the pushout of the diagram

A% 4B

o2 |
C

is the cokernel of the map g1 [[g2 : A - B]]C, together with the obvious maps
from B and C to it.

(b) Show that the pullback of the diagram
(&

.|

A—2 4B

is the kernel of the map g1 [Jg2 : A[[ C — B, together with the obvious maps to A
and C from it.
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Chapter 2

Abelian categories

This chapter lays out the machinery and results concerning abelian categories
that we need later. More complete information can be found in the papers
of Gabriel [88] and Grothendieck [94], and in the books by Popescu [182] and
Stenstrom [241].

The standard example of an abelian category is the category of modules
over a ring. Abstracting the important properties of this category leads to the
definition of an abelian category. Every abelian category can be embedded as
a full subcategory of a module category, so the intuition one has from module
categories carries over to abelian categories. There are some differences, and
therefore some pitfalls. For example, an abelian category need not have many
projective or injective modules. Nor must it have arbitrary direct limits.

A Grothendieck category is a special kind of abelian category that is closer
still to a module category. Not only can it be realized as a full subcategory
of a module category, but this can be done in such a way that the embedding
functor has an exact left adjoint. In other words, every Grothendieck category
is a localization of a module category. A Grothendieck category has enough
injectives, meaning that every object embeds in an injective object. One of the
axioms for a Grothendieck category is that it be cocomplete. In particular, it has
direct limits. It turns out that a Grothendieck category is also complete. The
sheaves of abelian groups on a topological space form a Grothendieck category,
and so do the quasi-coherent O x-modules on a reasonable scheme X.

2.1 Additive categories

Definition 1.1 A category is

e pre-additive if all its Hom sets are abelian groups, and composition of
morphisms is bilinear,

e additive if it is pre-additive and has finite products and coproducts, and
contains a zero object.

A functor F' : A — B between pre-additive categories is additive if each map
Homa (M, N) - Homg(F M, FN) is a group homomorphism. ¢

37
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Remark. It follows from the remarks after Example 1.3.4 that in an additive
category a coproduct of the empty family is an initial object and a product of
the empty family is a terminal object. Therefore the axiom that an additive
category has a zero object follows from the other axioms.

Example 1.2 The module category ModR is additive: the abelian group struc-
ture on Hompg (M, N) is that induced from the abelian group structure on N,
and the existence of products and coproducts is explained in Example 1.3.8.
The full subcategory of finitely generated modules is also additive since only
finite products and coproducts are required to exist. ¢

The group operation in the Hom-sets of a pre-additive category will be writ-
ten additively, and their identity elements will be denoted by 0. There is some
potential for confusion with many different zeroes, so we will write Opn for
the zero element in Hom(M, N) when necessary. The reader may check that
the composition of a morphism with a zero morphism is zero. If a pre-additive
category has a zero object, then the bilinearity of the composition

Hom(0, N) x Hom(M, 0) — Hom (M, N)

implies that the composition M — 0 — N is equal to Ops -

In a pre-additive category each Hom(M, M) is a ring with identity. We
call it the endomorphism ring of M. The associativity and trilinearity of the
composition maps

Hom(M,N) x Hom(L, M) x Hom(K, L) — Hom(K, N),

endow each Hom(L, M) with a Hom(M, M)-Hom(L, L)-bimodule structure.

Example 1.3 The categories Set, Group and Ring are not pre-additive. Al-
though there is no obvious abelian group structure on the Hom spaces, a little
thought is required to see that none can be imposed so as to make composition
of morphisms bilinear.

Recall that a ring homomorphism is required to send the identity in one to
the identity in the other. There are many rings R and S such that Homging (R, S)
is empty. For example, take R to be the 2 x 2 matrices over a field &k, and S = k.
But a group is non-empty, so Ring is not pre-additive.

Suppose that Set were pre-additive. Let M be any set, and N = {s,t}
a set with two distinct elements. Since Homset (M, {s}) has one element it is
the trivial group. Since composition is bilinear M — {s} — N must be the
identity element in the group Homge (M, N). But the same argument applies
to M — {t} — N, whence Homse(M, N) has two distinct identity elements!
This is absurd. %

Proposition 1.4 Let {M; | i € I} be a small set of objects in an additive
category, and suppose that their product and coproduct exist. Let

aj:Mj—>HM,~ and pj:HMi—>Mj
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be the morphisms guaranteed by the definitions. For each pair of indices (i, j)
define (5;'- : M; = M; by
s 0 s
7 lidag,  ifi=j.
Then

1. there are unique maps € : M; — [[ M; such that pie; = 6! for alli,j € I;

2. there are unique maps v; : || M; — M, such that vjo; = (5; foralli,j el

3. there is a unique map

[ M= [ M
such that Yo; = ¢; for alli € I;
4. pj¥ =v; foralljel;
5. if I is finite, then U is an isomorphism.

Proof. The universal property of the product provides the morphisms ¢; in
(1), and the universal property of the coproduct provides the morphisms +; in
(2). The map ¥ in (3) is ensured by the universal property of ][ M; applied to
the diagram

M; L} H Mj

g
110

It follows that p;¥a; = pje; = 5}, so by the uniqueness of the maps v;, we
conclude that p; ¥ = +;; thus (4) holds.
(5) Now suppose that I is finite.

For each 1,
(Sa) e =T =ao
J J

for all i. Therefore the uniqueness of the map making the diagram

M; L} HM]

-
LI M;

commute implies that

Z a;7y; = ldH M; - (1—1)
J
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Similarly, p; o (Z p Ejpj) = p; for all 4, from which it follows that
Zé‘jpj = idH M; - (1—2)
J

(Alternatively, (1-2) is equivalent to (1-1) in the opposite category.)

Now we show that ¥ is both monic and epic. If f: L — [] M; is such that
Tf=0,then 0=p;Tf =~;f =0forall j,so f=(3;a;v)f =0; thus ¥ is
monic. If g : [[M; - N is such that g¥ = 0, then 0 = g¥a; = ge; for all j,
so g = g(3_;€jpj) = 0; thus ¥ is epic. Hence ¥ is an isomorphism when I is
finite. d

It follows from (1) and (2) that «; and &; are monic, and that p; and ~; are
epic.

Warning. The map ¥ : [[M; — [[M; need not be monic in general
(Example 5.3), but is when the ambient category satisfies Ab5 (Proposition
5.13). When ¥ fails to be monic, there is a non-zero map f : K — [[ M; such
that +; f = 0 for all 4.

Corollary 1.5 Let f be a morphism in an additive category. Then
1. f is a monomorphism if and only if fg = 0 implies g =0, and
2. f is a epimorphism if and only if gf =0 implies g = 0.
Proof. Exercise 3. d

Definition 1.6 Let f: M — N be a morphism in an additive category A.

A kernel of f is a pair (A, «), consisting of an object A and a morphism
o : A — M such that fa = 0 and, if @' : A’ — M is a morphism for which
fa' =0, then there is a unique morphism p : A’ — A such that o/ = ap.

A cokernel of f is a pair (B, ), consisting of an object B and a morphism
B : N — B such that §f = 0 and, if 8/ : N — B’ is a morphism for which
B'f =0, then there is a unique morphism p : B — B’ such that 8’ = pg. ¢

The uniqueness of kernels and cokernels up to isomorphism follows from the
uniqueness of limits and colimits up to isomorphism. For example, the kernel
of a morphism f: M — N is the limit of the system

0

!

M —— N.
!

One could also define the kernel of f : M — N as the equivalence class of all
kernels (A4, a) under the equivalence relation (4,a) = (A4',a') if there is an
isomorphism ¢ : A" — A such that o' = au.
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Lemma 1.7 Let f : M — N be a morphism in an additive category. Then
1. f is a monomorphism if and only if ker f = (0 = M);
2. f is an epimorphism if and only if coker f = (N — 0).

Proof. (1) (=) Let o' : A’ - M be a morphism such that fa' = 0. Since
f is a monomorphism, o' = 0. Hence there is a unique morphism p : A’ = 0
such that o' = po 0, namely p = 0. Thus the pair (0,0 : 0 — M) satisfies the
required universal property to be a kernel.

(<) If g1,92 : W — M are morphisms such that fg1 = fgo then f(g1 —
g2) = 0 so, by the universal property of a kernel, there is a (unique) morphism
p: W — 0 such that g1 — g2 = 00 p. That is, g1 — go = 0, showing that f is a
monomorphism.

(2) Exercise. O

Proposition 1.8 Let f : M — N be a morphism in an additive category A.
Then

1. if ker f exists, it is a subobject of M ;
2. if coker f exists, it is a quotient object of N;

3. there is a natural morphism coker ker f — ker coker f, if these objects
ezist.

Proof. (1) Let (A, a) = ker f and suppose there exist morphisms p1,p2 : W —
A such that ap; = aps. Since fap; = 0, the uniqueness of p in the definition of
the kernel implies that p; = ps.

(2) Let (B, ) = coker f and suppose there exist morphisms p1,p2 : B = Z
such that p18 = pof. Since p1Sf = 0, the uniqueness of p in the definition of
the cokernel implies that p; = ps.

(3) Retain the earlier notation. Provided all the required objects exist, there
is a diagram:

) B

A—25 M y N y B
"rl T&
coker o ker 8

We will construct a morphism g : coker @ — ker # making the rectangle com-
mute. Since fa = 0, the defining property of coker a guarantees the existence
of a morphism p : cokerae = N such that f = py. Thus Bpy = ff = 0. But
v is an epimorphism, so 8p = 0. The defining property of ker 8 guarantees the
existence of a morphism p : cokera — ker # such that p = du. Therefore the
morphism g makes the diagram commute. |
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Definition 1.9 Let f be a morphism in an additive category. The image and
coimage of f are

im f := ker coker f
and

coim f = coker ker f,

whenever these objects exist. O

There is an obvious generalization of pre-additive categories in which each
Hom-set is required to be a module over a fixed commutative ring k, and the
composition of morphisms is required to be k-bilinear. The following is a more
formal way of saying this.

Definition 1.10 Let k be a commutative ring. A category C is k-linear there
is a ring homomorphism from k to the ring of natural transformations of the
identity functor idc. O

Let C be a k-linear category. Since each element of k acts as a natural
transformation of the identity functor, there is a ring homomorphism k£ —
Homc (M, M) for each object M in C. Composition of morphisms

Homc(M, N) x Homc(M, M) — Homc (M, N)
then gives each Homc (M, N) a k-module structure. Composition of morphisms
Hom¢ (N, N) x Hom¢c(M, N) — Hom¢ (M, N)

gives each Homc (M, N) another k-module structure. It is easily checked that
these two module structures are the same. The composition of morphisms
(f,g9) = f ogis k-bilinear.

A functor F': A — B between k-linear categories is k-linear if all the maps
Homa(M,N) — Homg(FM,FN) are k-linear. We will almost always work
within some k-linear category, and all our functors will be k-linear.

EXERCISES

1.1 Show that in a pre-additive category Homa (M, M) is a ring.

1.2 Let R be aring with identity, and let R be the category associated to R as in Example 3.1.
Show that the category of additive functors from R to Ab is equivalent to the category of
left R-modules.

1.3 Prove Corollary 1.5 and Lemma 1.7(2).

1.4 Show that the kernel and cokernel of a morphism f : M — N are, respectively, a subobject
of M, and a quotient of N.

1.5 In an additive category show that
(a) ker(0: M — N) = (M,idn);
(b) coker(0: M — N) = (N,idy);
(¢) f=0if and only if im f = 0.
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2.2 Abelian categories

Proposition 2.1 A morphism f : M — N in a pre-additive category factors
as

M — coker ker f — ker coker f — N. (2-1)

Definition 2.2 An additive category is abelian if every morphism has a kernel
and a cokernel, and the natural morphism coker ker f — ker coker f is an iso-
morphism for all morphisms f. O

Terminology. The objects in an abelian category A will be called A-
modules.

It follows from (2-1) that every morphism f : M — N in an abelian category
may be factored as f = 8 o a with & an epimorphism and # a monomorphism.

If f: M — N is monic and epic, then its kernel and cokernel are zero,
so coker ker f = M and ker coker f = N, whence M = N. Therefore f is an
isomorphism if and only if it is both a monomorphism and an epimorphism.

Theorem 2.3 The category of right modules over a ring is abelian.

Proof. Let R be a ring. Kernels and cokernels exist in ModR. If f: M — N
then ker f = {m € M | f(m) = 0} (together with its natural inclusion in M)
and coker f = N/{f(m) | m € M} (together with the natural surjection from
N). Hence coker ker f = M/ ker f, and

ker coker f = {n € N | n = f(m) for some m € M}.

The first isomorphism theorem for modules says that the natural morphism
from coker ker f to ker coker f is an isomorphism. O

The standard example of an abelian category that is not of the form ModR
is the category of presheaves of abelian groups on a topological space.

Example 2.4 Let R be a filtered ring. The category FiltR of filtered right R-
modules is an additive category having kernels and cokernels, but is not abelian.
This can be seen by observing that the identity map on a filtered module M
may be interpreted as a map in the filtered category from M to the filtered
module M (1) that is defined to be equal to M as an unfiltered module, but
with filtration defined by F;M (1) = F;y1 M; this map is monic and epic, but
not an isomorphism in FiltR.

The problem is this. Let f : M — N be a morphism of filtered modules. The
filtration on the cokernel of f is given by F;(coker f) = F;N + f(M)/f(M), and
the filtration on X = ker coker f is given by F; X = F;N N f(M). The filtration
on Y = coker ker f is given by F;Y = f(F;M). But the natural isomorphism
X — Y of unfiltered modules does not always respect the filtrations on X and
Y, so ker coker f is not isomorphic to coker ker f in general.
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A morphism f in an additive category is strict if the natural morphism
coim f — im f is an isomorphism. Strict morphisms play an important role in
categories of filtered modules. O

The sum and intersection of submodules. Suppose that {M; |i € I}is
a small set of submodules of an A-module M. If @,_,; M; exists, we define the
sum of the submodules to be the image of the canonical map @, _; M; — M; it

is denoted by
> M.

i€l

i€l

If [],c; M; exists, we define the intersection of the submodules to be the kernel
of the canonical map M — [[;.; M/M;, and it is denoted by

ﬂMi.

i€l

The pre-image. If f : M — N is a morphism in an abelian category and
N' is a submodule of N we define the pre-image of N’ to be

FHN') :=ker(M - N — N/N).

Proposition 2.5 If f : M — N is a homomorphism of A-modules and {M; | i €
I} are submodules of M and {N; | j € J} are submodules of N, then

> FMy) = f(z Mi)

i€l el

and

vy =71 (ﬂ N]-).

jeJ jed

Proof. Let C and D be the categories of submodules of M and N respectively;
the only morphisms are the inclusions. There is an adjoint pair of functors
(f«, f) with f. : C — D defined by f.M' = f(M') and f'N' = f~Y(N'). It
turns out that > M; is the coproduct of the M; in C and that [|N; is the
product of the N; in D. By ??, f. commutes with colimits and f' commutes
with limits, so the result follows. d

See section 2.6 of Popescu for further properties of f~!.
Definition 2.6 A sequence L - M — N of A-modules is exact if im(L — M) =
ker(M — N). ¢

If f: M — N is amap and N' is a submodule of N, then there is an exact
sequence
0—= fTYN')Y = M — f(M)/f(M)NN' = 0.
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Simple Modules. A dominant theme in almost every branch of algebra is
the classification and understanding the simple objects in the various abelian
categories that arise within that branch. The ur-example is the problem of
determining the irreducible representations of a finite group.

Definition 2.7 Let A be an abelian category. An A-module M is simple or ir-
reducible if it is non-zero and its only submodules are 0 and M. A module is
semisimple if it is isomorphic to a direct sum of simple modules. ¢

The next example provides a warning that our intuition from categories of
modules over a ring might lead us astray in an arbitrary abelian category.

Example 2.8 A sum of simple modules need not be semsimple. Let A be the
opposite of the category ModR where R is a polynomial ring in n > 1 variables
over a field. We will exhibit an A-module that is a quotient of a direct sum of
simple A-modules, and therefore a sum of simple modules, that is not isomorphic
to a direct sum of simples.

Simple A-modules coincide with simple R-modules. The intersection of all
the maximal ideals is zero, so R embeds in a direct product of simple modules,
namely the product of all the simple quotients of R. Reinterpreting this in A,
there is an epimorphism from a direct sum of simple A-modules to R. However,
if R were a direct sum of simple A-modules, then in ModR, R would be a direct
product of simple modules. We leave it to the reader to verify that R is not
a direct product of simple modules in ModR. Thus, we deduce that in A a
quotient of a direct sum of simples need not be simple. ¢

The situation is better than this example suggests. If an abelian category
satisfies Grothendieck’s condition Ab5 (Section 2.5), then every sum of simple
modules in it is isomorphic to a direct sum of simples (Proposition 5.12).

Many of the arguments that work for simple modules over a ring work for
simple modules in any abelian category. For example, one has a version of
Schur’s Lemma: The endomorphism ring of a simple module is a division ring
because a non-zero endomorphism of a simple module must be monic and epic,
hence an isomorphism.

Lemma 2.9 If M = [[ M, is a product of simple modules, then every simple
submodule of M is isomorphic to one of the Mys.

Proof. Since the restriction of at least one of the projections p, : M — M,
to the non-zero submodule is non-zero, that restriction implements the claimed
isomorphism. O
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EXERCISES

2.1 Show that a sequence 0 —+ L — M — N of A-modules is exact if and only if the sequence
0 — Homa (B, L) — Homa(B, M) — Homp (B, N) is exact for all A-modules B.

2.2 [241, 777] Show that the short exact sequences over a ring R form a pre-additive category
that is not abelian. The morphisms are triples (a, 3,7) such that the diagram

0 L M N > 0
L= i b
0 L M N 0

commutes. Find criteria for (a, 3,7) to be monic and/or epic.
2.3 Check the adjointness claim in the proof of Proposition 2.5.

2.4 Let p; : [[ M; — M; be the projections. Show that if NV is a non-zero submodule of [] Mj,
then the restriction of some p; to IV is non-zero. Hence show that if each M; is simple,
then every simple submodule of ] M; is isomorphic to some M;.

2.3 Functors to abelian categories

Throughout this section A will denote an abelian category.
If C and A are categories, we write

Fun(C,A)

for the category of covariant functors from C to A. The morphisms in Fun(C,A)
are the natural transformations.

As the next three examples suggest, many of the abelian categories one first
encounters may be realized as categories of functors to the ur abelian category
Ab. In this section we show that the functors from a category C to a fixed
abelian category form an abelian category.

Example 3.1 Let R be a ring. Define the category R to have a single object
* and morphisms the elements of R, with composition being the multiplication
in R. The addition in R gives R the structure of a pre-additive category. The
category of additive functors from R to Ab is equivalent to the category of right
R-modules. Such a functor assigns to * an abelian group, say M, and assigns
to each element of R = Homg(*, *) a group homomorphism M — M. (Some
details need to be checked). O

Example 3.2 Let G be an abelian group, and R a G-graded ring. Define the
category C to have objects the elements of G, and define Homc (7, j) = R;_;.
The composition of morphisms is given by the multiplication in R. Thus C is
a pre-additive category. The identity element of R is the identity morphism on
each element of G.

The category of additive functors from C to Ab is equivalent to the category
GrModg R of G-graded right R-modules. Such a functor assigns to each ¢ € G
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an abelian group, say Mj;, and assigns to each element of R; a collection of
group homomorphisms M; — M;y;, one for each i € G, each one coming from
the fact that R; = Homg(i,i + j). Conversely, one may associate to a G-graded
R-module M the functor C — Ab that sends i € G to M; and sends morphism
z € Homc (¢, + j) = R; to the map « : M; — M;;;. (Some details need to be
checked). O

The category of presheaves of abelian groups on a topological space X is
equivalent to the category of contravariant functors from Open(X), the category
of open subspaces of X, to Ab (Example 1.4.11).

Let A be an abelian category. If F' and G are functors from C to A there is
an abelian group structure on Hom(F, G) defined as follows. Natural transfor-
mations 7, u : F' — G yield morphisms 7, piar € Homa(FM,GM) for each M
in C, so a7 + ppy is defined. We define 7 + p by setting

(T+wm =7a + pua-

The zero element in Hom(F, G) is the natural transformation that associates to
each M in C the zero map FM — GM. This makes Fun(C,A) a pre-additive
category.

In fact, Fun(C, A) is an additive category. The product of two objects F' and
G in Fun(C,A) is given by

(FI[6)(Mm) =FM]][GM

and

(FI[o =Fr]] Gt

The coproduct of two objects is defined in a similar way. The zero object in
Fun(C, A) is the functor that sends every object of C to the zero object in A.

Theorem 3.3 Let C be an arbitrary category and A an abelian category. Then
Fun(C,A) is an abelian category.

Proof. Let 7 : F — G be a morphism in Fun(C, A).
First we show that a kernel of 7 is the functor K : C — A defined as follows.
On an object M,
KM :=ker(tyr : FM — GM).

More precisely, for each M in C we fix a pair (KM, vy : KM — FM) that is
a kernel of 75;. The value of K on a morphism f : M — N in C is defined as
follows. There is a commutative diagram

0 s KM s FM — GM

lFf le

0 y KN y FN — GN
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with exact rows. The unique map KM — K N making the diagram commute is
defined to be K f. Because (F f)ouyr = ino (K f), it follows that the morphisms
tp determine a natural transformation ¢ : K — F. Clearly 71 = 0.

To see that (K,t) is the kernel of 7, suppose that u : K' — F is such that
7p = 0. Then, for every M in C, the composition Tproun : K'M — FM — GM
is zero. By the universal property of the kernel, there is a unique morphism
pu : K'M — KM such that ppr = tp7 0 par- The uniqueness of each pys means
that these morphisms give a natural transformation p : K' — K, and u = ¢ o p.
Finally, the uniqueness of each pjs ensures that p is unique. Hence (K,¢) is a
kernel.

Cokernels are constructed in a similar way. We might say that kernels and
cokernels are defined “pointwise”.

Hence P := cokerkert and @ := ker coker 7 are also determined pointwise.
That is, PM = cokerker(ry : FM — GM) and QM = ker coker(rys : FM —
GM). But the natural map PM — QM is an isomorphism since A is abelian.
Therefore the natural natural transformation 1 : P — @ has the property that
Ny 2 PM — QM is an isomorphism for all M. This is exactly what is required
to show that 7 is a natural equivalence. O

Just as the kernel and cokernel of a natural transformation are determined
pointwise, so is the exactness of a sequence of functors determined pointwise.

Corollary 3.4 A sequence F — G — H in Fun(C,A) is exact at G if and only
if the sequence FM — GM — HM is exact in A for all objects M in C.

If C and A are k-linear categories we write Hom(C,A) for the category of
k-linear functors from C to A.

Corollary 3.5 If C and A are k-linear categories then Hom(C,A) is an abelian
subcategory of Fun(C,A).

What are the properties of the inclusion functor?

Corollary 3.6 If G is an abelian group and R is a G-graded ring, then the
category of G-graded R-modules is abelian.

Definition 3.7 Let F' : A — B be an additive functor between abelian categories.
Then F is

1. left exact if for every exact sequence 0 — L — M — N, the sequence
0— FL — FM — FN is exact;

2. right exact if for every exact sequence L - M — N — 0, the sequence
FL —- FM — FN — 0 is exact;

3. exact if for every exact sequence L — M — N, the sequence FL —- FM —
F' N is exact. O
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A functor is exact if and only if it is both left and right exact.

Left (respectively, right) exact functors between abelian categories preserve
finite limits (respectively, colimits). Left (respectively, right) exact contravari-
ant functors change finite colimits (respectively, limits) to limits (respectively,
colimits).

Proposition 3.8 Let P be an object in an abelian category A and let R denote
the ring Homa (P, P). Then Homa (P, —) and Homa (—, P) are left exact functors
taking values in ModR and ModR°P respectively.

Proof. We will just treat the covariant functor F' = Homa (P, —). By consid-
ering the contravariant functor G = Homa(—, P) as a covariant functor on the
opposite category A°P the result for F' implies that for G.

Let M be an A-module. The map

Homa (P, M) x Homa (P, P) — Homa (P, M),

given by composition of morphisms endows F'M with the structure of a right
R-module. If f € Homa(M,N) then Ff : FM — FN, which is given by
Ff(a) = fa, is a right R-module map because composition of morphisms is
associative (and A is a Z-linear category).

It remains to show that F' is left exact. Let

f

0 sy L s M —2 3 N

be exact in A. Then

0 y FL - Fvy 22 FN
is a complex of right R-modules. Since Ff(a) = fa, the fact that f is a
monomorphism implies that F'f is injective. This proves exactness at F'L. Now
suppose that Fg(8) = 0. That is, g8 = 0. Since (L, f) is the kernel of g, there
exists a unique p : P — L such that § = fp; that is, 8 € im(F'f), which proves
exactness at F'M. O

Proposition 3.9 If (f,g) is an adjoint pair of functors between two abelian
categories, then f is right exact and g is left exact.

Proof. This is a special case of Corollary 1.7.14. O

EXERCISES

3.1 Show that the category of additive functors Hom(B,A) from one additive category to
another is additive.

3.2 If A is an additive category show that the ring of natural transformations of the identity
functor ida is commutative with identity. If A is k-linear, show that this ring a a k-algebra.

3.3 If A is an abelian category show that the Hom(A, A) is a monoidal category with ® given
by composition.
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2.4 Direct and inverse limits

Direct and inverse limits are special kinds of colimits and limits. A direct limit
(respectively, an inverse limit) is a colimit (respectively, a limit) taken over a
direct set. Our convention that an index set is small remains in force.

Definition 4.1 A set I with a reflexive and transitive binary relation < is said
to be quasi-ordered. (It is possible for ¢ < j and j < ¢ with ¢ # 7, so I is not
necessarily partially ordered.) If, in addition, for each pair 7, j € I, there exists
k € I such that i < k and j < k, we say that [ is directed. A subset J C [ is
cofinal in I if, for each i € I, there exists j € J with ¢ < j. O

We often prefer to treat a quasi-ordered set as a category. The objects of
the category | are the elements of the quasi-ordered set, and the morphisms are

. singleton if i < j,
Hom(¢,j) =
1(6,9) {(Z) otherwise.
If i < j we write L;' for the unique morphism 7 — j, and define the composition

Li: OLj- =1} whenever i < j < k. Conversely, if | is a category such that there is at
most one element in Hom(4, 7) UHom(j, ) for all 4 and j, then | is equivalent to
a category arising from a quasi-ordered set; we then say that | is a quasi-ordered
category.

Definition 4.2 Let I be a directed set. A directed system in a category C, with
index set I, consists of objects {M; | i € I'} and morphisms ¢} : M; — M;
whenever ¢ < j, which satisfy:

° (P;::idMi,and
o ol o @} = ¢, whenever i < j < k.

More succinctly, if | is a quasi-ordered category, a directed system over | in C is
a covariant functor | — C.

Given such a directed system, a collection of morphisms ; : M; = N, i € I,
such that 1; = chp;'- whenever ¢ < j is said to be compatible with the directed
system. O

The directed systems over | in C form a category Fun(l, C). If C is abelian,
so is Fun(l, C).

Definition 4.3 Let (Mi,goj-) be a directed system in C, indexed by I. A direct
limit of this system is an object h_n;M, in C together with morphisms

such that
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* v = @jp} whenever i < j, and
o if ¢, : M; - N, i€ I, is a set of compatible morphisms
M; —2— lim M;

ol

N

then there exists a unique morphism p : h_m; M; — N such that ¥; = poy;
for all 4.

If every directed system in C has a direct limit in C we say that C has direct
limits. %

The next result says that a direct sum is a special case of a direct limit.

Lemma 4.4 Suppose that the direct sum €
F CIlet Mp = @;cp Mi. Then

D v =ty M,

iel

sc1 Mi exists. For each finite subset

where the limit is taken over all finite subsets F C I.

Proof. Throughout this proof F', G, and H, denote finite subsets of 1.

For each i € F, let a% : M; — Mp be the canonical inclusion existing by
virtue of the fact that Mp is the direct sum of the M;s for i € F. In particular
af'{z.} = idp,. When i € F C G the existence of the maps o, : M; — Mg and the

universal property of M imply that there is a unique map of : Mp — Mg such

that ai, = alal, for all i € F. Taking F = {i} this gives a; = ag}aii} = ol
It is now straightforward to check that the Mp form a directed system: the

equality afal; = of; for F ¢ G C H follows from the uniqueness of the af.

Let a; : M; — € M; be the canonical inclusions. There is a unique map
ar : Mg — @ M; such that a; = apat, for all i € F. We will show that the
maps ar give @ M; the appropriate universal property to be the direct limit of
the Mps. To this end, suppose given maps Br : Mr — N such that Br = fgaf
when F C G. We must show there is a unique map 3 : @ M; — N such that
ﬂF = ,BCMF for all F.

By the universal property of the direct sum there is a map g : @ M; - N
such that Sa; = By for all i. If i € F, then Bapal = fa; = By = frok. Tt
follows that far = B, as required.

It remains to check the uniqueness of 3. Suppose that 5’ : @ M; — N is
such that Br = B'ar for all F. Then B;, = B'a; for all i so B' = . d
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Example 4.5 Let z be a point in a topological space X. Then the open sets
containing = form a directed system if we declare that U < V whenever V is a
subset of U. Let F be a presheaf of abelian groups on X. The stalk of F at z is

Fo = liﬂwEU}-(U):

the direct limit of the sections of F over the open sets containing x. ¢

Example 4.6 Let R be a commutative domain, and p a prime ideal. Then the
localization R, may be realized as the direct limit of the localizations R[u 1],
where the limit is indexed by the elements u in R\p, and v < v if v € uR.
Indeed, R, is the stalk at p of the structure sheaf for Spec R. ¢

Example 4.7 Although colimits need not exist in Set (Exercise ??), direct
limits do. The direct limit of (M,,cp;) may be constructed as follows. Define
an equivalence relation ~ on the disjoint union [] M; as follows: if z; € M; and
z; € M;, then z; ~ z; if i (x;) = ¢} (x;) for some k such that i < k and j < k.
The hypothesis that I is directed is needed to prove the transitivity of ~ . Now
define thz = [ M;/ ~, and define ¢; : M; — h_n}Ml to be the composition

The construction in the previous example is similar to the construction of
the direct limit in the next result.

Proposition 4.8 Let (M;, ¢%) be a directed system. Let oy : M — @ M; be
the canonical injections. Define

S={(i,5) e I xI|i<j}.
Then there is an exact sequence
i v .
0 —— Z(i,j)es(ajcpj —o;)(M;) —— @i Mi —— th, — 0
provided these modules exist.

Proof. For each (i,j) € S write

Q5 t Mi — @ Mh
{r | R<5}

for the canonical inclusion. If i < j there is a map aj@} — a; : M; = @ My,
Hence there is a unique map u : ®i<j M; — € My, such that a]-goj. —Q; = o
foralli < j. Let ¥ : @ My — coker p be the natural map. We will show that the
maps Ya; : M; — coker u make coker u the direct limit of the directed system
(M;, ¢%). Suppose that ¢; : M; — N are maps such that ¢; = ¢, for all i < j.
The universal property of € M} ensures that there is a map p: @ My, - N
such that 1; = pa; for all i. Since po(ajph—au) = 1hjp%—1p; = 0 we have pp = 0.
Hence p factors through coker p; more explicitly, there is a map 7 : cokery - N
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such that 7¥ = p. Thus 7¥a; = pa; = ;. To see that 7 is unique subject to
this equality, suppose that 7/ : coker u — N is such that 7/ Pa; = 1; for all 4;
then (7 — 7')Pa; = 0 for all 4, so 7% = 7'¥, whence 7 = 7 because ¥ is epic.
O

Corollary 4.9 Let | be a directed category. If A is a cocomplete abelian cate-
gory, then h_m} extends to a functor hﬂ : Fun(l,A) — A.

Proof. This follows from the fact that if (M;, ) and (Nj,1}) are directed
systems over the same index set, and f; : M; — N; are morphisms compatible
with the ¢%s and 1}s, then there is an induced morphism lim M; — lim N;. We
denote that morphism by hg fi. a

Example 1.3.12 shows that a product of epimorphisms need not be an epi-
morphism. Taking that example in the opposite category shows that a direct
sum of monics need not be monic. Thus a direct limit of monics need not
be monic. In the notation of the previous proof, if each f; is monic, then
liﬂ fi: th, — li_n;Ni need not be monic. On the other hand, it follows from
Proposition 4.11 that hg is a left adjoint, so is right exact, and hence a direct
limit of epics is epic. More precisely, if each f; is epic, then (f;); viewed as a
morphism in Fun(l, A) is epic by Corollary 3.4, so lim f; is epic.

Definition 4.10 Let I be a directed set viewed as a category, and let C be a
category. An inverse system in C, with index set I, is a contravariant functor
I — C; that is, it consists of objects M;, indexed by the elements of I, and
morphisms 9] : M; — M; whenever i < j satisfying:

i w: = idMi’ and
o ) o)k =¥ whenever i < j < k.

An inverse limit of this inverse system is an object @MZ in C and a set of
morphisms

such that
o ¢; = 1¢); whenever i < j, and
e if NV is any object, and t; : N — M; are morphisms such that ¢; = 1/1);

whenever ¢ < j, then there exists a unique morphism p : N — yLn M; such
that 1; = 9; o p for all 4.

If every inverse system in C has an inverse limit we say that inverse limits exist
in C. o

Inverse systems in C are the same things as direct systems in C°P.
Since small limits exist in Set, so do small inverse limits. Explicitly, if
(M;,4]) is an inverse system then

lim M; = {(z:) € HMZ | 7 (x;) = ; whenever i < j}.
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Proposition 4.11 Let A be an abelian category and | a directed category. De-

fine
G : A = Fun(l,A)

as follows. If M is an A-module, then G(M) = G is the constant functor
Gu(i) = M and Gy(a) = idpy for all objects © and morphisms « in |. If
f: M — N is a morphism in A, then G(f) : Gy — Gn is the obvious natural
transformation.

1. If A is complete, then lim : Fun(l,A) — A is a right adjoint to G.

2. If A is cocomplete, then lim : Fun(l,A) — A is a left adjoint to G.
Proof. This follows from the definition of direct and inverse limits. d

Proposition 4.11 is a special case of an analogous result for limits and col-
imits.

Example ?7? gives a sheaf-theoretic interpretation of inverse systems indexed
by the natural numbers.

Direct and inverse limits are the representing objects for certain functors. If
(M;, cp;) is a directed system, then for every module N there is an induced map

¢! = Hom(y%, N) : Hom(M;, N) — Hom(M;, N)

making (Hom(M;, N),¢7) an inverse system in Ab. If the direct limit limg M
exists, then the maps ¢; : M; — h_n}Ml induce maps Hom(li_n'g M;,N) —
Hom(M;, N), and it is easy to check that this makes Horn(li_n; M;,N) an in-
verse limit of the inverse system. In other words

Hom(lim M;, N) = lim Hom(M;, N).
Similarly, if (L;, ng ) is an inverse system having an inverse limit, then

Hom(N, lim ;) = lim Hom(N, L;).

Chapter 6 of [66] says some useful things about inverse limits.

EXERCISES

4.1 Show that there is a category Graph whose objects are the directed graphs and a morphism
f: (Vi,E1) — (Va,E2) is a set map sending vertices to vertices and paths to paths in

o f(e)
such a way that f(E3) C B sy

4.2 Let X be a topological space and let Open(X) be the category of open subsets of X, as
described in Example 1.13.

(a) Show that Open(X) forms a directed set if we define V' < U whenever U C V. [Hint:
if U and V are open so is U N V]
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4.3

4.4

4.5

4.6

4.7

4.8

4.9

(b) If x € X show that the subcategory consisting of those open sets which contain z is
a directed system.

(Compare with part (2) of Lemma 5.5.) Let (Mz,cp;) be a directed system in ModR.
Identify lim M; with [] M;/N, as in Proposition 4.8. Show that

(a) every element in lim M; is an image of an element in some M;, that is, of the form
z; + N for some x; € M;;

(b) z; + N = 0 if and only if w}wz = 0 for some j > 1.

Let p be a prime number. For m < n define ¢7, : Z/(p™) — Z/(p™) to be the natural
projection. Show this is an inverse system of rings and that its inverse limit exists in the
category of rings. That inverse limit is called the ring of p-adic integers.

Let (M;, w;) be a direct system in C, indexed by I. Show that if J is cofinal in I, then

li_n>lIMi = IIE.]MZ
In particular, if there is a unique element w € I such that ¢ < w for all ¢ € I, then
ling M; & M,
Let (M;, cp;) be a direct system, indexed by an ordered set I. If there exists k € I such
that ¢f is an isomorphism for all k < I, show that

HEM,; >~ M.

Do Exercise 2 in [117, Volume II, Section 2.5]. This gives an example where an inverse
limit does not exist.

Inverse limits in Ring.

Let f:Y — X be a map of topological spaces, and let F be a sheaf of abelian groups on
Y. Show that f~!F defined by

(I F)U) = tim s oy F V),

where U is open in Y and the limit is taken over the open sets in X containing f(U), is a
sheaf on Y. Further, show that if p € Y, then (f™1F)p = Fy(,y.

2.5 Grothendieck’s conditions Ab3, Ab4, and Ab5

Throughout this section A will denote an abelian category.

Definition 5.1 An abelian category is

e Ab3 if it has arbitrary direct sums (and hence arbitrary colimits);
e Ab4 if it satisfies Ab3 and direct sums are exact;

e Ab5, or has exact direct limits, if it satisfies Ab3, and whenever {L;},
{M;}, {N;} are directed systems over a common directed set, and there
are exact sequences L; — M; — N; compatible with the maps in the
directed systems, then the induced sequence li_n}uLi — th, — ligNi is
exact.
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We say that A satisfies the dual conditions Ab3*, Ab4*, Ab5* if A°P satisfies
Ab3, Ab4, Ab5 respectively. O

Remarks. 1. In an Ab3 category every small family of submodules of
a given module has a sum, and in an Ab3* category every small family of
submodules has an intersection (see section 2).

2. The opposite of the subcategory of Ab consisting of the torsion abelian
groups does not satisfy the condition Ab4: Example 1.3.12 exhibits epimor-
phisms f,, : Zgm — Z4 such that the product [] fn is not epic.

Proposition 5.2 Suppose that A has products and coproducts. Then the fol-
lowing conditions are equivalent:

1. for any set of modules {M; | i € I} the natural map

P M- [ M
(see Proposition 1.4) is monic;

2. for any set of modules {M; | i € I} and any map f : K — @ Mj, f is zero
if and only if v;f = 0 for all i, where v; : @ M; — M; are the canonical
projections.

If either of these conditions holds, then A satisfies Abj.

Proof. (1) = (2) If p; : [[M; — M; are the canonical projections, then
vi = p;¥ by Proposition 1.4. Thus, if f : K — @ M; is such that v;f = 0 for
all 4, then p; ¥ f = 0 for all i, whence ¥ f = 0 by the universal property of [ M;.
But ¥ is monic by hypothesis (1), so f = 0.

(2) = (1) The inclusion f : ker ¥ — @ M; is such that ¥ f =0, s0 p;Tf =0
for all 4, whence ~; f = 0 for all 5. Thus hypothesis (2) implies that f = 0; that
is, ker ¥ = 0 as claimed.

Finally suppose that condition (1) holds. Let f; : M; — N; be monics.
There is a commutative diagram

HMi%HNi

By Lemma 1.3.10, [] f; is monic, so ([] fi) o ¥1 is monic. Hence ¥y o (J] f;) is
monic. Condition (1) now implies that [] f; is monic. O

Example 5.3 The conditions in Proposition 5.2 do not always hold. For ex-
ample, take A to be the opposite of Modk[z]. The product in A coincides with
the coproduct in Modk[z]. If the map €@ M; — [[ M; were monic in A, then
in Modk[z] the map @ M; — [[ M; would be epic. In particular, the direct
product of all simple k[z]-modules would be semisimple; but k[z] is isomorphic
to a submodule of this, so it too would be a semisimple k[z]-module. 0
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Does (Modk[z])°P satisfy Ab4? It does not satisfy Ab5 because
inverse limits are not exact in Modk[z].

Definition 5.4 A directed family of submodules of M is a collection of submodules
{M; | i € I} of M such that I becomes a directed set when we define i < j if
M; C Mj. o

Lemma 5.5 Let {M; | i € I} with inclusions 8; : M; — M, be a directed family
of submodules of a module M. Then

1. lim M/M; = M/ Y e; Mi;
2. if A is Ab5, then @Mi =Y M;;

3. if A is AbS, then ¢; : Hom (> M;, N) — Hom(M;, N) where ¢;(1) = 70;
make Hom(}_ M;, N) isomorphic to the inverse limit lim Hom(M;, N).

Proof. (1) Taking direct limits of the sequences 0 - M; - M — M/M; — 0
yields an exact sequence

h

li_n;Mi y M > h_n;M/M, — 0.

Let 6; : M; — thz and a; : M; - @ M; be the maps occuring in the
definition of the direct limit and direct sum. Then h#; = §; for all 4. There is
a unique map g : @ M; — M satisfying ga; = 3;. By Proposition 4.8, there is
an epimorphism f :  M; — hﬂM, such that fa; = 6; for all i. Therefore

hfo; = ho; = B;

for all ¢. By the uniqueness of g, it follows that hf = g. Since f is epic,
img =imh =) M;, and the result follows.
(2) If A satisfies Ab5, then h is monic, so is an isomorphism onto Y M.
(3) By definition of lim, Hom(lig M;, —) = lim Hom(M;, —) so, after (2),
proving (3) is simply a matter of verifying that the maps are the correct ones.
We leave that to the reader. |

Theorem 5.6 The following conditions on an Ab3 category A are equivalent:
1. A satisfies Ab5;

2. for every morphism f : M — N and every directed family {N; | j € J} of
submodules of N,

it (Z Nj) =Y @)

JEJS JEJ
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3. for every directed system of submodules {M; | j € J} of a module M and
every submodule L of M,

(ZM]-) NL= Z(Mj nL);
4. for every directed system {M; |i € I}, we have

ker(M; — lim M,) =) " ker(M; — M;).

i<j

Proof. (1) = (2) The defining property of f~!(IN;) ensures that there is an
exact sequence 0 — f~'(N;) - M — N/N,. Taking the direct limit of these
sequences yields the exact sequence in the top row of the commutative diagram

0 — limg f~H(2V;) > M » lim N/N;

L

0 —— fTHEDN) — M — N/ N,

where the vertical isomorphism comes from part (1) of Lemma 5.5. It fol-
lows that f~*(3_ N;) equals the image of lim f~'(IN;) in M; but that image is
> fY(N;) by part (2) of Lemma 5.5.

(2) = (3) Apply (2) to the inclusion f: L — M.

(3) = (2) The f~'(IV;) form a directed family of submodules of M, and fit
into exact sequences.

0— fY(N;) = M — f(M)/f(M)NN; = 0.
Therefore
M/ fHN,) =lim M/f71(N;) by Lemma 5.5(1)
= lim f(M)/f(M) N N;
= f(M)/ Y (f(M)NN;) by Lemma 5.5(1)
= f(M)/f(M)N(Y_N;) by hypothesis (3)
=M/ N).

It follows that f='(3° N;) = f~1(IN;) as required.

(2) = (4) Let ¢} : M; — M; for i < j be the maps in the directed system, and
wi: M; — h_Ir} M, the canonical maps. We must show that ker p; = . ; ker cp;
If i < j, then @; = p;¢}, so ker % C ker ;.

If a; : M; — @ M, is the canonical inclusion, then by the proof of Proposi-
tion 4.8 there is an epimorphism ¥ : M, — lier such that ¢; = Yo, for
all ¢, and

ker ¥ = Z(akcpfc —a;)(M;)
s
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where
S={(,k)eIxI|j<k}

For each subset F' C S, write
Kp:= Y (axp) — a;)(M).

Therefore

ker p; = a; ! (ker ¥)

:ail( > KF>

finite Fcs

= Y o' (Kr)

finite Fcs

where the last equality follows from hypothesis (2). We must therefore show
that given a finite F' C S, there is an m € I such that o; ' (Kp) C ker i, .

For a fixed finite F' C S, choose m € I such that m > i and m > k for all
(j, k) € F. There is a unique map 0 : @ M, — M,, such that

0%:{% if r <m,

0 otherwise.

Thus 6 o (akcpi —a;) =0if (j,k) € F. In other words, K C ker6, whence
a; '(KF) C aj ' (ker) = ker f; = ker i .

This proves (4).

(4) = (1) Let ¢} : Ly = L; and ¢ : M; — M; be directed systems indexed
by a common set I. Suppose that 6; : L; — M; are monics such that ¢%0; = 0;1?
for all ¢ < j. There are commutative diagrams

oAl

iy ; —,— ling
Let K = kerd. Since ligLi =Y i(Ly),

K = KﬂZzpi(Li) = ZKﬂ¢i(Li)

by (3), so it suffices to prove that K N;(L;) = 0 for all 4.
Suppose to the contrary that K N;(L;) # 0. Then ¢; ' (K) # 0, and

¥; 1K) = ker 61; = ker p;6; = 6; *(ker ¢;).

K3
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By (4), this equals

6;! (Z ker cp;)

i<j
which equals
ZG;l(ker cp;) = Zkerg0§-9i = Zkerﬁjd}; = Zkemﬁ; = ker ¢;.

i<j i<j i<j i<j

That is, ker¢); = ¢; ' (K). Therefore

K Noyi(Li) = ¢i(y; 1 (K)) = ¢i(ker ¢;) =0,

contradicting the choice of <. d

Corollary 5.7 The category of modules over a ring is AbS.

Proof. By Proposition 4.8, ModR has direct limits. It is easy to verify that
condition (3) in Theorem 5.6 holds. An explicit proof that limg is left exact can
be found in [200, Theorem 2.18]. O

The next example shows that ModR is not an Ab5* category in general.
Thus (ModR)®P is a typical abelian category in which direct limits fail to be
exact.

Example 5.8 Inverse limits in ModR need not be exact. If R is a discrete
valuation ring with maximal ideal m there are inverse systems (with obvious
maps)

—Smt —m° - m,
—+R— - —+ R = R,
- R/m™ — .- — R/m? - R/m.

For each n > 1 there is an exact sequence
0—->m" > R—>R/m" —=0. (5-1)

Now limm™ = 0 since [Jm™ = 0, and lim R/m™ = R, the m-adic completion
of R. Therefore taking inverse limits of the individual terms in the short exact
sequences (5-1) gives a complex 0 =+ 0 - R — R — 0 which fails to be exact if
R is not complete. O

Definition 5.9 An inverse system of abelian groups (M, <pf' ,i € N), satisfies the
Mittag-Leffler condition if, for each n, there exists ng > n such that the image of
M; — M, equals the image of M; — M,, whenever i, j > ng. O
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Proposition 5.10 [?, ?2?] Suppose that there are morphisms of inverse sys-
tems of abelian groups

(Li, 1) = (Mi,bd) = (N3, ¢1),

where each system is indezed by ¢ € N, and that the sequence 0 - L; — M; —
N; — 0 is exact for all i. If (L;) satisfies the Mittag-Leffler condition, then the
sequence

O%TLHLi—)@Mi—)LiLnNi%O

18 exact.

The next two results establish properties of Ab5 categories that are not
shared by all abelian categories. With regard to the first of these, recall that
Example 2.8 showed that in (Modk[z])°P, which is not Ab5, a sum of simple
modules need not be isomorphic to a direct sum of simple modules.

Proposition 5.11 Suppose that M = @, S; is a direct sum of simple mod-
ules in an Ab5 category. If L is a submodule of M, then there is a subset J C I

such that
M=LEPEPS).

i€

Proof. Give the set

S={JcI|Ln(EPs;) =0}

jed

a partial ordering by inclusion. Let J; C Jo C ... be an ascending chain of
elements in S and set J = U, J,. We may apply part 2 of Theorem 5.6 to the
directed family of submodules ;. ; S; of M. It follows that

Ln(@s;) =rn(>_ P si) :ZLO(@ S;) = 0.

JEJ i JE€EJn JE€EJIn

Therefore J belongs to S. Hence we can apply Zorn’s lemma. Let J be a
maximal member of S. If L + > jes S, is not equal to M, then some S, is
not a submodule of this sum. Therefore J U {ng} is in S, contradicting the
maximality of J. Thus M = L+ 3, S;. O

Proposition 5.12 FEvery sum of simple modules in and Ab5 category is iso-
morphic to a direct sum of simples.

Proof. Every sum of simple modules is a quotient of a direct sum of simple
modules. However, if M/L is such a quotient, then M = L® C where C is itself
a direct sum of simples by Proposition 5.11. Since M/L = C the result is true.
O
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Proposition 5.13 If A satisfies Ab5, then the natural map

III:@Mi—)HMi

(see Proposition 1.4) is monic.
Proof. (Van den Bergh) By Lemma 4.4, @, ; M; is the direct limit
@FCI @ M;
iCF

taken over all finite subsets F' C I. We may view [[,.; M; as the direct limit
over such F' C I of the constant directed system. For each F', we have a monic

P M = [ M - [ M.

icF ieF iel
By hypothesis, h_rr; is left exact, so this gives the desired result. O
EXERCISES

5.1 In Proposition 5.10 show that
(a) if (L;) and (N;) both satisfy the Mittag-Leffler condition, so does (1M;);
(b) if (M;) satisfies the Mittag-Leffler condition, so does (IV;).

2.6 Finiteness conditions

Throughout this section A will denote an abelian category.

Several different finiteness conditions are important. First, there are con-
ditions on individual A-modules: the familiar notions of noetherian, finitely
generated, and finitely presented for modules over rings may be extended to
objects in an arbitrary abelian category. Second, there are finiteness conditions
on the whole category. The most important such condition is that A have a gen-
erator or, more generally, that it have a small set of generators (Definition 7.1
and Lemma 7.2). Third, one can combine these two ideas and require that A be
generated by a small set of modules with each module having some prescribed
finiteness property.

The next lemma sets the stage for the definition of a compact module which
follows it.

Lemma 6.1 Let {N; | i € I} be a family of A-modules indexed by a small set
I. Letv; : @ N; — N; be the natural projections obtained in Proposition 1.4.

1. There is a natural transformation @ Hom(—, N;) - Hom(—, @ N;).
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2. If M is an A-module, then the map

@ : (P Homa (M, N;) — Homa (M, (P V) (6-1)
el el

has the following properties:

(a) if 0; denotes the j** component of a map 0 € ® Hom(M, N;), then
v; 0 ®(0) = 0; for all j.

(b) @ is injective;

(c) if A is an Ab5 category, then the image of ® consists of those f :
M — @ N; such that {i € I |~y f # 0} is finite.

Proof. (1) Let a; : N; — ,c; N: be the canonical injections. If, in the
following diagram, the maps €; are the canonical injections, then the universal
property of @@ Hom(M, N;) ensures the existence of a unique map ® such that
the diagram

Hom(M,N,;) —— @ Hom(M, N;)
Hom(M,aj)l (6—2)
Hom(M, P N;)

commutes. To prove the existence of the natural transformation, one takes two
copies of the triangle (6-2), one for a module M and the other for a module M’
and then uses a map g : M’ — M to connect the two triangles in an obvious
way, and checks appropriate commutativity conditions.

(2a) The previous diagram fits into the larger diagram

Hom(M,N;) —2— @ Hom(M,N;)
Hom(M,aj)l l”.’i

Hom(M,P N;) ——— Hom(M, N;),
Hom(M,;)

where 7; is the canonical projection. Since the j® component of 6 is 7;(6), to
prove (2a) it suffices to show that Hom (M, ;) o ® = «; for all j.

Since this is a statement about maps in the category of abelian groups it
suffices to check it on each component of @ Hom(M, N;). That is, we must
verify that Hom(M,v;) o ® og; = mje; for all i € I. The left-hand side of this is

Hom(M, ;) o Hom(M, ;) = Hom(M,~v;a;) = Hom(M, (5;)

where (5;'. : N; = Nj is idy; if ¢ = j and zero otherwise. The right-hand side,
mj€i, equals idyem(ar,n;) if ¢ = j and zero otherwise, so we have the desired
equality.

(2b) The map @ in (6-1) is injective because if 6 is non-zero, then some
component of it, say ;, is non-zero, whence ®(6) is non-zero.
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(2¢) Suppose that f is in the image of ®. Then f = ®(§). But 6 has only
finitely many non-zero components, and v;f = 6;. Hence ~;f is non-zero for
only finitely many i. Conversely, if 7;f is non-zero for only finitely many 4,
then there is a map 6§ € @ Hom (M, N;) such that 6; = ~;f for all i. Now
v (®(8) — f) =0; —v:f =0 for all i. It follows from Propositions 5.13 and 5.2
that ®(0) — f = 0. O

Definition 6.2 An A-module M is

e compact if Homa (M, —) commutes with direct sums—that is, the map ®
in (6-1) is always an isomorphism;

o finitely presented if Homa (M, —) commutes with direct limits;

e finitely generated if whenever M = )., M; for some directed family of
submodules {M; | i € I}, there is an index ig such that M = M, ;

o coherent if it is finitely presented and all its finitely generated submodules
are finitely presented. O

Remarks. 1. Popescu [182, Section 3.5] uses the word small rather than
compact. We do not adopt Popescu’s usage because we wish to reserve the
word small to indicate that certain sets belong to the universe in which we are
working. Neeman [172] calls an object M in a triangulated category compact if
Hom(M, —) commutes with direct sums.

2. Let (Ni,cp;'-) be a directed system in A. Then Homa (M, N;) becomes a
directed system of abelian groups in an obvious way. The maps N; — ligN,-
yield compatible homomorphisms Homa (M, N;) — Homa (M, lim N;) of abelian
groups, so the universal property of the direct limit in Ab yields a group homo-
morphism

O: HEHOHIA(M, Nz) — HOHIA(M,IIEN,) (6-3)

as follows: an element of the left hand side is the image of some f : M — N,
and O(f) is the composition M — N; — lim V;. The A-module M is finitely
presented if © is an isomorphism for all directed systems.

3. In general the map O is neither injective nor surjective. To see that ©
is not always injective, consider a k-vector space with basis {e;,es,...} and
quotients N; = M/key + ... + ke;. It follows from part (1) of Lemma 5.5
that lim N; = 0, so the right-hand side of (6-3) is zero. However, the natural
surjections m; : M — N; are elements in Homa (M, N;) that are not zero in
lim Homa (M, N;) (Proposition 4.8).

4. A simple module is finitely generated.

Theorem 6.3 If A satisfies Ab5, then the following conditions on an A-module
M are equivalent:

1. M is compact;
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2. every map f: M — € N; has its image contained in a finite direct sum
of the N;s;

3. Homa (M, —) commutes with countable direct sums;

4. if M is a sum of a countable set of submodules, say M =% > M;, then
M =" | M; for some n < co.

Proof. Throughout this proof ® : @ Hom(M, N;) — Hom(M, P N;) is the
map in (6-1).

Before proceeding we observe that condition (4) is equivalent to the condition
that if My C M, C ... is a chain of submodules of M such that M = Y M;,
then M = M, for some n.

(1) & (2) By definition, compactness of M is equivalent to the condition
that ® is always an isomorphism. But @ is always injective, so this is equivalent
to ® being surjective. By part (2c¢) of Lemma 6.1, this is equivalent to the
condition that {i € I | v;f # 0} is finite for all f : M — ®N;. But such f are
precisely the maps whose image is contained in a finite direct sum of the N;s.

(1) = (3) This is clear.

(3) = (1) If (1) failed there would be a map f : M — @,.; N; such that
v;f is non-zero for infinitely many i. In particular, there would be an infinite
countable set J such that v;f # 0 for all j € J. But then, if 7 : @i/ N; —
®jeJ N; is the natural map, 7f would be an element of Hom(M, @jEJ N;)
that is not in the image of the map P, ; Hom(M, N;) — Hom (M, P, ; N;)-
This would contradict hypothesis (3), so we conclude that (1) must hold.

(3) = (4) Let M1 C M> C ... C M be a chain of submodules of M such that
M =% M;. Let 3; : M; — M and 3] : M; - My, j < k, be the inclusions. By
Lemma 5.5, the inverse limit of the inverse system

) : Hom (M, @) M/M;) — Hom(M;, @D M/M;)

defined by w;? (9) = g,Bz for j < k is Hom(M, @ M/M;) together with the maps

Hom(M, & M/M;) e, Hom(M;, @ M/M;)

defined by ¢;(g) = 98;.

Since the image of M, in M/M; is zero for ¢ > k, the map f : My —
€ M/M; that is the composition

k o)
My — @ M/M; - P M/M;.
i=1 i=1

satisfies ¢f(fk) = fkﬂi = f; for j < k. Hence thereisamap f: M — @ M/M;
such that ¢;(f) = f; for all j. That is, f8; = f; for all j. By hypothesis, f is
in the image of the map

@ : @) Hom(M, M/M;) — Hom(M, ) M/M;)
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so the image of f is contained in a finite direct sum of various M/M;s. The only
way for that to happen is if M = M, for some n. Thus (4) is true.

(4) = (3) (cf. [190]) We must show that & is surjective when I = N. Let
f: M — @;cn Ni- Then

wer (@) - (£5)

1EN n=0 i=1

By the Ab5 hypothesis and Theorem 5.6, this equals Y~ f~' (35, N;). It
follows from hypothesis (4) applied to the submodules f~1 (37" | N;) of M that
M= '3, N;) for some n. Thus f(M) C Ny @®...® N,. O

Corollary 6.4 FEvery finitely generated module in an Ab5 category is compact.

Proof. Let M be a finitely generated module. We must show that every
homomorphism f : M — €,;; N; factors through a finite direct sum of the N;.
Write N = D,; N:i and for each finite subset F' C I write Np = @, Ni.

If My denotes the kernel of the composition
M L5 @, ,Ni —— N/Np, (6-4)
then there is an exact sequence 0 - Mp — M — N/Ng — 0. We now take the
direct limit over all finite subsets F' C I. The direct limit of the modules N/Ng
is computed by taking the direct limit of the exact sequences 0 - Ny - N —
N/Np — 0. By Lemma 4.4 and the Ab5 hypothesis, li_n;N/Np = N/@NF =
0. Thus lim Mp = M. By the proof of Lemma 5.5, > My = lim Mp = M.
But M is finitely generated so M = My for some F. Hence the image of 4 is
contained in Ng for some finite F' C I. O

The converse to Corollary 6.4 is false.

Example 6.5 (Rentschler [190, 5°]) A compact module need not be finitely
generated. To show this we construct a valuation ring A with field of fractions
K such that Hom 4 (K, —) commutes with direct sums despite the fact that K
is not a finitely generated A-module.

Let € denote the smallest uncountable ordinal (see [103] for details about
ordinals). Thus € is an uncountable partially ordered set that is characterized
by the following three properties:

1. Qis well-ordered; i.e., every non-empty subset of Q2 has a smallest element;
2. for every a € Q, { € Q | £ < a} is countable;

3. ifaeQ, thena={ze |z <a}.
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Let I be the set of ordinals ¢ < 2 endowed with the opposite order to its natural
one. Thus every countable subset of I has a lower bound. For each i € I, set
Z; = 7 and define the abelian group

r:@zi.

i€l

We endow I with the lexicographic ordering, thus making it a totally ordered
group with the property that every decreasing sequence in I" has a lower bound.

Define I't = {y € ' | v > 0}.

Let kT be the group algebra over a base field k. Thus, kI is the localization
klzi,z; ' | i € I] of the polynomial ring on the indeterminates z;, i € I. Let K
be the field of fractions of kI". There is a valuation v : K — I' U {co} defined
by declaring

V(Z aw) = inf{y | a, # 0}.
vyel’
Let A be the valuation ring associated to v.
By [49, Ch. 6, Proposition 7, p. 104] every non-zero A-submodule of K is

of the form
{z e K|v(z) eT'}U{0}

for a unique subset I'" of I' with the property that I +T't C I''. We call such a
I a cone. For example, the submodule corresponding to the cone v+ Tt is Ay.
We claim that if T is a cone that is not equal to I', then it has a lower
bound. If it did not, then given v € T', there would be some ' in I" such
that 4" 2 ~. But T is totally ordered, so then v > +/; this would imply that
y=~"+(y—79") e+t CI it would follow that I =T.

To prove that K is a compact A-module, it suffices to show that if M; C
M, C ... is an ascending chain of proper A-submodules of K, then their sum
is not equal to K. Let I'; be the cone corresponding to M;. Since M is not
equal to K, I'; is not equal to I'; it therefore has a lower bound, say 7;. The
sequence {71, 72, ... } has a lower bound, say v, so I'; C v+ I'" for all j. Hence
M; C Ay for all j. It follows that the sum of the Mjs is not K, so we conclude
that K is compact.

It is clear that K is not a finitely generated A-module. ¢

Proposition 6.6 1. A finite direct sum of compact modules is compact.
2. A quotient of a compact module is compact.

Proof. (1) Let K and L be compact modules. If f : K ® L — @ N;, then each
of f(K) and f(L) is contained in a finite direct sum of N;s, so f(K) @ f(L) is
too. It follows from criterion (2) of Theorem 6.3 that K @ L is compact.

(2) Suppose that L is compact, and K is a submodule of L. Then any map
f:L/K — @ N; lifts to a map L — € N; having the same image. Since L
is compact that image lies in a finite direct sum of the N;s. By Theorem 6.3,
L/K is compact. a
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The next result gives a characterization of finitely generated modules that
is similar in spirit to the definitions of compact and finitely presented modules.

Proposition 6.7 A module M is finitely generated if and only if, for ever di-
rected family (N,-,cpj) in which all the goj- are monic, the canonical map

lim Hom(M, N;) — Hom(M, Y N;)

s an isomorphism.

Proof. O

Proposition 6.8 Suppose that 0 - L — M — N — 0 is an exact sequence in
an Ab5 category.

1. If M is finitely generated, so is N.
2. If L and N are finitely generated, so is M.

Proof. (1) If {N; | i € I} is a directed family of submodules of N whose sum
is N, then their pre-images form a directed family of submodules of M. By the
Ab5 hypothesis, sums commute with pre-images (Theorem 5.6), so M is the
sum of the pre-images of the N;. Since M is finitely generated it is therefore
equal to the pre-image of some N;, whence N is equal to some N;.

(2) Let {M; |3 € I} be a directed family of submodules of M whose sum is
M. Set L; = LNM; and N; = M;+L/L. Then L; and N; are a directed families
of submodules of L and N respectively. By the Ab5 hypothesis, L = > L;. Since
the image of a sum is the sum of the images, N = Y  N;. Since L and N are
finitely generated, and since I is directed, there is a single k € I such that
L =L and N = N. It follows that M = M. O

Proposition 6.9 A finitely presented module in an Ab5 category is finitely gen-
erated.

Proof. Let M;, i € I, be a directed family of submodules of a finitely presented
module M, and suppose that M = > M;. By Lemma 5.5, the natural map
li_ng M; = >~ M; is an isomorphism. Because M is finitely presented the natural
map

limy Hom (M, M;) — Hom(M, lim M;)
is an isomorphism. But th, = M, so the identity map idj; is the image of
an element in ligHom(M ,M;). Hence there is an index ig such that ids is

in the image of the natural map Hom(M, M;,) - Hom(M, M). It follows that
M = M, O

Proposition 6.10 [182, Corollary 5.7, page 91]. Let M be a module over a
ring R.
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1. M is finitely generated in the sense of Definition 6.2 if and only if it is
finitely generated in the usual sense;

2. M is finitely presented in the sense of Definition 6.2 if and only if it is
finitely presented in the usual sense.

Proof. (1) (=) The finitely generated (in the usual sense) submodules of M
form a directed system. Their sum is M so, if M is finitely generated in the
sense of Definition 6.2, M must equal one of them.

(<) Suppose that M is finitely generated in the usual sense, and let M;,
i € I, be a directed family of submodules whose sum is M. Let {mq,... ,m,}
be a set of generators for M. Each m; belongs to a finite sum of the M;s so,
since I is directed, there is a single i € I such that M;, contains every m;.
Hence M = Mj,.

(2) (<) Suppose there is an exact sequence 0 - K — F — M — 0 with F
finitely generated free, and K finitely generated. Let N; be a directed system in
ModR. We must prove that the map © : lim Hompg(M, N;) — Hompg (M, lim N;)
in (6-3) is an isomorphism. Injectivity is easy to prove, so we only prove surjec-
tivity.

Let f: M — hg N;. Since F is finitely generated and the system is directed,
the composition F — M — HQN,- factors through F' — N; for some j. Because
the composition K — F — N; — lim IV; is zero and K is finitely generated,
K — F = N; = Ny, is zero for some k > j. This yields a factorization of the
original map M — Ny — lim N;. If g : M — N is this factor, then ©(g) = f.

(=) By Proposition 6.9 and part (1), M is finitely generated in the usual
sense, so there is an exact sequence 0 -+ K — F — M — 0 with F' a free
R-module having a finite basis. The finitely generated submodules of K form
a directed system, say {K; | i € I}, and K = Y K; = lim K;. Taking direct
limits of the following diagrams

0 — K; — F — F/K; —— 0

Lk

0 y K > F sy M —— 0

gives a commutative diagram

0 — lim K; — F — lim F/K; —— 0

Lok b

0 — K > F > M — 0

In particular, 6 is an isomorphism. Thus
' € Hom(M, liy F/K;) = lim Hom(M, F/K;).

This means that for some j € I there is a map ¢ : M — F/K; such that § ! =
p; where p; : F/K; — h_m;F/K, is the canonical map. Since 0p;v = idy,
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0p; : F/K; — M is a split epic. Since F' and K; are both finitely generated it
follows that M is finitely presented. O

If P is finitely presented, is there an exact sequence FF —+ G — P —
0 with F' and G finitely generated? Do we need to assume that we have a set
of generators? P itself will be finitely generated.

Definition 6.11 An A-module M

e is noetherian if any increasing sequence of subobjects M; C M, C ... of
M is eventually stationary;

e ig artinian if any decreasing sequence of subobjects M; D My D ... of M
is eventually stationary;

¢ has finite length if it is both artinian and noetherian.

If M has finite length a composition series for M is a finite sequence of subobjects
0=My, C M\ C...C M, = M such that each M;/M;_; is simple. The
quotients M;/M;_; are called the composition factors of M; they are determined
up to isomorphism by M. O

Lemma 6.12 A noetherian module is finitely presented, and hence finitely gen-
erated.

Proof. [182, Exercise 1, page 370] O

EXERCISES

6.1 Show that if A is an abelian category with a set of finitely generated generators, then the
natural map @ M; — [] M; is monic. [Hint: apply the functor Homa (N, —) with N a
finitely generated submodule of the kernel.]

6.2 Give an example of a non-zero module M in an abelian category such that every non-zero
submodule and every non-zero quotient module of M is not finitely generated.

6.3 Show that an A-module M is noetherian if and only if every submodule of it is finitely
generated.

6.4 Let 0 » L - M — N — 0 be an exact sequence of A-modules. Show that M is noetherian
if and only if both L and N are noetherian.

6.5 Show that an A-module M is finitely presented if and only if it is finitely generated and
the kernel of every epimorphism N — M from a finitely generated module N is finitely
generated.

6.6 Show that a module is noetherian if and only if it is artinian as a module in the dual
category.

6.7 Show that a module M is noetherian if and only if any set of submodules of M has a
maximal member with respect to the ordering by inclusion.
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2.7 Generators

Definition 7.1 An object L in a category C is a generator if the functor Homc¢ (L, —)
is faithful. In other words, if fi, fo : M — N are distinct morphisms in C, then
f19 # fag for some g : L — M.

We say that C has a set of generators if there is a small set of objects L;,
1 € I, such that if f1, fo : M — N are distinct morphisms in C, then there exists
and ¢ € I and a g € Homc(L;, M) such that fig # fag- o

The canonical example of a generator is R, the right regular representation
of a ring R, in ModR.
The existence of a set of generators is a finiteness condition.

Lemma 7.2 Let A be an abelian category having a set of generators. If M is
an A-module, then the collection of submodules of M is a small set.

Proof. [88, Proposition 5, p. 336] Let {P\ | A € A} be a set of generators for
A. By the definition of a category, each Homa(Py, M) is a small set. Hence
so is their disjoint union, E. If N is a submodule of M define Ey := {f €
E|imf C N}. If N' is a submodule of M that does not contain NN, then the
natural morphism N — N/N N N’ is non-zero. Hence there is some f € E such
that f € Ex but f ¢ Ennne. It follows that the map N — Ey is injective on
the submodules of M. Hence the collection of submodules is a small set. |

Proposition 7.3 The following conditions on a family of modules M, o € I,
in an Ab3-category A are equivalent.

1. {M, | a €I} is a set of generators;
2. M =@, M, is a generator;

3. every A-module is a quotient of a suitably large direct sum of copies of M.

Proposition 7.4 If the ring R has an identity, then ModR has a set of noethe-
rian generators if and only if R is right noetherian.

Proof. Suppose that S is a set of noetherian generators for ModR. Let M
be the direct sum all these generators. If J is a right ideal of R that is not
equal to R, then the map R — R/J is non-zero, so there is amap ¢ : M - R
such that (M) ¢ J. Hence R = > ¢;(M) where the sum is taken over all
p; € Homg(M, R). Hence there is a surjective map from some large direct sum
of noetherian modules onto R. Therefore 1 is in the image of a finite direct sum
of noetherian modules. But that finite sum is noetherian, so we conclude that
R is right noetherian.

The converse is trivial. |
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If R does not have an identity this result fails. For example, suppose that R
is the direct sum of an infinite number of fields. Let ModR consist of those R-
modules such that M R = M. Although R is not noetherian, ModR is generated
by the simple R-modules.

EXERCISES

7177

2.8 Grothendieck categories
Definition 8.1 An abelian category is
e a Grothendieck category if it has a set of generators and satisfies Abb5;

o locally noetherian if it is a Grothendieck category and has a set of noethe-
rian generators;

o locally finitely presented if it is a Grothendieck category and has a set of
finitely presented generators;

o locally finitely generated if it is a Grothendieck category and has a set of
finitely generated generators;

o locally finite if it is a Grothendieck category and has a set of finite length
generators. %

Proposition 8.2 If A is locally noetherian, then the following conditions on an
A-module are equivalent:

1. M 1is noetherian;

2. M is finitely generated;
3. M s finitely presented;
4. M is compact.

Proof. (1) = (2) It follows immediately from the definitions.

(2) = (1) Since A is locally noetherian, M is a sum of noetherian submod-
ules. That sum can be assumed to be a sum of a directed family of noetherian
submodules, so if M is finitely generated we conclude that M is noetherian.

2) = (3)

(3) = (2) Proposition 6.9. O
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2.9 Projectives

Throughout this section A will denote an abelian category.

Definition 9.1 An A-module P is projective if Homa (P, —) is exact. We say that
A has enough projectives if every A-module is isomorphic to a quotient of an
projective module. o

The only projective in ModP! is the zero module. This is typical for projective
schemes.

Lemma 9.2 An R-module is projective if and only if it is a direct summand of
a free module.

Proof. First we show that a free module is projective. Let F’ be free with basis
{fa| A€ A}. Let a: M — N be surjective, and let 8 : F — N be any map. For
each \ € A, choose my € M such that a(my) = B(fr). There is an R-module
map v : F — M such that v(f)) = m, for all . Since 8 and ay agree on the
generators f, they are equal. Hence the map Hompg(F, M) — Hompg(F, N) is
surjective.

If F is free and F = P®Q, then Homg(F, —) = Homg(P, —) ® Homg(Q, —),
so Homp(P, —) is exact. Hence a direct summand of a free module is projective.

Conversely, let P be a projective R-module. There is a surjective map 6 :
F — P from some free module F. The map Hom(P,F) — Hom(P,P) is
surjective, so there is a map 8 : P — F such that a8 = idp. Hence P is a direct
summand of F'. d

Definition 9.3 A finitely generated projective generator in an abelian category
is called a progenerator. O

Lemma 9.4 An exact functor between abelian categories is faithful if and only
if it sends non-zero objects to non-zero objects.

Proof. Let F : A — B be the functor.

(=) Suppose that F' is faithful. If M is a non-zero A-module, then id,s is
non-zero, so 0 # F(idy) = idpy, whence FM is non-zero.

(«) If f is a non-zero morphism in A, then its image is non-zero, whence
F(im f) is non-zero. But F' is exact so commutes with kernels and cokernels,
and hence with images. Thus im(Ff) = F(im f) is non-zero by hypothesis,
whence F'f is non-zero. |

Thus a projective A-module P is a generator if and only if Homa (P, M) is

non-zero for every non-zero A-module M.

Proposition 9.5 A projective module in an Ab5 category is finitely generated
if and only if it is compact.
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Proof. By Corollary 6.4, a finitely generated module in an Ab5 category is
compact so we must prove that a projective compact module is finitely gener-
ated. Let P be the module in question. By the proof of Proposition 4.8, the
direct limit of a directed system can be written as the cokernel of a map be-
tween direct sums taken over the modules in the directed system. That is, in
the notation of Proposition 4.8, there is an exact sequence

Di<; Mi —— OM, —— lim M, —— 0.

If we apply Hom(P, —) to this we obtain an exact sequence because P is pro-
jective, and the compactness hypothesis says that Hom(P, —) commutes with
direct sums. Hence Hom(P, ling M},) = lim Hom(P, M},). Thus Hom(P, —) com-
mutes with direct limits. It follows that P is finitely presented and, in particular,
finitely generated. d

Theorem 9.6 Let P be a progenerator in a cocomplete abelian category A, and
define the ring R := Homa (P, P). Then

Homa(P,—) : A - ModR
is an equivalence of categories.

Proof. Write F' = Homa (P, —). Then F' is exact because P is projective, and is
faithful because P is a generator. By Theorem 1.6.21, it remains to show that
every right R-module is isomorphic to one of the form FM, and that F' is full,
i.e., that the map

F :Homa(M,N) - Homg(FM,FN) (9-1)

is surjective for every M and N in A. If @ € Homa(M,N) then F(a) is the
right R-module map F(a)(f) = ao f for f € FM = Homa(P, M).
Fix an A-module. We consider the two sides of (9-1) as contravariant functors

G := Homa(—,N) : M — Homa (M, N)
and
H := Homp(—, FN) o F : M ~ Homg(FM, FN),

whence F' may be viewed as a natural transformation ¢ : G — H; thus, we must
show that ¢y : GM — HM is an isomorphism for all M (i.e., that ¢ is a natural
equivalence).

First tp is an isomorphism since, for each a € Homa (P, P), tp(a) is left
multiplication by a, and the map R — Hompg(Rg, Rg) sending a € R to left
multiplication by « is an isomorphism.
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Now let M be arbitrary. Since P is a generator there is an exact sequence
@1 = Qo - M — 0 with 1 and @ isomorphic to direct sums of copies of P.
Applying G and H yields a commutative diagram

0 »y GM » GQo —— GQ
N
0 y HM y HQo —— H(Q,

of abelian groups with exact rows. By the previous paragraph, and the fact that
F commutes with direct sums, the second and third vertical maps are isomor-
phisms. We must show that the first vertical map is an isomorphism; we already
know it is injective since F' is faithful, so it remains to show it is surjective. This
results from standard diagram chasing. Thus ¢,s is an isomorphism.

Finally, if M is an R-module there is an exact sequence

M -2 My —2 s M y 0 (9-2)
in which M7 and My are free. There exist A-modules @); and @Qg, both of which
are direct sums of copies of P, such that F'QQ; = M; and F'QQ9 = My. Since the
map in (9-1) is surjective, ¢ = Fa for some a € Homa (Q1, Qo). Applying F' to
the exact sequence ()1 — Qo9 = M — 0, where M = coker «, yields an exact
sequence F'Qy - FQo - FM — 0. Comparing this with (9-1), it follows that
M=FM. O

Example 9.7 The field of complex numbers can be endowed with a Zs-grading
as follows. Define 4g = R and A; = Ri. The ring itself is a projective object in
GrModA, the category of graded modules. It is clear that A = A(1), and hence
A is a generator. It is finitely generated, and therefore a progenerator. The
endomorphism ring of A in GrMod A consists of the multiplications by elements
of Ag. Hence GrModA = ModR. O

The following result shows how close abelian categories are to module cate-
gories. However, its proof requires much of the material that will be developed
later in this chapter.

Theorem 9.8 [Mitchell’s Theorem] Let A be a small abelian category (i.e., the
objects of A form a set). Then there exists a ring R and a fully faithful exact
covariant functor A — ModR.

Proof. See [182, Theorem 11.6, Chapter 4] for the details. The basic idea is to
embed A in a larger abelian category which has a projective generator and to
apply the last result to the larger category. |

Mitchell’s Theorem allows us to think of the objects in a small abelian cate-
gory as modules over some ring, and then the morphisms correspond to module
homomorphisms. In particular, objects may be thought of as having elements,
and diagrams are therefore susceptible to ‘diagram chasing’ arguments. We will
also abuse terminology by writing M C N for a subobject M of an object N.
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EXERCISES

9.1 Show that the dual of an abelian category is abelian.

9.2 Let A be an abelian category having coproducts. Show that X € Ob(A) is a generator
if and only if, for each N € Ob(A), there exists an epimorphism [J; X — N defined on
some coproduct of copies of X.

9.3 If P is a projective object in an abelian category A then Homa (P, —) need not commute
with arbitary direct sums. In particular, if A is the category of k-vector spaces, and V is
an infinite dimensional vector space with basis {ey}, show that idy ¢ @ Homa(V, key).

9.4 If {P, | @ € I} is a collection of projectives in A, show that [[ P is projective.

9.5 Let (F, G) be an adjoint pair of functors between abelian categories. Show that F preserves
projectives if G is exact.

9.6 Let A be an abelian category. Suppose that L and N are submodules of an A-module M.
If F is a left exact functor on A, show that FLN FN = F(LN N). If G is a right exact
functor on A, show that GL + GN = G(L + N).

9.7 Let M be an A-module. Show that Homa(—, M) is a projective in Fun(A°P,Ab). Show
that as M runs over all the A-modules this produces a set of generators for Fun(A°P, Ab).

9.8 [271, Proposition 2.3, page 16] Show that the opposite category to ModR is not equivalent
to ModS for any ring S. (Hint: show that (ModR)°P does not have a progenerator.)

2.10 The functor Hompg(—, R)

Throughout this section R will denote a ring.
Let M be a right R-module. Composition of maps provides a map

Hompg(M, M) x Homg(R, M) — Hom (R, M)

that makes M into a left module over Endg(M), and hence into a Endg(M)-
R-bimodule.
We define M* = Hompg (M, R) and make this a left R-module via

(@.u)(m) = z.pu(m). (10-1)
Composition of maps gives a map
Hompg (M, R) x Homg(M, M) — Hom(M, R)

that makes M* into an R-Endg(M)-bimodule. More generally, if M is an S-R-
bimodule, then M* is an R-S-bimodule.

Let g M be aleft R-module. The natural right R-module structure on MV :=
Hompg (M, R) is given by

(p-z)(m) = p(m)z. (10-2)

In this way MY becomes an Endg M-R-bimodule.
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The trace ideal of a left R-module M is

T(M) = Y p(M),

where the sum is over all p € Hompg(M, R). Since each p(M) is a left ideal,
T(M) is a left ideal. It is also a right ideal because, p(m)x = (p.z)(m) for all
x € R. If M is an R-S-bimodule, then the trace ideal is the image of the natural
map

d: M®s MY =R, me p p(m). (10-3)
There is also a natural map
U:MY®r M — Endg(M) (10-4)

defined by
(p®@m)(m') = p(m')(m).

If M and MV are given their bimodule structures over R and Endg M, then ¥
is a homomorphism of Endg(M) bimodules.

For a right module, the trace ideal is defined in a similar way, and it is the
image of the natural map M* ® M — R.

Lemma 10.1 An R-module M is a generator if and only T(M) = R.

Proof. (=) If T(M) were not equal to R, then the map R — R/T(M) would
be non-zero, so there would be a map M — R for which the composition
M — R — R/T(M) would be non-zero. But then the image of the map
M — R would not be contained in T'(M). This is contrary to the definition of
T(M), so we conclude that T'(M) = R.

(<) Let f : K — L be a non-zero map of right R-modules. Then there is
amap g : R — K such that fg # 0. By hypothesis R = ) (M) where the
sum is over all ¢ € Hompg (M, R), so because fg(R) # 0, fgex # 0 for some A.
Thus gy : M — K is the element that shows Hompg(M, f) # 0. d

The rule M — M* is a contravariant functor from right modules to left
modules. If R is a field, this is the duality functor sending a vector space to
its dual. A finite dimensional vector space is naturally isomorphic to its double
dual. If F is a finitely generated free module over any ring, then F™* is finitely
generated free of the same rank, so F** is isomorphic to F. Proposition 10.5
extends this duality result to finitely generated projective modules. First we
need some notation.

For any right R-module M there is a natural right R-module homomorphism

A:M—> M*™

sending m € M to the map A,, : M* — R defined by A, (f) = f(m). More
formally, there is a natural transformation from the identity functor to the
composition **.
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Since M +— M* is a contravariant left exact functor, if R is left noetherian,
and M is finitely generated, then M* is finitely generated. To see this, write M
as a quotient of a finitely generated free module, F say, and observe that M* is
a submodule of F*. Without the noetherian hypothesis it is possible for M to
be finitely generated but M* not finitely generated (Exercise 5).

Proposition 10.2 Let M be a noetherian module over a noetherian ring R.
Then the natural map A : M — M™* is injective if and only if M is a submodule
of a free module.

Proof. (=) There is a surjective map 6 : F' — M* for some finitely generated
free module F'. Since 8* = Hom(6, R) is injective so is the map 6*oA : M — F*,
whence M is a first syzygy.

(<) By hypothesis, there is an injective map ¢ : M — F with F finitely
generated free. Since the diagram

M —£5 F

o !

M** F**
p**

commutes, and F' — F** is an isomorphism, it follows that A is injective. O

Corollary 10.3 If M is a finitely generated R-module, then the natural map
M* — M*** is injective.

Proof. The natural map ¥ : M* — M*** is the map A for the module M*;
it sends f € M* to ¥y, the map defined by ¥;(a) = a(f) for @ € M**.
There is a surjective map F' — M with F finitely generated free, and hence an
injective map M* — F™*. The result follows from the second half of the proof
of Proposition 10.2. O

Exercise 4 shows that the map M* — M*** need not be not surjective.
Lemma 10.4 (Dual Basis Lemma) Let P be a right R-module. Then P is

projective if and only if there exist elements py € P and ¢ € Hompg(P, R) such
that

1. for each p € P, px(p) = 0 for all but finitely many A, and

2. p=Y,prpr(p) for allp € P.

In this case, if the index set of As is finite, then o = Y w(pr)pr for all ¢ in
HomR(P, R)

Proof. Suppose P is projective. Then there is a free module F', an epimorphism
p: F — P,and amap ¢ : P — F such that ot = idp. Let {z\ | A € A}
be a basis for F. Define py = ¢(zy). If p € P, then ¢(p) = > xary for some
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elements ) € R. Define ¢y : P — R by pa(p) = rx. This is a well-defined map
because the x) are linearly independent. It is easy to check that ¢y is a right
R-module map. Now

p=¢p(d) =D _proa(p);

as required.
Conversely, suppose that such elements exist. Let F' be free on a basis xy,
and define ¢ : F' — P by ¢(xzx) = pr. Define ¢ : P — F by ¥(p) = Y. zr¢x(p)-

Then
e(p) = o(D_za0a(p) = Y _proa(p) =p.

Therefore 1y = idp, showing that P is projective.
Finally, suppose the conditions are satisfied. Let ¢ € Hompg(P,R) and
p € P. Then

o) =o(Eper®) = (L oo ) o),

S0 0 = ) (Pr)Pa- O

Part (2) of the Dual Basis Lemma shows that the elements py generate P.
If P is finitely generated we may assume that there are only a finite number of
pas and pys. In this case, we say that the elements {p)} and {y»} form a dual
basis for P and P*. We call P* the dual of P. It is a left R-module. If P is
finitely generated, so is P*. The last statement in the Dual Basis Lemma shows
that the ¢, generate P*. The symmetry in the Dual Basis Lemma shows that
P* is a projective left R-module.

The next result justifies the use of the word “dual”.

Proposition 10.5 If P is a finitely generated projective right R-module, then
the natural map A : P — P** is an isomorphism.

Proof. The map is injective by Proposition 10.2. Take a dual basis as in the
Dual Basis Lemma. The map A sends py to the element of P** that sends
@ € P* to ¢(pa). Since A is injective, we will think of p) as an element of P**
and write ¢(px) as pa(p). By the last part of the Dual Basis Lemma,

0= pr(p)pr. (10-5)

By part (2), applied to P* and P**, this says the py are dual to the pys. So, by
the last part of the Dual Basis Lemma applied to P* and P**, the pys generate
P**. d

Corollary 10.6 The rule P — P* is a duality between the category of finitely
generated projective right R-modules and the category of finitely generated pro-
jective left R-modules.
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Proposition 10.7 If P is a finitely generated projective right R-module, then
the natural map ¥ : P g P* — Endg P is an isomorphism.

Proof. The map ¥ is defined by ¥(¢ ® a)(p) = ga(p) (this is the analogue
of (10-4) for right modules). Let p1,... ,p, € P and ¢1,...,p, € P* be dual
bases.

Since ¥ is a homomorphism of Endg(P)-bimodules, to prove it is surjective
it suffices to show that its image contains the identity. However,

<sz ® 902) sz% =D
SO "
‘I’(Zp, ®90i> =idp.
=1

On the other hand, suppose that Ej gj ® aj € ker ¥. Then

qua](p’l = (ZqJ ®a]) pi) =0.
But Y. a;(pi)p: equals o by (10-5), so
ZC]j@CMJ Zq;@Zag(P Qi = ijaj Pz)®€01_0
J ]

Therefore ¥ is injective. O

Corollary 10.8 Let P be a finitely generated projective right R-module. Let T
be the trace ideal of P. Then T?> =T.

Proof. Let S = Endg P. Then T? is the image of the natural map
P*®s P ®r P*®s P — R.

By Proposition 10.7, the middle term, P®pg P*, is isomorphic to S, so the result
follows. O

EXERCISES

10.1 Check that the rules in (10-1) and (10-2) make M* and M"Y R-modules.

10.2 Let M = mR be a cyclic R-module. Let N be any right R-module. Show that there
is a bijection between the elements of Homp(M, N) and the elements n € N such that
Ann(m) C Ann(n); a homomorphism 6 corresponds to §(n).

10.3 Let e be an idempotent in R. Show that (Re)V = eR.

10.4 Let k[z,y] be the polynomial ring, define R = k[z,y]/(z,y)? and let M = R/(z,y). Show
that
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(a) M* =M@ M;
(b) no two M**** are isomorphic;

(c) the image of A : M — M** is not an essential submodule of M**.

10.5 [Musson] When R is not noetherian, the hypothesis that M is finitely generated does not
imply that M* is finitely generated. Let R be the ring of Z x Z-matrices over the field
k such that each column has only finitely many non-zero entries. Let V' be the subspace
of R consisting of those matrices whose entries outside the 0tP-column are zero. Then V/
is a simple left R-module. For exach n € Z, let f, : V — R be the map embedding V'
as the n*® column of R. By considering the elements f,, show that V* is not a finitely
generated right R-module.

Check this exercise.

2.11 Morita equivalence

Definition 11.1 Two rings R and S are Morita equivalent if the categories ModR
and ModS are equivalent. O

Morita equivalence is an equivalence relation on rings.
The standard example is that all matrix algebras over the same field are
Morita equivalent. The simplest way to see this is to observe that both M, (k)
and k have a unique simple right module, k™ and k respectively, and that the
endomorphism ring of this simple is isomorphic to k£ in each case, and every
other module is a direct sum of copies of this simple module.
In the language of Chapter 3, two rings are Morita equivalent if they are
coordinate rings of the same non-commutative space.

Lemma 11.2 (Watt’s Theorem) Let R and S be rings, and f* : ModR —
ModS a right exact additive functor commuting with direct sums. Then f*R has
the structure of an R-S-bimodule and f* is naturally equivalent to — ®pg f*R.

Proof. Write B for the right S-module f*R. The map
z > A, = left multiplication by z

is a ring isomorphism R — Hompg(Rg, Rg). Since f* is additive the map f* :
Hompg(Rg,Rg) — Homg(B, B) is a ring homomorphism, thus making B an
R-S-bimodule with the action of z € R defined by z.b = (f*);)(b) for b € B.

Now fix a right R-module M. For each m € M define ¢, € Homg(R, M)
by om(x) = mz; thus f*@,, € Homg(B,f*M). Ifb € B,m € M and z € R
then

(f*Pma)(®) = [*(Pm © A2)(D) = (f*Pm 0 f*A2) (D) = (f*pm)(zb).
Hence the rule tpr(m ® b) := (f*om)(b) gives a well-defined map

tm:M®rB— f*M;
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it is a right S-module map since f*¢,, is. It is routine to show that ¢ : —@rB —
f* is a natural transformation, so it remains to show that ¢3s is an isomorphism
for all M.

Since f* commutes with direct sums, if () = @R, then the map tg : Q ®r
B — f*(Q is an isomorphism. Now, for an arbitary M, there is an exact sequence
Q1 — Qo = M — 0 with each @; a free R-module. In the commutative diagram

Q1B —— Q®rB —— M®zyB —— 0

| o |

ffQr —— ffQ — ffM ——0

the first two vertical maps are isomorphisms, and the rows are exact, so a
diagram chase shows that tj; is an isomorphism. O

Theorem 11.3 If f* : ModR — ModS is an equivalence of categories then
there is an R-S-bimodule B such that f* is naturally equivalent to — Qg B.
Moreover,

1. Bgs is a progenerator,
2. Endg B = R;

3. any two rings having a bimodule satisfying these two conditions are Morita
equivalent.

Proof. Lemma 11.2 shows that f* is naturally equivalent to — ® g B where
B = f*R with its natural bimodule structure. The functor Homg(B, —) is
a right adjoint to f*. Because Homg(B,—) is an equivalence of categories,
Bg is a progenerator. Lemma 11.2 implies that Homg (B, —) is equivalent to
— ®s BY, where BY = Homg(B,S). Furthermore, because f* sends Rp to
Bg, Homg(B,—) sends Bs to Rg, and sends Homg (B, B) isomorphically to
Hompg(REg, Rg), which is isomorphic to R.

Because —®p B and Homg (B, —) are quasi-inverses, — ® g B is right adjoint
to — ®s BY. Therefore — ®g B is naturally equivalent to Hompg(BY, —).

Because — ®g B and — ®s BY are quasi-inverses to each other, there are
bimodule isomorphisms B ®s BY = R and BY ® g B = S.

The symmetry of the situation shows that Homg(BY,R) = B as R-S-
bimodules, and the same arguments show that B is a progenerator as an R-
module, and that Hompg(B, B) = S. O

If P is a finitely generated projective right R-module, then Hompg(P, —) is

equivalent to — ®g PV.

Proposition 11.4 The ring of natural transformations of the identity functor
on ModR is isomorphic to the center of R.
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Proof. Each central element z € R induces a natural transformation 7 :
idModr — idmodr defined by requiring 7as : M — M to be the map m — mz.
Since z is central, 737 is a module homomorphism. If f : M — N is a module
homomorphism, then 75 o f = f o 754, so 7 is a natural transformation of the
identity functor. Hence there is a set map from the center of R to the ring of
natural transformations of the identity functor. It is easy to check that this is
a ring homomorphism.

On the other hand , if p is a natural transformation of the identity functor,
then pug : R — R is a map of right R-modules, so is given by left multiplication
by some element z € R. Now fix r € R, and let f : R — R be left multiplication
by r. Since p is a natural transformation of the identity functor, ugrof = four.
Thus zrx = rzz for all x € R. It follows that z is central. Now, if M is any
R-module, and m € M, there is a map g : R — M given by g(z) = mz. Since
War© g = go ug, we have in particular that

par(m) = pm(9(1)) = g(ur(1)) = g(2) = mz.

Thus par = Ta. Therefore the ring homomorphism from the center of R to
End(idmodr) is surjective. It is also injective because z can be recovered from 7
as z = tr(1). O

Corollary 11.5 Two commutative rings are Morita equivalent if and only if
they are isomorphic.

EXERCISES

1 Let R be any ring, and n and d any integers > 1. Show that M, (R) is Morita equivalent
to Md(R)

11.2 Let R be a ring, and P a projective left R-module. Suppose further that P is a generator.

Set PV = Hompg (P, R) and S = Hompg (P, P). Show that the ring

(# )

is Morita equivalent to R.

2.12 Injectives
All categories in this section are abelian.

Definition 12.1 An A-module E is injective if Homa(—, E) is exact. We say that
A has enough injectives if every A-module is isomorphic to a submodule of an
injective module. An injective envelope of an A-module M is a monomorphism
¥ : M — E where E is an injective such that if ¢’ : M — I is a monic to any
injective I, then there is a unique morphism p : E — I such that ¢’ = py. If
every A-module has an injective envelope we say that A has injective envelopes.

O
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The fact that an A-module is injective if and only if it is projective when
considered as an object in the opposite category A°P leads to parallels between
the theories of projectives and injectives. However, the abelian categories that
turn up most often are Grothendieck categories, and a Grothendieck category
has enough injectives but need not have enough projectives. The category of
quasi-coherent sheaves on a projective algebraic variety and the category of co-
modules over a coalgebra are typical examples. Thus it is better to use injectives
than projectives. The fact that there is not a complete parallel between the two
is because although the opposite of an abelian category is abelian, the only
Grothendieck category whose opposite is a Grothendieck category is the zero
category.

Definition 12.2 A monic f : L — M is essential, and M is called an essential
extension of L, if every non-zero submodule of M has non-zero intersection with
the image of f. We also say that f(L) is an essential submodule of M. ¢

Lemma 12.3 If L is a submodule of an injective module E, then E is an in-
jective envelope of of L if and only if L is an essential submodule of E.

Thus an injective envelope is a maximal essential extension.
The proof that ModR has enough injectives can be found in several places

such as [59, Chapter 1, Section 3] and ?? The proof below uses Proposition 12.8
which will be frequently used later on.

Lemma 12.4 A direct product of injectives is injective.

Proof. This follows from the fact that in any category C, if M € C and some
objects E, have a product, then [[ Hom¢ (M, E,) = Homc (M, [ Ea)- O

Lemma 12.4 is equivalent to the result that a direct sum of projectives is
projective because passing to the opposite category interchanges projectives
with injectives and direct sums with direct products.

Proposition 12.5 An inverse limit of injectives is injective.

Proof. O

Cartan and Eilenberg [59, Theorem 3.2, page 8] give a a proof of Baer’s
criterion that an R-module E is injective if and only if the restriction map
Hompg(R,E) — Hompg(I, E) is surjective for all right ideals I of R. This is
a special case of the following result which appears in Grothendieck’s Tohoku
paper.

Lemma 12.6 [94, Lemme 1, pg. 136] Suppose that A satisfies Ab5 and has a
generator G. Then an A-module E is injective if and only if for every submodule
M of G the restriction map Homa (G, E) — Homa (M, E) is surjective.
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An R-module F is divisible if for every regular element z in R, every element
of F is a multiple of z; that is, Fx = E.

If z is a right regular element in a ring R, then left multiplication by z is
an injective map from R to itself so, if E is an injective R-module the induced
map Hompg(R, E) — Hompg(R, E) is surjective. But Hompg (R, E) = E, and the
induced action is e — ex, so Ex = E. Therefore every injective module over a
domain is divisible. Baer’s criterion implies that the converse also holds for a
ring in which every right idea is principal: a module is injective if and only if it
is divisible (see [?, 7] for example).

We now apply this to Z.

Example 12.7 The category of abelian groups has enough injectives. First, Q
is injective because it is divisible. Every Z-module is a quotient of a suitably
large product of copies of Z, and is therefore a submodule of a quotient of a
product of copies of Q. But that product is injective by Lemma 12.4, and hence
divisible, and a quotient of a divisible module is divisible, so every Z-module
embeds in an injective module. O

Proposition 12.8 A right adjoint to an exact functor sends injectives to in-
jectives.

Proof. Let (F,G) be an adjoint pair with F' : A — B. Suppose that I is an
injective in B. Then Homa(—, GI) is isomorphic to Homg(—, I) o F' which is a
composition of exact functors, so is exact. Hence G1 is injective. |

Theorem 12.9 The category of modules over a ring has enough injectives.

Proof. Let R be aring. Since R has an identity, there is a ring homomorphism
Z — R. The associated direct image functor f, = Hompg(R,—) : ModR —
ModZ has a right adjoint f' = Homy(R,—) (1.6.4). Since f, is restriction of
scalars it is exact. Therefore f' preserves injectives.

Now let M be an R-module. As a Z-module, it embeds in an injective abelian
group, say I. There are inclusions of right R-modules,

M = Hompg (R, M) C Homz(R, M) C Homz(R,T) = f'I.
Therefore M is a submodule of the injective R-module f'I. |

Example 12.10 An abelian category can have enough injectives but not have
injective envelopes. If A is the opposite category to Modk[z], then A has enough
injectives because Modk[z] has enough projectives. However, Modk[z] does not
have projective covers, so A does not have injective envelopes. See Exercises 5-
7.

Definition 12.11 An A-module N is a cogenerator if the functor Homa(—, N) is
faithful. A set of A-modules {Ny | A € A} cogenerates A if whenever f: U - V
is a non-zero morphism in A, there exists a A and a morphism g : V' — N, such
that gf # 0. o



86 CHAPTER 2. ABELIAN CATEGORIES

By analogy with Lemma 9.4, or by that result interpreted in the opposite
category, an injective E is a cogenerator if and only if Homa (M, E) is non-zero
whenever M is a non-zero A-module.

Lemma 12.12 Suppose that A has injective envelopes. If A has a noetherian
set of generators, then the set of injective envelopes of the simple A-modules
cogenerates A.

Proof. Let f: U — V be a non-zero map in A. Then f(U) has a non-zero
noetherian submodule, say M, and there is a non-zero map from M to some
simple module, say S. Hence there is a non-zero map from M to the injective
envelope of S. This extends to a map ¢ from V to that injective. Clearly gf # 0.
O

Lemma 12.13 Let y be a normal regular element of R. Define o € Aut R by
yr = r%y for oll r € R, and let 0* and o, be the inverse and direct image
functors associated to o. Let E be an injective R-module, and define 8 : E - E
by B(e) = ey. Then there is an exact sequence

B

0 —— {e€E|ey=0} » B y o*E — 0.

Furthermore, {e € E | ey = 0} is an injective R/(y)-module.

Proof. By Lemma 1.6.5, 8 is a homomorphism. It is surjective because F is
divisible. The direct image functor i, : ModR/(y) — ModR has a right adjoint
i' = Homg(R/yR,—). Since i, is exact, it follows from Proposition 12.8 that
i'E is an injective R/(y)-module. But i'E is the submodule of E consisting of
elements annihilated by y, which is exactly ker 3. O

Let x be a normal element in a ring R. Thus xR = Rx. An element m in a
module M is z-torsion if ma™ = 0 for n > 0. Because z is normal, the z-torsion
elements form a submodule. We say that M itself is z-torsion if every element
in it is. The z-torsion modules form a localizing subcategory of ModR.

If z is also regular (i.e., not a zero-divisor), then for each r € R there is a
unique ' in R such that zr' = rz. We therefore write r’ = z~!rz. In particular,
for all integers n, ~™rz™ is a uniquely determined element of R.

Proposition 12.14 [98, Theorem 4] Let R be a right noetherian ring, and
xz € R a regular normal element. If M is x-torsion, then so is its injective
envelope.

Proof. Let E be an essential extension of M and suppose, to the contrary,
that E is not z-torsion. Choose a non-zero e € FE and n > 0, subject to the
conditions that e is not z-torsion, and the right ideal

—n

2" ( Anne)z
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is as large as possible. Since M is essential in E, there is an element r in R such
that er is a non-zero element of M. Hence erz? = 0 for d > 0. Certainly ez?
is not z-torsion. However,

Ann(ez?) D 7% Anne)z?
and
2"+ Ann(ex?)z~ ("% > z"( Anne)z™

so, by the choice of e, we conclude that there is equality. This implies that
Ann(ez?) = z7¢( Anne)z?. But z~%z? annihilates ex?, so r annihilates e.
This contradicts the choice of r. We conclude that E is z-torsion. O

Theorem 12.15 (Matlis) [2/1, Prop. 4.5, Ch. V, pg. 124] In A has a set of
noetherian generators, then every injective A-module is isomorphic to a direct
sum of indecomposable injectives.

EXERCISES

12.1 Show that an injective envelope is unique up to isomorphism.

12.2 Let A be an abelian category having products. Show that an A-module N is a cogenerator
if and only if every A-module embeds in some product of copies of N.

12.3 Let 0 - M — E9 — E! — E?2 — ... be a minimal injective resolution. If S is a simple
module show that the differential in the complex 0 — Hom(S, E°) — Hom(S, E!) — ...
is zero, and hence that Ext™(S, M) = Hom(S, E™).

12.4 Show that an injective I is indecomposable if and only if Homp (I, I) has a unique maximal
two-sided ideal and the quotient by it is a division ring.

12.5 An epimorphism f : M — N in an abelian category A is superfluous if the only submodule
L of M such that L +ker f = M is L = M. Show that f is superfluous if and only if it is
an essential monomorphism in A°P.

12.6 Let A be an abelian category. A projective cover of a module M is a pair (P, f) consisting
of a projective P and a superfluous epimorphism f : P — M. Show that (P, f) is a
projective cover of M if and only if (P, f) is an injective envelope of M in A°P.

12.7 Show that the simple modules over k[z] do not have projective covers. Hence deduce
that the opposite category to Modk[z] does not have enough injectives. Thus, it is not a
Grothendieck category. This can also be seen by observing that inverse limits fail to be
exact in Modk[z], so direct limits are not exact in the opposite category.

2.13 Quotient categories

Throughout this section A will denote an abelian category having a set of gen-
erators.

Two good references for quotient categories and localization of categories
are Gabriel’s thesis [88] and Stenstrom’s book [241]. We have drawn heavily on
both, and details that we omit can often be found in both those accounts.
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Definition 13.1 A non-empty full subcategory T of an abelian category A is a
Serre subcategory if, for all short exact sequences 0 - M' - M — M" — 0 in
A, M belongs to T if and only if both M’ and M" do. In particular, the zero
module is in T. The A-modules in T are called torsion modules. An A-module
is torsion-free if its only submodule belonging to T is the zero submodule. Thus
the zero module is the only A-module which is both torsion and torsion-free. ¢

For the rest of this section T will denote a Serre subcategory of A.

Since T is closed under submodules and quotients the the inclusion T — A
preserves kernels and cokernels; in other words kernels and cokernels in T agree
with those in A. Since T is closed under extensions it is closed under finite
direct sums and products, and these agree with those in A. It follows that T is
an abelian category, and the inclusion functor is exact.

If My and Ms> are submodules of M that are torsion, then so is their sum
since it is a quotient of M7 ® Ms, which occurs in an exact sequence 0 — M; —
My & My = My — 0.

Example 13.2 If § is a multiplicatively closed subset of a commutative ring R,
then the S-torsion modules form a Serre subcategory of ModR. A module is S-
torsion if every element of it is annihilated by some element of S. More generally,
suppose that R is a ring having ring of fractions Fract R and S is an intermediate
ring, R C S C Fract R. If gS is flat, then {M € ModR | M ® p S = 0} is a Serre
subcategory of ModR. O

The general principle behind this example is that if ' : A — B is an exact
functor on an abelian category A, then the full subcategory of A consisting of
those M such that F'M = 0 is a Serre subcategory.

Definition 13.3 Let A be an abelian category and T a Serre subcategory. The
quotient category A/T is defined as follows:

e its objects are the objects of A;
e if M and N are A-modules then
Homp/1(M,N) := li_n}HomA(M',N/N'),

where the direct limit is taken over all submodules M’ of M and all sub-
modules N’ of N with the property that M /M’ and N’ are torsion;

e the composition of morphisms in A/T is induced by that in A. ¢

Proposition 13.4 Definition 13.3 makes sense.

Proof. First, the direct limit makes sense. Fix two A-modules M and N. Be-
cause A has a set of generators, the collection of all pairs (M', N') of submodules



2.13. QUOTIENT CATEGORIES 89

M' C M and N' C N, such that M/M' and N’ are torsion is a small set. Let
I denote that set. We define

(M’,N’) S (M”,N”)

if M" ¢ M'" and N' C N". Thus I is a quasi-ordered set. If (M',N') <
(M",N"), the natural morphisms M" — M' and N/N' — N/N" induce maps

Homa(M', N/N') = Homa(M", N/N') — Homa(M", N/N").

Thus Hom(M', N/N') is a direct system indexed by I. Since direct limits exist
in the category of abelian groups (1.4.8), the definition of Homa /y makes sense.
Since (M,0) € I, Homa(M, N) appears in the direct system. The set I is
directed because if (M, N7) and (M}, N}) arein I, then sois (M{NMJ}, N{+N3),
and
(M, Nj) < (M{ N Mj, Ny + Ny).

Hence every morphism in Hompa /7(M, N) is the image of a morphism in Homa (M', N/N')
for some (M',N') € I (cf. Exercise 3).
Second, there is a well-defined composition of morphisms in A/T: we will
state the main steps required to verify this, leaving the details to the reader.
The composition

HOHIA/T(N, Z) X HomA/T(M, N) — HOIHA/T(M, Z)

is defined as follows. Let f € Homa,r(N,Z) and § € Homa (M, N). By the
previous paragraph, f and g are images of morphisms g : M’ — N/N' and
f:N'"— Z/Z'"in A where M/M', N', N/N", and Z' belong to T. Define
M" := g=Y(N' + N"/N'"), check that M/M" is torsion, and define

gl . MII - NI +NII/NI

to be the restriction of g to M". Both f(N'NN") and Z" :=Z'+ f(N'NN")
are torsion. Now define

fl . N"/N’ﬂN" N Z/Z//
to be the map induced by f. Define h to be the composition
MII g’ (NI + NII/NI) ~ (NII/NI ﬂ NII) f’ 3 Z/ZII,

where the middle map is the natural isomorphism. Finally, one checks that h,
the image of h in Homp v (M, Z), depends only on f and g and not on a choice
of representatives f and g.

Third, Homa /v (M, M) contains an identity morphism, namely the image of
id,s in the direct limit. O
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Definition 13.5 Let T be a Serre subcategory of A. The quotient functor
m:A—>A/T

is defined by M = M on modules, and 7 f = the image of f in the direct limit,
on morphisms. O

It follows from the definitions that A/T is an additive category and that
m: A — A/T is an additive functor.

Lemma 13.6 Let M be an A-module. Then M = 0 if and only if M is
torsion.

Proof. Write I for the directed set used in defining Homp 1 (7 M, 7M).

(=) Since 7M = 0, Homa 7(7M,7M) = 0. In particular, the image in the
direct limit of the identity morphism ids is zero. Thus, since the set I in the
proof of Proposition 13.4 is directed, there exists (M', N') € I such that the
map M' — M/N' induced by idps is the zero map. But the image of this map
is M'+ N'/N', so M' C N'. Thus, since T is Serre, M’ is torsion whence M is
torsion.

(<) Tt suffices to show that Homp v (7M, 7 M) = 0. Every morphism in this
set is of the form = f for some f : M' — M/N' and some (M',N') € I. But
(M',N'") < (0,N") € I since M is torsion, and the image of f in Homa (0, N')
is zero, so f = 0. d

Proposition 13.7 Let f: M — N be a morphism in A. Then
1. the kernel and cokernel of wf are w(ker f) and w(coker f) respectively;

2. wf is zero if and only if im f is torsion;

3. wf is monic if and only if ker f is torsion;

4. wf is epic if and only if coker f is torsion;

5. wf is an isomorphism if and only if both ker f and coker f are torsion.

Theorem 13.8 Let T be a Serre subcategory of A. Then A/T is abelian and
the quotient functor w: A — A/T is exact.

Theorem 13.9 Let A be an abelian category, T a Serre subcategory and D
another abelian category.

1. Let F : A — D be an exact functor such that FM = 0 for all torsion
modules M. Then there is a functor G : A/T — D, unique up to natural
isomorphism, such that F = Gr; that is, the diagram

A 24D

wl l:

A/T —— D
G
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commutes up to natural equivalence.

2. If G: A/T — D is a functor, then G is exact if and only if G is exact.

Corollary 13.10 Let T be a Serre subcategory of an abelian category A. Let B
be a full subcategory of A that is closed under quotients and submodules. Then

1. the inclusion functor i, : B — A is exact;
2. BNT is a Serre subcategory of B;

3. there is an ezxact functor f. : B/BNT — A/T such that the diagram

B —“ 4 A

’”l lm

B/BNT —— A/T
fx

commutes up to natural equivalence.

Proof. (1) This is clear: the kernel and cokernel in A of a morphism in B both
belong to B, so i, commutes with kernels and cokernels.

(2) This holds because BN T consists of precisely those modules on which
the exact functor %, vanishes.

(3) Tt is clear that mai. vanishes on BN'T, so the existence of f, follows from
Theorem 13.9. The right-hand side of the equivalence f.m = mais is exact so,
by Theorem 13.9, f, is exact. |

When is f, full and faithful?

Proposition 13.11 [182, Ezercise 6, page 174] Let S C T C A be two Serre
subcategories of A. Then T/S is a Serre subcategory of A/S, and

A/T = (A/S)/(T/S).

Proposition 13.12 [88, Corollaire 1, page 368] If 0 - L' - M' — N' — 0 is
an exact sequence in A/T, then there is an exact sequence 0 L - M — N — 0
in A, and a commutative diagram

0 y L' y M’ >y N’ > 0

! ! !

0 — 7wl — 7 M — 7N — 0

such that a, B, are isomorphisms in A/T.
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Let ¢ € Homp/t(mM,nN). As remarked in the proof of Proposition 13.4,
¢ is the image of a map f € Homa(M', N/N') for some (M',N') € I. Write
81 : M' — M for the inclusion, and sy : N — N/N' for the surjection. Both
ws; and wsy are isomorphisms, so we may write

p = (ms) o (nf) o (ms1) ™"
This point of view may be used as the starting point for the definition of a
quotient category. That is, rather than starting with a class of modules, the
Serre subcategory, one begins with a class of morphisms which are to be inverted.
This latter point of view is more general, and leads to the notion of a category
of fractions (see [8] for details). This point of view is required to develop the
notion of universal localization (see [63, Chapter 7] and [203, Chapter 4]).

The quotient functor preserves direct sums.

Example 13.13 The quotient functor A — A/T need not preserve products.
For example, let R be a k-algebra with an infinite dimensional simple module
S. Let ex, A € A, be a k-basis for S, and set Iy = Anney. There is a diagonal
injection R/ AnnS — [], R/Ix. Now take A = ModR, and let T be all finite
length R-modules having all composition factors isomorphic to S. We may
choose an R such that R/ AnnS is not of finite length, in which case [], R/Ix
is not in T, so the quotient functor does not send this to zero, although it sends
each component to zero. O

2.14 Localizing subcategories

In this section A denotes an abelian category and T denotes a Serre subcategory
of A.

Definition 14.1 A Serre subcategory T of A is called a localizing subcategory if
m: A = A/T has a right adjoint. We write w for the right adjoint and call it
the section functor. O

The importance of localizing subcategories will be apparent when we discuss
open subspaces in Section 3.7.

The key result is that when A has injective envelopes T is a localizing cate-
gory if and only if it is closed under direct sums (Theorems 14.8 and 14.12).

A direct sum of torsion modules need not be a torsion module. For example,
consider the category of k-vector spaces and declare a vector space to be torsion
if it has finite dimension. This is a Serre subcategory that is not localizing.

Lemma 14.2 Let T be a Serre subcategory of A. The following are equivalent:
o cvery A-module has a largest torsion submodule;

o the inclusion functor T — A has a right adjoint;
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e cvery direct sum of torsion modules is torsion.

Proof. Let i, : T — A denote the inclusion functor.

(1) = (2) We construct a right adjoint 7 to i, as follows. If M is an A-
module, then 7M is defined to be the largest torsion submodule of M. If
f: M — N is a map of A-modules, then f(7M) is a quotient of 7M so is
torsion, and therefore contained in 7N. We define 7f : TM — 7N to be the
restriction of f. It is easy to check that 7 is a functor A — T. It is a right
adjoint to i, because if M is a torsion module and N is an A-module, then the
image of any map f : M — N is contained in 7N. In other words, the natural
map Homa (M, 7N) — Homa (M, N) is an isomorphism, so

Homa (1. M, N) = Homa (M, N) = Homa (M, 7N) = Homt(M,7N).

(2) « (1) Let i' : A = T be a right adjoint to i,. Let N be an A-module.
By part (2b) of Theorem 1.6.18, the map ey : 4,i'N — N is monic so we
can view i'N as a submodule of N. It is of course torsion. To see that it
is the largest torsion submodule, suppose that M is a torsion submodule of
N. The inclusion of M in N can be viewed as an element of Homa (i.M, N).
However, the adjunction isomorphism v : Homt(M,i'N) — Homa (i, M, N)
satisfies v(a) = en o i4(a), so every map i.M — N factors as a composition

WM —— i i'N —=Y 5 N.

In particular, the inclusion of M in N factors in this way. Therefore M is
contained in the submodule ' N of N. Thus ' N is the largest torsion submodule
of N.

(1) <= (3) If M;, i € I, are torsion modules, then ®M; is the sum of the
submodules M;, so is torsion.

(3) « (1) If M;, i € 1, is the set of all torsion submodules of a module M,
then their sum is a quotient of their direct sum, so is torsion. Ths sum must,
of course, be the largest torsion submodule of M. |

Definition 14.3 Let T be a Serre subcategory of A. If the inclusion functor
T — A has a right adjoint, then that adjoint is called the torsion functor and is
denoted by 7. o

Definition 14.4 If an A-module M has a largest torsion submodule, that sub-
module is denoted by 7M and is called the torsion submodule of M. We will
often indicate the existence of a largest torsion submodule by saying ‘suppose
that 7M exists’. ¢

Lemma 14.5 If TN exists, then Homa(M, N/TN) = 0 for all torsion modules
M. In particular, N/TN is torsion-free.

Proof. Suppose that M is in T and that f : M — N/7N. Write N’ for the
kernel of the composition N — N/7N — coker f. Then there is an exact
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sequence 0 - 7N — N' — N'/TN = im f — 0. Since M is torsion so is im f,
and hence so is N’ as T is Serre. Since 7N is the largest torsion submodule of
N, N' C 7N. Therefore im f = 0, whence f = 0 as required. O

Lemma 14.6 Let M and N be A-modules. If TN exists, then
Homp/1(M,N) = li_rr}HomA(M',N/TN) (14-1)
where the direct limit is taken over
J:={(M',7N) | M' C M and M/M' is torsion}.

Proof. It is easy to see that J is cofinal in the set I defined in the proof of
Proposition 13.4. g

Proposition 14.7 Suppose that T is a localizing subcategory of A. Let m and
w denote the quotient and section functors. Let F be an A/T-module. Then

1. wF is torsion-free;

2. if f € Homa(M,N) and ©f is an isomorphism, then the map
Hom(f,wF) : Homa (N, wF) — Homa (M, wF)
is an isomorphism;

3. the map 7 : Homa(M,wF) = Homp 1 (7 M, nwF) is an isomorphism for
all A-modules M ;

4. if Z is a torsion module, then every exact sequence of the form 0 — wF —
N — Z — 0 splits;

5. mw = idA/T,‘
6. w is fully faithful.

Proof. (1) If M is torsion, then Homp (M, wF) = Homp /r(7M,F) =0 so wF
is torsion-free.
(2) By the adjoint property there is a commutative diagram

Homa(N,wF) —— Homa (7N, F)
Hom(f,w]—')l JVHom(wf,]-')
Homa (M, wF) —— Homp (7 M, F)

in which the horizontal maps are isomorphisms. By Proposition 13.7(4), 7 f is
an isomorphism, so the right-hand vertical map is an isomorphism; hence the
left-hand map is an isomorphism.
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(3) Since wF is torsion-free, 7(wF) exists—it is zero. Thus, by (14-1), the
map f — 7 f is the natural map

Homa (M, wF) — lim Homa (M', wF) (14-2)

where the direct limit is taken over the M’ C M such that M /M’ is torsion. By
(2), all the maps Homa(M',wF) — Homa(M",wF) in the direct system are
isomorphisms, whence so is (14-2).

(4) Let f : wF — N be the map in the exact sequence. Then the map
Hom(f,wF) : Homa(N,wF) — Homa(wF,wF) is an isomorphism by (2), so
there exists g : N — wF such that fog =idy .

(5) Let € : mw — ida/1 be the counit. We must show that er : 7wF — F
is an isomorphism for each F in A/T. By Yoneda’s Lemma, it suffices to prove
that

Hom(G,ex) : Homp /7(G, 7wF) — Homp 1(G, F)

is an isomorphism for all G in A/T. Such a G is equal to M for some A-module
M, so we must show show that the bottom map in the following diagram is an
isomorphism:

Homa (M,wF) —~— Homp7(rM,F)

wl l: (14-3)

HomA/T(g,muf) E— HomA/T(g,f)

This diagram commutes by (6-7) in Proposition 1.6.12, and the left-hand vertical
map is an isomorphism by (3), so the bottom map is an isomorphism too.
(6) This follows from (5) and Theorem 1.6.15. O

Theorem 14.8 If T is a localizing subcategory of A, then there is a torsion
functor T : A — T. Furthermore, if m and w denote the quotient and section
functors, then for each M in A there is an exact sequence

0 — TN - N ™ wrN — cokerny — 0
in which ny is an essential map, and cokerny a torsion module.

Proof. If W = kernyr and Z = cokernar, then there is an exact sequence

0 >y W > wM 7r(17M)> mwr M y 2 > 0

in A/T. By Proposition 1.6.12, exar o w(nar) = idzpr. However, part (5) of
the previous result shows that ;) is an isomorphism. Hence w(nas) is an
isomorphism. Therefore 7W = wZ = 0, showing that both W and Z are
torsion (Proposition 13.7).

By Proposition 14.7(1), wwM is torsion-free, so W contains every torsion
submodule of M. Thus W is the largest torsion submodule of M.

If T is a submodule of wwM such that T N7y (M) = 0, then T embeds in
Z, so is torsion. But wwM is torsion-free, so T' = 0. Thus 7y (M) is essential in
wn M. |
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Lemma 14.9 An essential extension of a torsion-free module is torsion-free.

Proof. Let (Q be an essential extension of a torsion-free module N. If M C @
is a torsion module, so is M N N. Therefore M N N = 0, whence M = 0. O

Example 14.10 An essential extension of a torsion module need not be torsion.
Let R be a ring having a non-split extension 0 — S — M — S’ — 0 of two
non-isomorphic simples (2 x 2 triangular matrices is such a ring). If T consists
of all direct limits of finite length R-modules all of whose composition factors
are isomorphic to S, then T is a localizing subcategory. Although S is torsion
its essential extension M is not. O

The example also shows that applying m to an essential monic need not
produce an essential monic.

Lemma 14.11 Applying w to an essential monic produces an essential monic.

Proof. Because it is a right adjoint w preserves monics. Let £ — M be an
essential monic in A/T. Suppose there is a direct sum wLBN C wM. Applying
7 to this produces a direct sum LS 7N C M, sowN = 0. But N is torsion-free
because wM is, so we deduce that N = 0. O

Theorem 14.12 Let T be a Serre subcategory of A. Suppose that a torsion
functor 7 : A = T exists. If A has injective envelopes, then

1. T is a localizing subcategory of A;

2. for each N in A, wnN is isomorphic to the largest submodule of the in-
jective envelope of N/TN which extends N/TN by a torsion module.

Proof. To show that the quotient functor 7 : A — A/T has a right adjoint it
suffices, by Proposition 1.6.20, to show that the functor

M — HOIIIA/T(TI'M, 7TN)

is representable for each N in A. The representing object will be the module H
we define next.

Fix N in A. Write N = N/7N. Let H be the largest essential extension of
a torsion module by N. Explicitly, if @ : N — E is the inclusion of N in an
injective envelope, H is the kernel of the composition

E — coker a — coker a/T(coker o).

This gives rise to an exact sequence

0 s TN sy N —L

y H » coker f —— 0

in which ker f and coker f are both torsion. In particular, 7f : TN — wH
is an isomorphism in A/T. By Lemma 14.5, N is torsion-free, hence so is H
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by Lemma 14.9. Moreover, E/H = coker a/T(coker ) is also torsion-free by
Lemma 14.5.
Since 7 f is an isomorphism so is the map

Hom(wM, 7 f) : Homa 1 (7M,7N) — Homp (7 M,nH).
Thus, it suffices to show that H is a representing object for the functor
M — HOIIIA/T(TFM, 7TH)

We will do this by showing that 7 : Homa(M, H) — Homp/v(7M,7H) is an
isomorphism.
Since H is torsion-free,

Homp /1 (mM,7H) = lim Homa (M', H)

where the direct limit is taken over those M' C M for which M/M' is tor-
sion. We will show for such an M’ that the natural map Homa(M, H) —
Homa(M', H) is an isomorphism. Since Homa (—, H) is left exact and M /M’ is
torsion whereas H is torsion-free, it follows from Lemma 14.5 that this map is in-
jective, so it remains to prove it is surjective. To see this, let f' € Homa(M', H)
and consider the diagram

0 — M’ — M — M/M' —— 0

7|

0 y H » E » E/[H —— 0.

Since E is injective there is a morphism f : M — E extending the composition
M' - H — E. It follows that there exists a morphism g : M/M' — E/H
making the diagram commute. But E/H is torsion-free and M /M’ is torsion,
so g = 0 by Lemma 14.5. Therefore the image of f is contained in H and f’ is
the restriction of f. Hence the map Homa (M, H) — Homa(M', H) is surjective,
and hence an isomorphism. a

Corollary 14.13 Let T be a Serre subcategory of an abelian category A. Sup-
pose that A has direct sums (i.e., A is Ab3), and injective envelopes. Then T is
localizing if and only if T is closed under arbitrary direct sums.

Proof. (=) By hypothesis, 7 has a right adjoint so it commutes with direct
sums (Corollary 1.7.14). Therefore, if N, are torsion modules, then 7(®N,) =
@®nN, =0, whence &N, is in T.

(«) The direct sum of all the torsion submodules of a given module is
torsion. But the sum of those submodules is a quotient of their direct sum, so
is also torsion. Hence every module has a largest torsion submodule. It follows
from Lemma 14.2 and Theorem 14.12 that T is localizing. O

A comparison of homological issues in A and A/T requires an understanding
of the relation between injectives in A and A/T.
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Theorem 14.14 Suppose that T is a localizing subcategory of A, and that A
has injective envelopes.

1. w sends injectives to injectives, and injective envelopes to injective en-
velopes.

2. The injectives in A/T are {mQ | Q is a torsion-free injective in A}.
3. A/T has enough injectives.
4. If Q is a torsion-free injective A-module, then @ = wn@.

Proof. (1) Because it is right adjoint to an exact functor w preserves injectives
(Proposition 12.8). Then by Lemma 14.11 it preserves injective envelopes.

(2) If Q is a torsion-free injective, then Homa(—, Q) is an exact functor
vanishing on T so, by Theorem 13.9, the rule

M — Homa(M, Q) (14-4)

defines an exact functor on A/T. By Theorem 14.12(2), Q = ww(@ so, by
Proposition 14.7(3),

Homa (M, Q) = Homp /1 (7M,7Q).

Therefore the functor defined by (14-4) is equivalent to Homa /rv(—,7Q). But
(14-4) is an exact functor, so 7@ is injective.

Let Q be an injective in A/T. Then wQ@ is injective by (1), and is torsion-free
by Proposition 14.7(1). Moreover, nw@Q = Q by Proposition 14.7(5), so every
injective in A/T is of the form 7@ for some injective A-module Q.

(3) Let F be an A/T-module, and let f : wF — @ be the inclusion of wF
in its injective envelope. Since wF is torsion-free, so is ) (Lemma 14.9). But
« f is monic, so 7@ is an injective containing 7wF 22 F. Thus A/T has enough
injectives. g

Theorem 16.3 shows that if A is a Grothendieck category and T a localizing
subcategory, then A/T is a Grothendieck category.

Next we show how that the right derived functors of 7 and w are closely re-
lated when T is a localizing subcategory that is closed under injective envelopes.

Clearly, T is closed under injective envelopes if and only if every essential
extension of a torsion module is torsion. This condition is sometimes described
in the literature as a stable torsion theory (see [58, p. 46] and [240, p. 20] for
example). In 7?7, we show that this condition is equivalent to an appropriate
formulation of the Artin-Rees property.

Theorem 14.15 Let T be a localizing subcategory of A. Suppose that A has
enough injectives and that T is closed under injective envelopes. Then

1. every injective in A is a direct sum of a torsion injective and a torsion-free
injective;
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2. for i > 1, the right-derived functors of T and w satisfy
R M = Riw(rM)
for all A-modules M ;

3. there is an exact sequence 0 = 7M — M — wrM — R'tM — 0.

Proof. (1) Let E be an injective in A. Since E contains a copy of the injective
envelope of 7E, and since that injective is torsion by hypothesis, 7E is injective.
Therefore it is a direct summand of E, say E = 7E @ ). Clearly @ is a torsion-
free injective.

(2) Let M — E* be an injective resolution of M. For each j, write I? for the
torsion submodule of E’, and set Q7 = E’/I7. Then there is an exact sequence
of complexes

0->I'>E >Q"—0
which gives a long exact sequence
co = BEHQY) = BI(IY) = AY(E®) = RY(Q*) = hHHL(IY) = - -

in homology. However, hi(I*) = RiTM, and hi(E*) = 0 for i > 1. Therefore,
for i > 1, R 7 M = h¥(Q*).

By Theorem 14.14, 7@’ is injective in A/T, and wr@? = Q7. Since 7 is
exact, TM — wE*® is an injective resolution in A/T. However, the complexes
w@Q° and wE* are isomorphic. Therefore, 7M — 7@Q* is an injective resolution
in A/T, so

Riw(rM) = hi(wnQ*) = h1(Q").

This completes the proof of (2), and (3) is given by the left-hand segment of the
long homology sequence. |

Example 14.16 Let R be a commutative ring, and m a maximal ideal in R. A
module M is supported at m if each element of M is killed by a power of m. Such
modules form a Serre subcategory of ModR. This is a localizing subcategory,
and the torsion functor 7 is

7 =limHomp(R/m", —).
The right derived functors of 7 are therefore
Rir = @Ext%(R/m”, -).

We write HE (M) for RiTM, and call this the it" local cohomology module of M
with respect to 7.

The corresponding quotient category of ModR is the category of quasi-
coherent modules on the open complement in Spec R of m. This is called the
punctured spectrum [79, Chapter 6] of R. If we write X for Spec R, U for the
punctured spectrum, and j : U — X for the inclusion map, then j* = 7 and
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jx = w. Therefore, if M € ModR, and M = j*M is its restriction to U, then
Rij M = HHL (M) for i > 1.

For example, when X = A%, and U = A?\{0}, one sees that R'j.Op # 0
because H2 (R) is isomorphic to the injective envelope of R/m (ref???). 4

The next result identifies an important source of Serre subcategories that
are closed under injective envelopes. Its importance will be apparent when we
examine the open complement to a hypersurface in a non-commutative space
(3.3.7).

Proposition 14.17 Let R be a right noetherian ring, and © € R a regular
normal element. The x-torsion modules form a localizing category that is closed
under injective envelopes.

Proof. This is a consequence of Proposition 12.14. O

Lemma 14.18 Let T be a localizing subcategory of A. Suppose that M and N
are simple A-modules, and that neither belongs to T. Then M = N if and only
if tM =2 N.

Proof. Let f: #M — wN be an isomorphism. This leads to a commutative
diagram

0 y M y wrM y M' > 0
%’lwf
0 y N y wrN y N’ > 0
Since M is torsion-free, the image of M in N' is zero, so wf sends M to N.
Similarly, w(f~!) sends N to M. It follows that M = N. O

Lemma 14.19 Let T be a localizing subcategory of A.
1. If M is noetherian, so is wM.

2. Suppose that every A-module is the union of its noetherian submodules. If
M is a noetherian A/T-module, then there is a noetherian A-module M
such that M = 7w M.

Proof. (1) Replacing M by M /T M, we may assume that M is torsion-free. Let
N1 C Nz C ... be an ascending chain of submodules of 7M. Because w is left
exact, wN1 C wN3 C ... is an ascending chain of submodules of wrM. Thus
wN1 N M CwN2N M C ... is an ascending chain of submodules of M. Since
M is noetherian, it follows that this chain stabilizes. However, since 7 is left
exact, it commutes with intersection. Thus, for large 1,

N =rwN;NaM = 1(wN; " M) = 7(wNiz1 N M) = Ny

Hence the original chain stabilizes, and we conclude that M is noetherian.
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(2) By hypothesis, wM is the union of its noetherian submodules, say wM =
lig M;, where each M; is noetherian. Because 7 has a right adjoint, it commutes
with direct limits, so M = 7wM = h_n;le Each 7M; is a submodule of M.
By hypothesis, M is noetherian, so for some i, M = 7M. O

EXERCISES

14.1 Let f : R — S be a homomorphism of rings. Show that the full subcategory of ModR
consisting of those M for which M ®g S = 0 is a Serre subcategory if and only if S is
flat.

14.2 Fill in the details required to show that the composition of morphisms in A/T is well-
defined.

14.3 Show that if T is a Serre subcategory of A, then T°P is a Serre subcategory of A°P. Is
A°P /TP equivalent to (A/T)°P? Give an example to show that T can be localizing, but
T°P not localizing.

14.4 [91] Let P be an A-module. Define the full subcategory

P+ :={M | Hom(M, P) = 0}.

(a) Show that P need not be a Serre subcategory.
(b) Find conditions on P which ensure that P is a Serre subcategory.
14.5 Let A denote the category of k-vector spaces, and let T be the full subcategory consisting

of the finite dimensional vector spaces. Show that T is a Serre subcategory, but not a
localizing subcategory.

14.6 Show that the artinian (respectively, noetherian) modules in an abelian category form a
Serre subcategory.

14.7 Suppose that 7 has a right adjoint w. Show that

(a) M indecomposable does not imply 7 M indecomposable (Hint: consider M = k[z,y]/(zy)
and its image in ModP?);

(b) wrM indecomposable implies 7M indecomposable;

(c) M indecomposable does not imply wmM indecomposable.

14.8 Give conditions which ensure that a localization of ModR is of the form ModS for some
ring S.

2.15 Left exact functors

Definition 15.1 Let A and C be abelian categories. The full subcategory of
Fun(C, A) consisting of the left exact functors is denoted by Lex(C,A). ¢

We will show that Lex(C,A) is abelian when C has enough injectives.

Proposition 15.2 Let 7 : F — G be a natural transformation of left exact
functors. The kernel of T in Fun(C,A) is left exact. However, cokert is not
usually the same as its cokernel in Fun(C,A).
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Corollary 15.3 The inclusion Lex(C,A) — Fun(C,A) is left exact. In particu-
lar, kernels in Lex(C,A) coincide with kernels in Fun(C,A).

Lemma 15.4 Let A and C be abelian categories. If C has enough injectives,
then a left exact functor F : C — A is determined by its value on injectives.

Proof. Let M be an arbitrary C-module. Let 0 - M — E — E' be the start
of an injective resolution of M. Then FM = ker(FE — FE').

show it doesn’t depend on the inj res, and how is F(f) defined. O

Proposition 15.5 Suppose that C is an abelian category with enough injectives.
Let Inj(C) denote the full subcategory of C consisting of injective C-modules.
Then

1. Lex(C,A) = Fun(Inj(C), A).

2. Lex(C,A) is an abelian category.
Proof. For brevity write | = Inj(C). Restriction yields a natural functor
Lex(C,A) — Fun(l,A).

Let F' : 1 — A be any functor. We extend F' to C as follows. Let M be a C-

module and take an exact sequence 0 - M — Iy — I; with Iy and I; injective;
define F'M := ker(FIy — FI). It is proved in [88, Chapitre I, Section 9] that

F' is well-defined, and left exact.
MORE

The composition
Fun(C,A) — Fun(l,A) — Lex(C,A) (15-1)

sends a functor F to its 0" right derived functor ROF. Thus, if 7: F — G is a
natural transformation of left exact functors, its cokernel in Lex(C,A) is the 0t}
right derived functor of its cokernel in Fun(C,A). Is (15-1) left adjoint to the
inclusion Lex(C,A) — Fun(C,A)?

Lemma 15.6 Suppose that C is an abelian category with enough injectives. The
embedding Lex(C,A) — Fun(C, A) preserves monics.

Proof. Let 0 —» F — G be an exact sequence of functors in Lex(C,A). Since
Lex(C, A) is equivalent to Fun(Inj(C), A), the sequence 0 — F(I) — G(I) is exact
for all injectives I in C. Now, let M be an arbitrary C-module. By hypothesis,
there is a monic M — I for some injective I. Since F' and G are left exact, the
vertical maps in the commutative diagram

! !

F(I) —— G(I)
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are monic. But the bottom map is monic, so the top one is too. Hence F — G
is monic in Fun(C, A). O

Give example to show this can’t be improved.

EXERCISES

15.1 Let R be a ring, M and M’ non-isomorphic simple left R-modules, and suppose that M
is not projective. For each left R-module N define

FN :={f € Homg(N, M) | f is not a split epimorphism}.

Show that F' extends to a functor ModR — Ab, and hence that F' is a proper subfunctor
of Hompg(—, M). [Hint: check that F(M' @& M) = 0 but Homg(M' & M, M) # 0, and
that FM # 0 for some M.] This exercise shows that the functor ModR — Fun(ModR, Ab)
does not in general send irreducible modules to irreducible modules.

2.16 Examples and properties of Grothendieck categories

The first source of Grothendieck categories is module categories (16.2), and more
are obtained as quotients of Grothendieck categories (16.3). These two obser-
vations culminate in the Gabriel-Popescu theorem characterizing Grothendieck
categories as quotients of module categories (16.5).

Proposition 16.1 IfA is an abelian category, then Fun(C, A) has the properties
Ab3, Ab4, or Ab5 according to whether A does.

Corollary 16.2 Let G be a group and R a G-graded ring. Then GrModg R, the
category of G-graded R-modules with degree zero homomorphisms, is a Grothendieck
category.

Proof. Since GrModgR is of the form Fun(C, Ab) it satsifies the condition Ab5.
The module R(i), ¢ € G, defined by R(i); = R;4;, constitute a set of generators
for GrModg R. O

The basic properties of GrModg R are treated in more detail, and in a more
straightforward way, in Chapter ?7.

Theorem 16.3 Let A be a Grothendieck category, and T a localizing subcate-
gory. Then T and A/T are Grothendieck categories.

Proof. [182, Proposition 9, p. 378] By hypothesis, T is closed under direct
limits, so satisfies Ab3. Since Ab5 holds for A it holds for T. So, to show T is
Grothendieck, it remains to show that it has a set of generators.

Let {Py | A € A} be a set of generators for A. The submodules of each Py
form a set by Lemma 7.2, so the quotients of each Py also form a set. Hence
the collection of all quotients of all Py is a set. Those quotients that belong to
T provide a set of generators for T.
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To show that {mP\ | A € A} is a set of generators for A/T consider a non-
zeromap f: M — N in A/T. Because 7 ow = ida,T, w(f) is non-zero. Hence
there is a morphism g : Py — wM such that w(f) o g # 0. The image of w(f)og
is not torsion because it is a non-zero submodule of wN so, by Proposition
13.7, w(w(f) o g) is non-zero. Hence f o w(g) is non-zero, and we conclude that
{mPy | A € A} is a set of generators for A/T.

Since = is a left adjoint it commutes with direct limits. So, if we are given
a directed system in A/T, apply w to it and take the direct limit of that in A,
then apply =.

MORE TO DO O

Lemma 16.4 Let A be a locally noetherian category and T a localizing subcat-
egory. Let m : A — A/T be the quotient functor and w : A/T — A its right
adjoint. Then w commutes with direct sums.

Proof. Let M; be objects in A/T. We must show that the natural map
BiwM; = w(P®;M;) is an isomorphism. Define M; = wM;. Thus 7 M; = M,.
Since m commutes with direct sums, it suffices to show that the natural map
®; M; — wn(®;M;) is an isomorphism. Since each M; is torsion-free, so is ®; M;;
hence this map is monic. To show it is epic we must show that Extj (N, ®; M;)
is zero for all torsion modules N. However, since A is locally noetherian N
is a direct limit of noetherian modules, and it therefore suffices to prove the
vanishing of this Ext-group when N is noetherian. Since A is a Grothendieck
category, direct sums are exact; since A is locally noetherian a direct sum of
injectives is injective. Hence the direct sum of injective resolutions for each M;
is an injective resolution of ®;M;. Choose an injective resolution M; — E; for
each ¢. We must show that

0 — Homa (N, ®E?) — Homa(N, ®E}) — ...

is exact. Since N is noetherian, Homa (N, —) commutes with direct sums; it
follows that Extp(N, @;M;) = 0 because Extp (N, M;) = 0 for each i. O

Theorem 16.5 (Gabriel-Popescu) Let A be a Grothendieck category. If U
is a generator for A, and R is its endomorphism ring, then Homa(U,—) : A —
ModR is an equivalence between A and a quotient category of ModR by a local-
izing subcategory.

Proof. [241, page 220] The functor Homa (U, —) is faithful because U is a
generator. It commutes with products by definition of products, so has a left
adjoint by Proposition 16.7. We denote that left adjoint by — ® g U. The plan
of the proof is to show that Homa (U, —) is full, that — ® g U is exact, and then
appeal to the proof of Theorem 3.7.2.

To show that Homa (U, —) is full, we must show that every R-module map
Homa (U, M) — Homa (U, N) is induced by a map f : M — N of A-modules.
This is certainly true if M = U.
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Because Homa (U, —) is fully faithful, Theorem 1.6.15 implies that the com-
position Homa (U, —) ® g U is naturally equivalent to the identity functor ida,
so Theorem 3.7.2 applies, and says that A is equivalent to ModR modulo a
localizing subcategory. |

The Gabriel-Popescu theorem can be viewed as an enhancement of Mitchell’s
theorem 9.8. For Grothendieck categories this subcategory may be chosen so
that the inclusion functor has an exact left adjoint.

Corollary 16.6 A Grothendieck category is complete.

Proof. This follows from the Gabriel-Popescu theorem and the following ob-
servation. Let A be an abelian category having products, and let 7 : A - A/T
be a quotient functor with right adjoint w. Then A/T has products: if M, are
objects in A/T, then w([[(wMy)) is their product in A/T. O

Thus, in a Grothendieck category, one may form both sums and intersections
of arbitrary sets of submodules of a given module (see page 77).

A full subcategory of an abelian category is a Giraud subcategory if the inclu-
sion functor has an exact left adjoint. Thus the Gabriel-Popescu theorem says
that a Grothendieck category is equivalent to a Giraud subcategory of ModR for
some ring R. A left exact functor preserves limits, so commutes with products.
Thus an inclusion functor having a left adjoint will commute with products;
equivalently, if A is a subcategory of D and products in A differ from products
in D, then A is not a Giraud subcategory.

Proposition 16.7 Let C and D be Grothendieck categories.

1. A right exact functor F : C — D has a right adjoint if and only if it
commutes with direct sums.

2. A left exact functor F' : C — D has a left adjoint if and only if it commutes
with direct products.

Proof. O

Let X be a scheme. It is pointed out in [250, Appendix B] that the category
ModOx of all Ox-modules is a Grothendieck category. However, on [250, page
409] they say that “It seems to be unknown whether, for general schemes X,
QcohX has a set of generators, enough injectives, or even all limits.” There is a
forgetful functor F' : QcohX — ModOx that is exact and commutes with direct
sums (so has a right adjoint), and reflects exactness. It follows that QcohX
is cocomplete. On the positive side, they say that if X is quasi-separated and
quasi-compact, then QcohX is a Grothendieck category. A topological space is
quasi-compact if every open cover has a finite subcover, and a scheme is said to
be quasi-compact if its underlying topological space is quasi-compact.
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EXERCISES

16.1 Let C be a Giraud subcategory of an abelian category D. Let i« : C — D be the inclusion,
and write ¢* for its left adjoint.

(a) Show that C has products if D does. Explicitly, given C-modules My, show that
i*([Té+Ma) is a product of the My’s in C.

(b) Define T to be the full subcategory of D consisting of modules M such that ¢* M = 0.
Show that T is a Serre subcategory of D.

(c) Let # : D — D/T be the quotient functor. Show that 7i« : C — D/T is an equivalence
of categories.

16.2 In a Grothendieck category show that the canonical map ®M; — [] M; is monic.

Is the category of complexes of R-modules equivalent to the category of graded

modules over R[9]/(82) with degd = 17 If so, then it is easy to see that complexes have
injective resolutions.

16.3 [107, Exercise II 2.13] A topological space is noetherian if and only if every open subset
is quasi-compact. Every affine scheme is quasi-compact.

16.4 Show that in a locally noetherian category, if M/N is a noetherian module, then there is
a noetherian submodule L of M such that L + N = M. Where was exactness of direct
limits used in the argument?

2.17 Injectives in a Grothendieck category

Theorem 17.1 [94, Théoréme 1.10.1] A Grothendieck category A has enough
injectives. Indeed, there is a functor E, and a monic natural transformation
7 :ida = E such that E(M) is injective for all M.

Proof. The category of modules over a ring has enough injectives (Theorem
12.9) so the result follows from Theorem 14.14 and the Gabriel-Popescu Theo-
rem. O

A Grothendieck category even has injective envelopes [89].

The next result is a natural extension of Baer’s criterion that an R-module
E is injective if and only if every homomorphism f : I — E from a right ideal
extends to a homomorphism g : R — E. It is proved in a similar way.

Proposition 17.2 [94, Lemma 1, page 136] Suppose that A is a Grothendieck
category. Then an A-module F is injective if and only if for every submodule L of
a generator M, every morphism f : L — E extends to a morphism g : M — E.

Theorem 17.3 In a locally noetherian category a direct sum of injectives is
injective.

Proof. See [241, Proposition 4.3, page 123] or [181, Theorem 3, page 207]. O

Theorem 17.4 (Matlis) An injective module in a locally noetherian category
is isomorphic to a direct sum of injectives in an essentially unique way.
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Proof. See [241, Proposition 4.5, page 124]. O

Proposition 17.5 The following conditions on a module M in a locally neothe-
rian category are equivalent:

1. M is noetherian;

2. M is finitely generated;

3. M is finitely presented;

4. Hom(M, —) commutes with direct sums.

Proof.

2.18 Presheaves and Sheaves

Example 18.1 Make the natural numbers a topological space, denoted by N,
by declaring the open sets to be the empty set, N itself, and the intervals [0,n] =
{0,1,...,n}. Suppose now that C is a category in which inverse limits exist.
Then the category of inverse systems in C is equivalent to the category of C-
valued sheaves on N; the sheaf M associated to the inverse system (M,,)nen i
defined by M ([0,n]) = M,, and M(N) = lim M. Thus taking the inverse limit
coincides with taking the global sections, and left exactness of inverse limits
is a special case of the fact that the global section functor is left exact. The
right derived functors of @1 are therefore the same things as the higher sheaf
cohomology functors H(N, —). These derived functors may be computed via
flasque resolutions, and using these J.-E. Roos [?] has shown that R? lim = 0
for inverse systems indexed by N. ¢

Theorem 18.2 The sheaves of abelian groups on a topological space form a
Grothendieck category.

Proof. Let P and S respectively denote the category of presheaves and sheaves
of abelian groups on X. By 7?77, P is a Grothendieck category. We will show
that S is equivalent to the quotient category P/T where T is the localizing
subcategory of P consisting of those presheaves F such that the stalks F, are
zero for all points z. The result will then follow from Theorem 16.3.

We consider S as a full subcategory of P, and denote by w : S — P the
inclusion functor. We will show that w has an exact left adjoint, namely the
sheafification functor. If F is a presheaf, define the presheaf F* by

FHU) ={(s2) € H F» | there exists an open covering Uy of U
zeU
elements sy € F(Uy) such that sy|, = s, for all z € Uy}
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where sy |z = pU>(s,) and p¥> : F(Uy) — F, is the map defined by the universal
property of F, as a direct limit. It is straightforward to verify that F* is a
sheaf. The rule F — F* extends in an obvious way to a functor 7 : P — S. We
will show that 7 is a left adjoint to w and exact.

The existence of 7 in the previous proof is another illustration of the adage
that left adjoints to forgetful functors solve universal problems.

O

Definition 18.3 A sheaf F is flasque if the restristion map F(U) — F(V) is epic
whenever V C U. 0

Flasques are acyclic for H°(X, —), so one can compute H?(X, —) via flasque
resolutions.



Chapter 3

Non-commutative spaces

Our philosophy is that non-commutative spaces are made manifest by the mod-
ules that live on them in the same way that the properties of a commutative
scheme X are manifested by the category Qcoh X of quasi-coherent O x-modules.
The modules over a non-commutative space form, by definition, an abelian cat-
egory. That category is the basic object of study in non-commutative geometry.
In short, a non-commutative space is an abelian category.

This chapter expands on this philosophy. It begins with the notions of
affine spaces and affine maps, the geometric versions of rings and ring homo-
morphisms. The new language allows one to re-express some elementary ring-
theoretic results in a more geometric way. Watt’s Theorem in section 3.3 is a
good example of this. Section four introduces a family of well-understood affine
non-commutative spaces having finite dimensional coordinate rings, namely the
path algebras of quivers. Section five introduces the notion of a map between
non-commutative spaces, and illustrates the idea with examples drawn from the
previous section. A map is defined as an adjoint pair of functors, the direct,
and inverse, image functors between the module categories over the spaces. In
section four we introduce the notion of an open subspace. Closed points are
defined and discussed in section four. Open subspaces, and open complements,
are intorduced in sections six and seven. Some examples related to projective
modules are treated in section eight. For example, if e is an idempotent in a
ring R, then the open complement in ModR to the zero locus of e is isomorphic
to Mod(eRe). This applies in particular to a skew group ring R = A x G when
G is a finite group whose order is a unit in A. In the final section of this chapter
we draw pictures of some non-commutative spaces, and add to the supply of
examples that has already been accumulated. The pictures suggest the exis-
tence of various maps between different spaces. Almost all the examples in this
chapter are affine spaces. An affine space is defined as one of the form ModR,
the category of right modules over a (possibly non-commutative) ring R.

A principal goal of this chapter is to provide a rapid introduction to a broad
range of examples, and to introduce some of the basic definitions and ideas.
The examples will provide motivation and context for the more systematic de-
velopment of the subject in subsequent chapters. The definitions and results

109
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will give the reader some idea of where we are headed, and what the flavor of
the subject is. This approach results some unevenness in the level of discussion.
Although most of this chapter is accessible to someone who has had a basic
graduate course covering some non-commutative and commutative algebra, and
some affine algebraic geometry, there are several places where we assume more
of the reader. However, the reader can always return to parts of this chapter
after reading some of the subsequent chapters.

The commutative background. Our definitions of spaces, maps, closed
subspaces, open complements, closed points, and so on are motivated by a
mixture of commutative algebraic geometry and non-commutative algebra. To
prepare for what follows we first review some of this material.

The usual geometric object associated to a commutative ring R is the affine
scheme Spec R, the spectrum of R. As a set Spec R consists of the prime ideals
of R. This set is then endowed with the Zariski topology, the closed sets of which
are the sets

V(I):={p|pDI},

where I ranges over all ideals of R. As a scheme Spec R is a pair consisting of
the set of prime ideals of R endowed with the Zariski topology, together with
the structure sheaf Ogpec g Of rings on it. One recovers R from this data as the
global sections of Ogpec - The ring R can also be recovered from ModR. It
is the only commutative endomorphism ring of a progenerator. This is because
Morita equivalent commutative rings are isomorphic. More generally, the center
of a ring is a Morita invariant because it is the ring of natural transformations
of the identity functor on the module category (Corollary 2.11.5).

If R is noetherian, then Spec R can be recovered directly from ModR as
follows. The isomorphism classes of the indecomposable injectives in ModR are
in bijection with the prime ideals [158, Theorem 18.4, p. 145]. The injective
corresponding to the prime p is the injective envelope of R/p, which we denote by
E(R/p). This gives Spec R as a set. The Zariski topology can be recovered from
the fact that p C q if and only if there is a non-zero map E(R/q) = E(R/p).
The closed subschemes can also be described directly in terms of ModR through
Theorem 3.14 below. The open complements of the closed subschemes can be
recovered through localizations of the module category (see section 3.7). The
local rings I, can be recovered as the unique commutative endomorphism rings
of progenerators in various quotient categories of ModR. Thus, one sees that
the commutativity of R is not needed for the basic constructions of algebraic
geometry. Indeed, the ring itself is not needed. All that is needed is the category
ModR.

Once one realizes that the ring can be dispensed with it is natural when
working with non-affine schemes to emphasize the properties of the category of
quasi-coherent modules, and to de-emphasize the fact that one has sheaves of
modules over a sheaf of rings on some underlying topological space.

The closed points of Spec R are precisely the maximal ideals. The set of
maximal ideals is in bijection with the set of isomorphism classes of simple
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modules. Up to isomorphism the simple modules are the quotients R/m as m
ranges over the set of maximal ideals. Thus, over a non-commutative ring, the
set of isomorphism classes of the simple modules would appear to be a reasonable
substitute for the set of closed points of any geometric space associated to
the ring. However, this is too naive. Non-commutative algebras over a field
k can have both finite dimensional and infinite dimensional simple modules.
Although the finite dimensional ones behave rather like the simple modules
over a commutative ring, the infinite dimensional ones do not. For example, the
infinite dimensional ones usually defy classification. Thus our first definition of
closed points will be in terms of the simple modules that behave like the simples
over a commutative ring (see Definition 4.1 and Theorem 4.13).
Consider a homomorphism

p:R—>S

of commutative rings. Since an ideal p in S is prime exactly when S/p is a
domain, it follows that ¢~!(p) is prime. Therefore ¢ determines a map

f :SpecS — Spec R

defined by f(p) = ¢~ 1(p). It is immediate that f is a continuous map. Therefore
the rule R — Spec R is a contravariant functor from commutative rings to
topological spaces. The inclusion Z — Q shows that the map f need not send
maximal ideals to maximal ideals. This is why one works with the space of
prime ideals rather than just the maximal ideals.

Each S-module N can be made into an R-module by defining

z.r = zp(r)
for x € N and r € R. This rule provides a functor
f+« : ModS — ModR

because a homomorphism of S-modules is automatically an R-module homo-
morphism. It is obvious that f, is exact.

The functor f, is related to images under f in the following way. Suppose
that p is a closed point of SpecS such that f(p) is a closed point of Spec R.
Write n and m for the maximal ideals of S and R corresponding to p and f(p).
Then ¢ induces an inclusion R/m — S/n. Therefore, as an R-module, S/n
is isomorphic to a direct sum of copies of R/m. In other words, if O, and
Oy (p) denote the simple modules S/n and R/m respectively, then f,(0,) is a
direct sum of copies of Oy(,). If we define Modp and Mod f(p) to consist of all
direct sums of the simple modules O, and Oy ;) respectively, f. sends Modp to

Modf (p).
The functor f, has a left adjoint, namely — ® g S, which we denote by

f* : ModR — ModS.
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The action of f* is related to the fibers of f in the following way. Let ¢ be a
closed point of Spec R, and p a point of Spec S. Let m be the maximal ideal of
R corresponding to ¢, and let p be the prime ideal of S that corresponds to p.
Then p is in the fiber f~1(q) if and only if ¢~!(p) = m; since m is maximal,
this is equivalent to the condition that ¢(m) C p, or that p is a prime ideal of
S/p(m)S = R/m®gr S = f*(O,). Therefore f~1(q) = Spec f*O,.

The functors f, and f* are determined by ¢, but one can also recover ¢
from these functors. For example, if r € R, let p : R = R be multiplication by
r. Then f*(p) is an S-module homomorphism from S = f*R to itself. Such
a homomorphism is multiplication by an element of S. That element is ¢(r).
Since the data ¢ is equivalent to the data (f*, f«), and since non-commutative
spaces are categories, it is natural to define maps directly in terms of an adjoint
pair of functors. This is what we do in Definition 3.1.

3.1 Spaces and subspaces

Definition 1.1 A non-commutative space X is a Grothendieck category ModX.
Thus X = ModX. The objects in ModX are called X-modules. ¢

A non-commutative space is denoted by a single letter X when we wish to
think of it as a geometric object, and by ModX when we wish to emphasize
that it is a category. Thus a non-commutative space is an imaginary geometric
object which manifests itself through its category of modules. The space is the
category.

Definition 1.2 A space X is noetherian if every X-module is a direct limit of
noetherian X-modules (i.e., if ModX is locally noetherian). If X is noetherian,
we denote by modX the full subcategory of ModX consisting of the noetherian
modules. 0

Example 1.3 Let X be a commutative noetherian scheme. Then ModX de-
notes the category of quasi-coherent Ox-modules, and modX consists of the
coherent X-modules. When we refer to an X-module, we always mean a quasi-
coherent O x-module.

If X is quasi-compact and quasi-separated, then ModX is a Grothendieck
category [250, ??]. Most everyday schemes are quasi-compact and quasi-separated.
For example, an open subscheme of a closed subscheme of a projective space P™
over a field is. Thus, ModX is a Grothendieck category for such schemes. ¢

Definition 1.4 A space X is affine if ModX has a progenerator. Equivalently,
ModX is equivalent to ModR for some ring R. We call R a coordinate ring of
X. ¢

An affine space can have many different coordinate rings.
The ur-example of a non-commutative ring is the ring M, (k) of nxn matrices
over a field k. However, from the module-theoretic point of view this ring is
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commutative because Mod M, (k) is equivalent to the category of k-vector spaces.
From the module theoretic point of view, the difference between k and M, (k)
is that one takes not just the category ModX, but also a distinguished object
in it. If V denotes the unique simple object, and one takes as the distinguished
object V®™ then one can recover M,(k) as the endomorphism ring of this
distinguished object.

Definition 1.5 An enriched non-commutative space as a pair (X, Ox) consisting
of a Grothendieck category X = ModX together with a distinguished object
Ox in it, which we call the structure module. ¢

The structure module Ox determines a ring, R = Homx (Ox,Ox), and a
functor

Homx (Ox,—) : ModX — ModR.

If Ox is a progenerator in ModX this is an equivalence of categories. Different
coordinate rings can arise from different progenerators.

The ring T of n xn lower triangular matrices over k is a good first example of
a non-commutative ring. There are n simple right T-modules up to isomorphism
so, by analogy with the commutative case, we think of the non-commutative
space ModT as having n closed points. Of course, this is the same as the
spectrum of the commutative ring k x - - - x k = k*™. The ring £*"™ is isomorphic
to T/I where I is its nilpotent radical, the strictly lower triangular matrices.
The difference between T and k*™ lies in the nilpotent structure. However, the
role of the nilpotent structure in a non-commutative space is a little different
from its role in the commutative case.

The closed points of an affine scheme Spec R are in bijection with the full
subcategories of ModR of the form ModR/m, where m runs over the maximal
ideals. The closed subschemes of Spec R are in bijection with the full subcat-
egories ModR/I for the various ideals I in R. However, the subcategories of
ModR of the form ModR/I can be characterized without reference to the ring
structures as the full subcategories that are closed under subquotients and such
that the inclusion functor has both a right and a left adjoint (Theorem 3.14).
That result motivates the definition of a closed subspace (Definition 2.1). But
first we simply define a subspace.

Definition 1.6 A subspace Y of a space X is a full Grothendieck subcategory
ModY of ModX that is closed under direct sums and isomorphisms, and such
that the inclusion functor i, : ModY — ModX is left exact. We indicate that
Y is a subspace of X by saying let i : Y — X be the inclusion of a subspace.

A subcategory that is closed under isomorphisms is said to be replete [83,
p. 75]. Whenever we take a full subcategory of ModX we will insist that it is
closed under isomorphisms.

If Y is a subspace of X, and M is a Y-module, then every Y-submodule of
M is an X-module because i, is left exact, but a quotient of M in ModY need
not be a quotient in ModX.
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Example 1.7 The inclusion of a full subcategory in an abelian category need
not be an exact functor. For example, the section functor w : A/T — A asso-
ciated to a localization is not generally exact. A simple example of this arises
from the inclusion

j:U=A>\{0} = A% = Speck[X,Y]

of the punctured affine plane in the affine plane. Write A = k[X,Y] and let m be
the ideal vanishing at the origin. The direct image functor j, : ModU — ModA?
realizes ModU as the full subcategory of ModA? consisting of those modules M
such that Hom4(A/m, M) = Ext(A/m, M) = 0. It is clear that ModU is
closed under submodules in ModA2, but is not closed under quotient modules.

The inclusion j, is not exact. give an example. O

Lemma 1.8 Let i, : B — A be the inclusion of a full subcategory of an abelian
category A. Suppose that B is abelian. Then i, is left exact if and only if B is
closed under kernels in A.

Proof. (=) Let @ : M — N be a morphism in B, and let K be its kernel in B.
Then 0 - K — M — N is exact in B, and hence exact in A. Therefore K is
also the kernel of a in A. In other words, the kernel in A of a morphism in B is
in B.

(<) Let 0> K - M — N — 0 be an exact sequence in B. Then K is the
kernel in B of M — N, so is also the kernel in A. Therefore 0 - K - M — N
is exact in A. This says that i, is left exact. O

If Y is a subspace of X, the inclusion ModY — ModX preserves monics. I
do not know if it is reasonable to ask that this preserve epics. I don’t even know
if it does this in the commutative case.

Lemma 1.9 Let B be a full subcategory of an abelian category A. The following
two statements are equivalent.

1. The category B is abelian, and the inclusion functor i, : B — A is exact.

2. Ifa: M — N is a morphism in B, then the kernel and cokernel of o taken
in A belong to B.

If either condition holds, then B is also closed under images.

Proof. Let a: M — N be a morphism in B. Let (K, 3) and (C,~) denote the
kernel and cokernel of « in A.

(1) = (2) By Lemma 1.8, K is in B. By the dual version of Lemma 1.8, C
is also in B.

(2) = (1) By hypothesis, 8 : K — M is a morphism in B. To see it has the
appropriate universal property in B, suppose that v: L — M is a morphism in
B such that ay = 0. Using the universal property of 8 : K — M in A, there is
a unique morphism ¢ : L. — K in A such that v = $6. Because B is full, and
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because L and K are in B, ¢ is in B. Its uniqueness is clear. Thus (K, f) is a
kernel of « in B. The result for cokernels is proved in the same way.

Thus kernels and cokernels of morphisms in B are the same as those taken in
A. Tt follows that coker ker a is unambiguous—it belongs to B, and is the same
whether computed in A or B. The same applies to ker coker a. The canonical
morphism coker ker & — ker coker o, and its inverse, are in B because B is full.
Therefore that morphism is an isomorphism in B. Hence B is abelian. Now we
may apply Lemma 1.8, and its dual version, to conclude that i, is exact, thus
proving (1).

The final remark about images is immediate because an image is a kernel of
a cokernel, and these are the same whether taken in A or in B. a

We can view a category as its collection of morphisms by identifying each
object with the identity morphism on it. Hence if Y and Z are subspaces of X,
we say that Z is containedin Y, or lieson Y, and write Z C Y, if ModZ C ModY'.
If Z is a subspace of X that is contained in another subspace Y of X, then Z is
a subspace of Y because Lemma 1.8 ensures that the inclusion ModZ — ModY
is left exact. Conversely, if Y is a subspace of X, and Z is a subspace of Y, then
Z is a subspace of X.

The empty space is defined by declaring Mod¢ to be the abelian category
with one object, the zero module. The empty subspace of X consists of just the
zero module. It is contained in every subspace of X.

Definition 1.10 If X and Y are spaces, their disjoint union X [[Y is defined by
Mod(X J]Y) := (ModX) x (ModY),

the product of the categories. O

Check if this is a Grothendieck category.

Definition 1.11 If Y and Z are subspaces of X, their intersection Y NZ is defined
by

Mod(Y N Z) := ModY" ("] ModZ
provided that this category is a Grothendieck category. ¢

I do not know conditions that ensure that an intersection of Grothendieck
categories is again Grothendieck, so this notion of intersection is at present
rather useless. However, when the intersections do exist as subspaces one has

YNZ=2ZnY, YN¢=a,
YnX =Y, wn¥nz)y=(WnY)nZ.
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3.2 Closed subspaces

Definition 2.1 [88, page 77] [258] A subspace Y of a non-commutative space
X is closed if ModY is closed under subquotients, and the inclusion functor
ix : ModY — ModX has both a left and a right adjoint. We denote the left
adjoint by i* and the right adjoint by i'. We write i : Y — X for the “inclusion
map” (see Definition 3.1). O

For example, the empty subspace and X itself are closed subspaces of X.

Lemma 2.2 A subspace Y of a space X is closed if and only if the inclusion
1% : ModY — ModX is exact and ModY is closed under subquotients, products,
and coproducts, in ModX.

Proof. This follows from Proposition 2.16.7. a

Example 2.3 (The zero locus of an ideal.) Let I be a two sided ideal of
aring R. Let X and Y be the affine spaces with coordinate rings R and R/I
respectively. We can, and will, identify ModY with the full subcategory of Mod X
consisting of those R-modules annihilated by I. It is clear that the inclusion of
ModY in ModX is exact, and that ModY is closed under subquotients. Since
products and direct sums of modules annihilated by I are annihilated by I, Y
is a closed subspace of X. Theorem 3.14 will show that every closed subspace
of X is of this form. We often write Z(I) for Y and call it the zero locus of I. If
Z1,---,%n € R we write Z(x1,...,Zn) for the zero locus of the two-sided ideal
generated by those elements. O

A non-commutative ring may have few two-sided ideals, so the notion of
closed subspace is not very effective in non-commutative algebraic geometry. For
that reason the less restrictive notion of a weakly closed subspace is important
(see section 3.8).

Proposition 2.4 Leti: Z — X be a closed subspace of a space X. If M is an
X -module, then the natural maps M — i,i*M and i,i'M — M are epic and
monic respectively.

Proof. The cokernel C in the sequence M — 4,i*M — C' — 0is a Z-module be-
cause ModZ is closed under quotients. The induced sequence :*M — i*,i* M —
*C — 0 is exact because i* is a left adjoint. But the natural transforma-
tion idz — i*4, is an isomorphism by Theorem 2.6.15, so ¢*C' = 0. However,
C = i*,C = i*C, so we conclude that C' = 0. Hence the map M — 4,3*M is
epic.

The other case is similar. O

Proposition 2.5 Let Z CY C X be subspaces of a non-commutative space X .
Suppose that Z is closed in X.
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1. If ModZ is closed under quotient modules in ModY, then Z is a closed
subspace of Y.

2. If Y is closed in X, then Z is a closed subspace of Y.

Proof. Let B, : ModZ — ModY and a, : ModY — ModX are the inclusion
functors. Then i, := a,fx is the inclusion ModZ — ModX. By hypothesis, .
has a left adjoint <* and a right adjoint i*. Define

B :=ia, and B* =i‘a,.

Thus 4" and B* are functors from ModY to ModZ.
(1)

(2) By hypothesis, a, has a left adjoint a*, and a right adjoint o'. Let
M € ModZ and N € ModY. Then

Homy(8*N, M) = Homz(i*a,N, M)
= Homy (N, i. M)
EHomy(Naa*ﬂ* )
= Homy (N, . M),

so B* is left adjoint to B,. Also

Homy (M, 3'N) = Homy(M,i'a.N)
= Homx (i M, a,N)

= Homy(a*a*ﬂ*M N)

(B«M,N),

so ' is right adjoint to B,. It is clear that ModZ is closed in ModY under
submodules and quotients, so Z is a closed subspace of Y. O

= Homy

Proposition 2.6 An intersection of closed subspaces is a closed subspace.

Proof. Suppose that Y and Z are closed subspaces of X. Let f be a morphism
in ModYNModZ. Since ModY and ModZ are closed under kernels and cokernels,
the kernel and cokernel of f in ModX belong to ModY N ModZ. Hence the
inclusion of ModY NModZ in ModX is exact. Both ModY and ModZ are closed
under products and coproducts in Mod X, hence so is ModY NModZ. Thus, the
inclusion of ModY N ModZ in ModX has both a right and a left adjoint. |

IfY and Z are closed in X, is Y N Z closed in Y?
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2.1

2.2

2.3

2.4

2.5

2.6

2.7

EXERCISES

Let T denote the ring of n X n lower triangular matrices over the field k. Let y =
Sin et

(a) Show that yT' = Ty, and that this consists of all strictly lower triangular matrices.
Thus T'/yT = kX™.

(b) Show that the simple module corresponding to e;;, that is, the simple module on
which e;; acts as the identity, is T/yT + (1 — e;3;)7T.

Retain the notation in Exercise 1. Let U denote the ring of n X n upper triangular
matrices.

(a) Show there is an algebra isomorphism T' — U given by the k-linear map e;; +—
€n—i,n—j-

(b) Show there is an algebra anti-isomorphism 7" — U given by the k-linear map e;; —
€ji-

Let R be a commutative ring. Prove that there is a bijection between the indecomposable
injectives and the prime ideals.

Show that the natural transformations from the identity functor on ModR to itself form
a ring that is isomorphic to the center of R.

Let R be a commutative ring, and p a prime ideal. Show that every element of the injective
envelope of R/p is killed by a power of p. Show this is false for non-commutative rings by
examining the lower triangular matrix algebra.

Let R be the ring k(z,y)/(zy + yx). Suppose that char k # 2. Show that the center, say
Z, of R is k[z2,y?], and that this is isomorphic to the polynomial ring in two variables.
By finding a k-vector-space basis for R, show R is free of rank four as a Z-module. Find
all simple R-modules when k is algebraically closed.

This is an open-ended exercise about the ring R in the previous exercise. Try to think of
a sensible definition of the undefined terms (no one else has defined them so you are free
to do as you wish). Consider the correspondence (coming from Hilbert’s Nullstellensatz)
between curves and points in the affine plane and the modules over the commutative
polynomial ring on two variables. Using the analogy with this, draw a picture of a non-
commutative space which has “coordinate ring R”. What is a “line” and a “parabola” in
your space? What does it mean to say “two lines intersect”? Does it make sense to speak
of three “lines” having a “common point of intersection”? What does it mean to say a
line is “tangent” to a parabola in this space?

3.3 Affine spaces and affine maps

The category of affine schemes is the opposite of the category of commutative
rings and ring homomorphisms. As a direct generalization of this one might
be tempted to define the category of affine spaces to be the opposite of the
category of rings and ring homomorphisms. However, this does not seem to
be appropriate (see the remark after Theorem 3.6). We prefer to define the
morphisms in this category, the affine maps, in a more abstract way that will
make the definition of maps between arbitrary spaces seem more natural.

Affine maps are special kinds of maps. In this section we examine affine

maps, and delay a study of maps until section 3.6. Recall that a morphism
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f Y = X between commutative schemes gives rise to an adjoint pair of
functors f* and f,, the inverse, and direct image functors.

Definition 3.1 A map f:Y — X of spaces is an adjoint pair of functors (f*, f.)
such that f, : ModY — ModX. We call f* the inverse image functor and f,
the direct image functor. We identify two maps having isomorphic direct image
functors. Thus a map is a natural equivalence class of adjoint pairs (f*, f«). ¢

Ifg:Z—-Y and f: Y — X are maps their composition fg is defined by
(f9)« = f«g«- Tt is clear that a composition of maps is a map. Thus there is a
2-category of spaces and maps.

Definition 3.2 An affine map f : Y — X of spaces is an adjoint triple (f*, f, f')
such that f. : ModY — ModX is faithful. We identify two affine maps having
isomorphic direct image functors. ¢

A composition of affine maps is an affine map. The inclusion of a closed
subspace is an affine map. If f is an affine map, then f, is exact because it has
both adjoints.

Example 3.3 A ring homomorphism ¢ : R — S induces an affine map of affine
spaces f : ModS — ModR defined by

ffi=—®grS and f,:=Homg(grS,—).

Since f, is “view an S-module as an R-module”, it is faithful. Since f, is
naturally equivalent to — ®g Sg, it has a right adjoint, namely

f! = HOmR(ss, —).

Thus f is an affine map. ¢

Proposition 3.4 Let f:Y — X be an affine map. If X is affine, so is Y.

Proof. Let P be a progenerator in ModX. Since f* is left adjoint to an exact
functor it sends projectives to projectives. Since Homy (f*P,—) = Homx (P, —)o
[+ is a composition of faithful functors it is faithful. Thus f*P is a projective
generator. Since f, has a right adjoint it commutes with direct sums, hence so
does Homy (f*P,—). Thus f*P is finitely generated, and therefore a progener-
ator. In other words, Y is affine.

If R is a coordinate ring of X, then S = Homy (f*R, f*R) is a coordinate
ring of Y, and Homy (f*R, —) : ModY — ModS is an equivalence of categories.
(|

Theorem 3.5 (Watt’s Theorem) Let f : Y — X be a map of affine spaces.
Suppose that X = ModR and Y = ModS. Then there exists an R-S-bimodule
B such that

ff=—®grB, and f.=Homg(B,-).
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Proof. If M is aright S-module, then f,M = Hompg(R, f«M) = Homgs(f*R, M).
The first isomorphism is as right R-modules, and the second is as abelian groups.
We must show that this is actually an isomorphism of R-modules. Write B for
the right S-module f*R. If r € R, then A\, : R — R, \.(a) = ra is a homomor-
phism of right R-modules, so f*(\;) : B — B is a right S-module map. Thus
B becomes an R-S-bimodule, so Homg (B, —) is a functor from ModR.

If r € R, then the adjoint isomorphism gives a commutative diagram

Hompg(R, fuM) —— Homg(f*R, M)

[-o ot |

Hompg(R, fiM) —— Homg(f*R, M)

When Hompg(R, f.M) is identified with f.M in the obvious way, the left-hand
vertical map is  — xr. The right-hand vertical map is y — yr, where this the
natural action of R on Homg(B,M). In other words, this commutative dia-
gram says that the map Hompg(R, f« M) — Homg(f*R, M) is a right R-module
map. It follows that f. is naturally equivalent to Homg (B, —). Therefore f* is
naturally equivalent to — ®pg B. O

The next result is a partial converse to the fact that ring homomorphisms
induce affine maps (Example 3.3).

Theorem 3.6 Suppose that f : Y — X is an affine map between affine spaces.
Then there exist coordinate rings R and S for X and Y respectively, a ring
homomorphism ¢ : R — S, and a commutative diagram

y — 5 X

| = £

ModS —— ModR,
g

where g is the map induced by .

Proof. Let R and S be arbitrary coordinate rings of X and Y. We fix equiv-
alences ModX — ModR and ModY — ModS, and identify the categories. By
Watt’s Theorem, there is an R-S-bimodule gBg such that f* = — ®g B. Since
f« is exact, Bg is projective. Since f, has a right adjoint it commutes with
direct sums, so Bg is finitely generated. Since f, is faithful, Bg is a generator.
Thus Bg is a progenerator, and we conclude that ModS is equivalent to the
module category over the endomorphism ring of Bg.

We set S' = Endg B = B ®g B*, where B* = Homg (B, S). The action of
f* on morphisms induces a ring homomorphism

¢: R— Homy(f*R, f*R) = S'.
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Let g denote the map inducd by ¢, and let o : ModS — ModS’ be the equiva-
lence defined by 0* = — ® g B*. Then

g*:—®RSI§—®RB®SB*:U*°f*-

Thus g = foo and f = goo~!. One now obtains the commutative diagram
(3-1) with S’ in place of S. O

Despite this result the functor from Rings to spaces sending a ring R to the
space X with ModX = ModR and sending a ring homomorphism to the affine
map described in Example 3.3 is not an equivalence. The functor is not full:
The inclusion ¥ — M, (k) induces a map of spaces Modk — Modk that is not
induced by a ring homomorphism k£ — &.

We now follow [107, Chapter II, Exercise 5.17] to show that an affine mor-
phism of schemes f : Y — X is an affine map in our sense. First, f is affine if
f1(V) is affine for every open affine V C X. A candidate for a right adjoint
to f, is the functor f' defined by

(f'M)(f71V) := Homo, (v) (Oy (FV), M(V))

for every M € QcohX and every open V C X.

The next result says that affine maps behave like continuous maps with
respect to closed subspaces.

Proposition 3.7 Let f: Y — X be an affine map. Let Z be a closed subspace
of X. Define Modf~1(Z) to be the full subcategory of ModY consisting of those
M such that f.M is a Z-module. Then f~(Z) is a closed subspace of Y.

Proof. Because f is affine, f, is exact, and commutes with direct products and
direct sums. Write ¢ : Z — X for the inclusion. Because i, has both a left and a
right adjoint, ModZ is closed under direct products and direct sums in ModX.
Write C for Modf~1(Z).

First, we show that C is closed under subquotients. If M is in C, and
0—-L—>M— N — 0is exact in ModY, then 0 = f.L — fuM — fulN = 0is
exact in ModX . Hence f,N and f.L are Z-modules, whence N and L are in C.

Since C is closed under subquotients, the inclusion of C in ModY is exact.
To show that the inclusion has both a left and a right adjoint it suffices to show
that C is closed under direct products and direct sums. If M, is a family of
Y-modules in C, then f,([] Mx) =[] f+Mx. This is in ModZ, so [][ My is in C.
The argument for direct sums is similar. |

Proposition 3.7 yields a commutative diagram of spaces and maps

U2 — z

! !

Yy — X
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Therefore, if Y and Z are closed subspaces of X, then Y N Z is closed in Y (cf.
Proposition 2.6).

Remark. Suppose that X and Y are affine spaces with coordinate rings R
and S, and f: Y — X is induced by a homomorphism ¢ : R — S. Let Z be
the closed subspace of X cut out by a two-sided ideal I in R. Then f~1(Z) is
cut out by the two-sided ideal of S generated by (I).

Remark. The definition of f=!(Z) in Proposition 3.7 does not look good
for a non-affine map. To see this consider the case of the structure map f :
P! — Speck and look at f~1(¢). We have f.(O(—1)) = 0, but we would want
f71(#) = ¢. What is the right definition of f=1(Z)?

We now consider the subspaces of an affine space that are related to epi-
morphisms of rings. A homomorphism ¢ : R — S is an epimorphism in the
category of rings if whenever 11,1 : S — T are ring homomorphisms such that

Y1 = P2, then ¢y = 4.
It is clear that a surjective ring homomorphism is an epimorphism.

Example 3.8 The standard example of an epimorphism of rings is a localiza-
tion. If ¢ : R — S is a homomorphism of rings such that S is generated as
a ring by the image of R and inverses of elements in that image, then ¢ is an
epimorphism. The proof is elementary.

A continuous map of topological spaces is an epimorphism if and only if
its image is dense. Notice that if z is a regular element in a commutative
ring R, then the inclusion R — R[z!] corresponds to the morphism of schemes
Spec R[z~!] — Spec R and this is an epimorphism in the category of topological
spaces. If X is an irreducible variety, then every non-empty open subvariety is
dense. O

Example 3.9 The inclusion

oY

is an epimorphism of rings. To see this, suppose that v; : Ma(k) = S, i =1,2,
are homomorphisms that agree on the lower triangular matrices. Then

Y1(e12) — ¥a(erz) = Yr(enn)yr(erz) — P2 (e1n)iz(er2)
1(611)(¢1(€12) ¢2(612))
1(612)¢1 621)(¢1(612 ( 12))
(e12) )¢ (

(e12) ) -

1{€12 (¢1(€21 P1(er2) — Pa(e 21)¢2(612))
1(€12 (¢1(622 ¢2(622))

Y
Y
Y
Y
0

Hence 1, = 5. %
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Example 3.10 The inclusion

(k +k kz 2) = M>(k[z]). (3-3)

is an epimorphism of rings. To see this, let f and g be two homomorphisms
from Ms(k[z]) that agree on the smaller algebra. By Example 3.9, f and g agree
on My (k). But together M,(k) and zey; generate M, (k[z]), so f = g. ¢

Our treatment of epimorphisms follows the seminal paper of Silver [211].

Lemma 3.11 Let ¢ : R — S be a ring homomorphism. The kernel of the
multiplication map p: S ®r S — S is generated as a left or right S-module by
{s®1—-1®s|seS}. In particular, i is an isomorphism of S-S-bimodules if
and only if s® 1 =1Q s for all s € S.

Proof. Clearly each element s ® 1 — 1 ® s is in the kernel. On the other hand,
if >~ s; ®t; is in the kernel of y, then

Zs,’@)ti:Z(Si@l—l@Si)tia

so the elements s ® 1 — 1 ® s generate the kernel as a right module. A similar
argument shows they also generate it as a left module. |

Theorem 3.12 The following conditions on a ring homomorphism ¢ : R — S
are equivalent:

1. ¢ is an epimorphism;
2. the multiplication map S ® g S — S is an isomorphism;
3. the restriction functor f.: ModS — ModR is fully faithful.

Proof. (1) = (2) Suppose that M is an S-S-bimodule having an element m
such that mr = rm for all » € R, but ms # sm for some s € S. Define a ring
structure on S & M by

(a,u).(b,v) = (ab,av + ub),

and ring homomorphisms 1,12 : S = S ® M by v1(s) = (s,0) and 1»(s) =
(s,sm —ms). Then ¥1¢ = 120, but Y1 # 1a, contradicting the fact that ¢ is
an epimorphism. Hence, no such M exists. Applying this to M = S ®g S and
m =1® 1, since rm = mr for all r € R, we have sm = ms for all s € S. That
is, s® 1 =1® s. Hence the map S ®g S — S is an isomorphism.

(2) = (1) Let 91,19 : S — T be ring homomorphisms such that ;¢ = .
Then the map ¥ ® s : S®rS — T sending a® b to ¥y (a)12(b) is well-defined.
By Lemma 3.11,s®1=1®s, so

P1(8) = (1 ®9P2)(s® 1) = (Y1 @ 92)(1 ® 8) = tha2(s)
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SO ’(pl = ¢2.

(1) = (3) The functor f, is exact and faithful. To show it is full we need
to show that every R-module map 6 : M — N between two S-modules is an
S-module map.

Now f. has a left adjoint f* = — ®z S. If M is an S-module, then

ffTArM=MQRrS=EZMesSQQrS=EMQsS =M.
Therefore
Homg (M, N) = Homg(f* fM,N) = Hompg(f«M, fu«N) = Homg(M, N),

as required.

(3) = (2) By hypothesis, f. embeds ModS as a full subcategory of ModR.
Therefore, by Theorem 2.6.15, the adjunction f*f, — idg is an equivalence. In
particular, S ®g S = f*f..S — S is an isomorphism of right S-modules. It is
also a left S-module map. O

Theorem 3.13 Let R be a ring. Let f : Y — X be an affine map to an affine
space X. Let R and S be coordinate rings of X and Y respectively, and let

@ : R — S be the ring homomorphism corresponding to f as in Theorem 3.6.
Then

1. f. is full if and only if ¢ is an epimorphism of rings, and

2. if fx is full and f.(ModY') is closed under subquotients, the map ¢ : R — S
18 surjective.

Proof. (1) This is a consequence of Theorem 3.12 because f. : ModS — ModR
is fully faithful.

(2) Since R/kery is an R-submodule of S, the hypothesis implies that
R/ ker ¢ is an S-submodule of S. But it contains 1, so must equal S. O

Theorem 3.14 There is an order reversing bijection between the set of closed
subspaces of an affine space X = ModR and the set of two sided ideals of R. The
ideal corresponding to a closed subspace Z 1is the largest ideal that annihilates
all Z-modules, and the closed subspace corresponding to an ideal I is ModR/I,
the full subcategory of modules annihilated by I.

Proof. This follows from part (2) of Theorem 3.13. O

Let Y and Z be the closed subspaces of ModR cut out by the ideals I and J
respectively. Then X NY is cut out by 7+.J. One reason we have not defined the
union of closed subspaces is that there are (at least!) two candidates in the affine
case—one could take the closed subspace cut out by I.J or that cut out by JI.
Possibly one should allow both possibilities and so obtain a non-commutative
notion of “union”. I have not thought about this.
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EXERCISES

3.1 Let S = k[t] and R = k + I where I is the product of two distinct maximal ideals of S.
Show that the inclusion ¢ : R — S is not an epimorphism of rings. [Hint: ¢ corresponds
to a map from the affine line to the nodal cubic that identifies two disinct points.]

3.4 Closed Points

Motivated by the Nullstellensatz, closed points are defined in terms of simple
modules.

Notation. If D is a division ring we write Spec D for the space ModD.

Definition 4.1 A closed point of a space X is a closed subspace that is isomorphic
to Spec D for some division ring D. We call the point a D-rational point of X.
%

A closed point of X will be denoted by a single letter, say p, and we will
often write p € X to indicate this. Let p be a closed point of X. Since Modp
is closed under subquotients and equivalent to the category of modules over a
division ring, it contains a unique (up to isomorphism) simple X-module. We
denote this simple by O,. Thus Modp = ModD where D = Endx O,, and every
p-module is a direct sum of copies of O,. We shall sometimes refer to the simple
module O, as a point.

The category SumS associated to a simple module. If S is a simple
X-module, we write SumS for the full subcategory of ModX consisting of all
modules that are isomorphic to a direct sum of copies of S. Because ModX
satisfies Grothendieck’s condition Ab5, Propositions 2.5.11 and 2.5.12 ensure
that SumS is closed under submodules and quotients. It is therefore closed
under subquotients.

Proposition 4.2 Let D be the endomorphism ring of a simple X-module S.
Then SumS is equivalent to ModD.

Proof. Tt suffices to show that S is a progenerator in SumS. It is a generator
because every module in SumS is a direct sum of copies of S. To see that S
is projective in SumS, suppose that g : M — N is an epimorphism in Sum§,
and that f : S — N is an arbitrary map. We must show there exists a map
h:S — M such that gh = f. Every submodule of M, in particular g=1(f(S)),
is isomorphic to a direct sum of copies of S. Thus g sends at least one of those
copies isomorphically onto f(S). The existence of h follows easily. Finally, a
simple module is finitely generated, so S is a progenerator in SumS. |

It is natural to ask whether a simple X-module, S say, gives a closed point of
X. In general, the answer is “no” because the inclusion functor SumS — ModX
does not always have a left adjoint.
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Lemma 4.3 Let S be a simple X-module. The inclusion i, : SumS — ModX
has a right adjoint i' given by

i'N = the sum of all submodules of N that are isomorphic to S.

Proof. If f: M — N is a map between X-modules, then f(i'M) C i'N, so i'
can be defined on morphisms by sending a morphism to its restriction. Thus '
really is a functor, and takes values in SumS because a sum of copies of S is
isomorphic to a direct sum of copies of S (Proposition 2.5.12). It is clear that
Homy (S, M) = Homx (S,4i' M), so i' is right adjoint to i,.

Alternatively, since SumS is closed under subquotients, i, is exact, and since
SumS is closed under direct sums, i, commutes with direct sums, whence i, has
a right adjoint by Proposition 2.16.7. (]

Definition 4.4 An X-module S is tiny if Homx (M, S) is a finitely generated
module over Endx S for all finitely generated X-modules M. 4

Finitely generated modules in abelian categories are examined in section 2.6.

Lemma 4.5 A simple X -module S is tiny if and only if every finitely generated
submodule of every direct product of copies of S is isomorphic to a finite direct
sum of copies of S.

Proof. Let D be the endomorphism ring of S.

(=) Let P be a direct product of copies of S, and N a non-zero finitely
generated submodule of P. By hypothesis, Homx (N, S) has a finite basis, say
Ply--- 5 Pn, a8 a left D-module. If the intersection of the kernels of all the p;
were non-zero, there would be a projection P — S that did not vanish on that
intersection (cf. Exercise 2.4). However, the restriction of that projection to
N is in the span of the p; so vanishes on the intersection of the kernels of the
p;i- This is a contradiction, so we conclude that the common intersection of the
kernels of the p; is zero.

By the universal property of S®", there is a map p : N — S®" such that
pi = vip for 1 < i < n, where v; : S®* — S is the projection onto the
i*® component. Since ker p is contained in the intersection of all the ker p;, it
follows that p is monic. Hence N is isomorphic to a finite direct sum of copies
of S.

(<) Suppose that M is a finitely generated X-module. Let K denote the
intersection of ker f taken over all f € Homx(M,S). Then Homx(M,S) =
Homx (M/K,S). Now M/K embeds in the product of copies of S indexed
by the elements of Homx (M, S), and M/K is finitely generated because M
is. Hence M/K is isomorphic to a finite direct sum of copies of S. Thus
Homx (M/K,S) is isomorphic to a finite product of copies of Hom(S, S); this
is certainly a finitely generated module over Endx S, so we conclude that S is
tiny. O
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Theorem 4.6 Suppose that ModX is locally finitely generated. Let S be a sim-
ple X-module and let i, : SumS — ModX denote the inclusion. The following
are equivalent:

1. there is a closed point p € X such that S = Op;
2. iy has a left adjoint;

3. every direct product of copies of S is isomorphic to a direct sum of copies

of S;
4. S is tiny.

Proof. (1) = (2) This is true by the very definition of a closed subspace.

(2) < (1) By Lemma 4.3, i. has a right adjoint, so the hypothesis ensures
that SumS satisfies the requirements to be the module category of a closed
point.

(2) & (3) Since i is exact, it has a left adjoint if and only if it commutes
with products. That is, if and only if SumS is closed under products. But this
is equivalent to condition (3).

(3) = (4) Let M be a finitely generated X-module. We have Homx (M, S) =
Homy (M,4.S) = Homy (i*M,S). But i*M is a quotient of M, so is finitely
generated, and belongs to SumsS, so is a finite direct sum of copies of S. Thus
Homx (M, S) is a finitely generated module over Endx S.

(4) = (3) Let P be a product of copies of S. By hypothesis, P is a direct
limit, and hence a sum, of finitely generated submodules. By Lemma, 4.5, each of
those submodules is semisimple, so P is a sum of semisimple modules. However,
in an Ab5 category every sum of semisimple modules is semisimple. Therefore
P is semisimple. a

Proposition 4.7 A simple module S over a ring R is tiny if and only if R/ AnnS
has finite length.

Proof. (=) Write D = Endx S and I = AnnS. It is clear that R/I embeds in
a product of copies of S. But R/I is a finitely generated module, so is isomorphic
to a finite direct sum of copies of S.

(<) Since [ is a prime ideal, R/I is a matrix algebra over D. In particular,
it is isomorphic to a finite direct sum of copies of S. Any R-module map M — S
must vanish on M1, so Homg(M,S) = Homgr(M/MI,S). However, if M is a
finitely generated R-module, then M/MT is a finitely generated R/I-module.
It follows that Hompg(M/M1I,S) is a finite direct sum of copies of D. d

Over a commutative ring, all simples are tiny.

Let R be an algebra over a field k, and M a simple R-module such that
dimy M < oco. Then R/ AnnM embeds in Endy M, so is a finite dimensional
k-algebra, and hence artinian. Thus M is tiny.

Proposition 4.8 Let M be a tiny simple R-module. Then
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1. R/ AnnM is isomorphic to a matriz algebra over D;
2. M is the unique simple R/ AnnM-module up to isomorphism.

Proof. Since R/ AnnM is artinian, there is a finite set of elements mq,... ,my,
in M such that Ann(m;)N...N Ann(m,) = AnnM. Since R/Ann(m;) = M
for all 4, it follows that R/ AnnM has a finite composition series with all factors
isomorphic to M. Therefore, by uniqueness of composition factors, M is the
only simple module annihilated by AnnM. To see that R/ AnnM is simple, let
I be a proper ideal containing AnnM. The only possible composition factor of
R/Iis M, so M is an R/I-module, whence I annihilates M; thus I C AnnM.

The Artin-Wedderburn theorem says that every simple artinian ring is a
matrix ring over a division ring, and that division ring is the endomorphism
ring of its unique simple module. d

Corollary 4.9 Two tiny simples over a ring R are isomorphic if and only if
they have the same annihilator.

Lemma 4.10 If A is a countably generated k-algebra, then dimy A is at most
countable.

Proof. First recall that a countable union of countable sets is countable. To
see this, suppose that the elements of the n*® set are listed as an1, @n2, Gn3, - - -
for n € N. Then the elements in the union of those sets may be listed as

ai1,a12,a21,013,a22,a31,a14, 023, A32,A41,- - - ,

thus showing that the union is countable.
Now fix k-algebra generators xi,%2,... for A. Then A is spanned as a k-
vector space by the union W7 U W, U ... where

W, = the words in the z; of length < n.

Since the cardinality of W, is at most that of N*, W,, is at most countable. By
the previous paragraph, the union of the W,s is at most countable. O

Lemma 4.11 Let D be a division algebra over a field k. If k is uncountable
and D is a countably generated k-algebra, then D is algebraic over k.

Proof. The hypotheses imply that D has countable dimension. Since k is
uncountable, the rational function field k(x) has uncountable dimension over
k—the elements (x—X)~!, X € k, are linearly independent. Therefore, if a € D,
k(a) must be an algebraic extension of k. O

It is an open question whether this is true without the hypothesis that k is
uncountable.
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Proposition 4.12 Let R be a countably generated algebra over an uncountable
algebraically closed field k. A simple R-module M is tiny if and only if dim; M <
00.

Proof. If M is finite dimensional over k, so is Homy (M, M). But R/ AnnM is
a subalgebra of this, so is artinian. Thus M is tiny.

Suppose that M is tiny. Let D be its endomorphism ring. If m is a non-
zero element of M, then the map a — a(m) gives an injection D — M. Since
R is countably generated it has countable dimension over k, and since M is
a quotient of R it too has countable dimension. Therefore D has countable
dimension. By Lemma 4.11, D is algebraic over k. But k is algebraically closed,
so D = k, whence R/ AnnM = M, (k) for some n. Therefore dimy M < co. O

Theorem 4.13 Let X = ModR be an affine space. There is a bijection between
the following sets:

1. the closed points of X ;
2. the isomorphism classes of tiny simple R-modules;
3. the mazimal two-sided ideals m such that R/m is artinian.

If R is a countably generated algebra over an algebraically closed field k these
sets are in bijection with the set of isomorphism classes of finite dimensional
simple R-modules.

Proof. Since a simple artinian ring has a unique simple module up to isomor-
phism, it follows from Proposition 4.8 and its corollary that the sets in (2) and
(3) are in bijection.

By Theorem 3.14, the closed subspaces of ModR are the full subcategories
ModR/I as I ranges over all two-sided ideals. Thus, a closed point in ModR is a
full subcategory ModR/I that is equivalent to ModD for some division ring D.
But the only rings Morita equivalent to D are the matrix algebras M, (D), so
the closed points are in bijection with the ideals I such that R/I = M,,(D) for
some D and some n. These are precisely the ideals I such that R/I is simple
artinian. This establishes the bijection between the sets in (1) and (3).

Proposition 4.12 shows that under the hypotheses in the last part of the
theorem the tiny simples are the finite dimensional simples. |

Determining the closed points is an important, but often difficult, problem.
Their existence can hinge on delicate arithmetic properties of the base field and
the defining relations of the algebra. The representation theory of semisimple
Lie algebras, and the representation theory of the rings kq[z,y] in Chapter 4
illustrate this.

The next example shows that quite reasonable non-commutative spaces can
have no closed points.
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Example 4.14 (The Weyl algebra) The ring D of differential operators over
a field k of characteristic zero is the subalgebra of the ring Endy, k[z] of vector
space endomorphisms generated by multiplication by z and the differentiation
operator d/dx. We denote the first operator by z and the second by 0. Thus
D = k[z,0]. The identity element is the identity operator. It is clear that D
consists of all differential operators with polynomial coefficients:

d d

where the p;(z) € k[z]. The following computation is key:

d
Therefore, computing in the ring D, we have
Or —z0 =1. (4-1)

The most natural left D-module is k[z] on which D acts in the natural way as
differential operators.

Tt follows from (4-1) that if V' is a finite dimensional simple D-module, then
V = 0. To see this, consider the trace of the action of @ and x on V. Because
V has finite dimension, Tr(9) Tr(z) — Tr(z) Tr(d) = 0; however, if dim; V = n,
then Tr(0) Tr(z) — Tr(z) Tr(9) = Tr(dz — £0) = n. But the characteristic of k
is zero, so dimg V = 0.

This is false in positive characteristic. If char k = p > 0, then the ideal (zP)
is a D-submodule of k[z], and the quotient is (easily checked to be) a simple
D-module. %

Links between closed points. Perhaps the single most important way
in which non-commutative rings differ from commutative ones is that there
can be non-split extensions between non-isomorphic simple modules. The non-
split extensions between tiny simple modules play an important role in non-
commutative geometry (see Lemma 5.20 and section 3.14). If Ext!(0,,0,) is
non-zero, we will say that there is a link from p to q.

The existence of links in an affine space is equivalent to an arithmetic prop-
erty involving the ideals that are the annihilators of the corresponding simple
modules.

Lemma 4.15 Let M and N be tiny simple modules over a ring R. Write
m = AnnM andn= AnnN. Then Exth(M,N) =0 if and only if mn = mNn.

Proof. (=) Because M and N are tiny, R/m and R/n are simple artinian rings.
As a left module over its endomorphism ring, say D = Endg N, N is isomorphic
to a finite direct sum of copies of D. Since R/m is a finite direct sum of copies
of M, Ext'(R/m, N) = 0. Therefore the natural map

Hompg(R,N) — Hompg(m, N)
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induced by restriction is surjective. The left action of D on N makes this a
homomorphism of left D-modules; since Hompg (R, N) is isomorphic to N as a
left D-module and is therefore a finite direct sum of copies of D, Hompg(m, N) is
also a finite direct sum of copies of D. Since Hompg(m/mn, N) is isomorphic to
a D-submodule of Hompg(m, N) it too is a finite direct sum of copies of D. As a
right R-module m/mn is isomorphic to a direct sum of copies of N because it is
annihilated by n, so Hompg(m/mn, N) is a direct product of copies of D as a left
D-module. It follows that Hompg(m/mn, N) must be a finite product, whence
m/mn is isomorphic to a finite direct sum of copies N. Because Extp (M, —)
commutes with finite direct sums this implies that Ext}, (M, m/mn) is zero, and
hence that the sequence

0> m/mn— R/mn— R/m—>0

splits. Thus R/mn is isomorphic to a direct sum of various copies of M and N.
It is therefore annihilated by m N n, whence m N n C mn. The reverse inclusion
always holds.

(<) We will prove the contrapositive. Suppose that Extk (M, N) # 0, and
let 0 > N - Q@ - M — 0 be a non-split extension. Since R/mNn is semisimple
ring, ) is not annihilated by m N n. However, Qmn = 0 so mNn # mn. O

If X and Y are affine varieties over a field k£ with coordinate rings R and
S, then the cartesian product X x Y can be given the structure of a variety.
Tts coordinate ring is, by definition, R ®; S. The next result is an appropriate
non-commutative generalization of this.

Proposition 4.16 Let k be an uncountable algebraically closed field. Let R and
S be countably generated k-algebras. Then the set of closed points in ModR®y, S
is in natural bijection with the cartesian product of the closed points in ModR
and ModS.

Proof. The hypotheses ensure that the closed points are in bijection with the
finite dimensional simples. We must show that the finite dimensional simple
R ®y, S-modules are precisely the modules M ®; N where M is a finite dimen-
sional simple R-module and N is a finite dimensional simple S-module.

The hypotheses on k, R, and S ensure that the endomorphism ring of every
simple module over R, or S, or R ®;, S is k.

First we show that M ®; N is a simple R ®; S-module whenever M and N
are simple modules over R and S (not necessarily of finite dimension). To see
this,let 0 Za € M Q@ N,and let m®n € M ®; N. Write a = ¥m; ® n; where
the n; are linearly independent over k. By the Jacobson Density theorem there
exists s € S such that ngs = n and n;s = 0 for ¢ # 0. Since M is simple there
exists 7 € R such that mer = m. Hence a- (r ® s) = m @ n. It follows that
M ®y N is simple.

Conversely, suppose that L is a finite dimensional simple R ®; S-module.
Let M be a simple R-submodule of L. Then L = M - (1® S), and as the action
of S commutes with the action of R, L is isomorphic as an R-module to a direct
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sum of copies of M. Hence L is annihilated by some maximal two-sided ideal,
say I, of R. It is also annihilated by a maximal two-sided ideal, say J, of S.
Thus L is a simple module over R®, S/(I®S+R®J) = (R/I)® (S/J). The
hypotheses imply that R/I = M, (k) and S/J = M,(k) for some integers r and
s. Hence R/I® S/J = M,s(k). In particular, R/I ®; S/J has a unique simple
module, and that module is isomorphic to M ®; N, where M and N are simple
modules over R/I and S/J respectively. O

The bijection in Proposition 4.16 is such that if p and ¢ are closed points of
ModR and ModS, then
Op,q) = Op @ Oy.

The extensions between simple R ®; S-modules are controlled by the exten-
sions between simple modules over R and S respectively. By [59, Theorem 3.1,
pg. 209], Ext}lz@ s(U®V,M ® N) is isomorphic to

Homp (U, V) ® Exty(M, N) + Exty(U,V) ® Homg(M, N).

The degree of a closed point. If R is a finitely generated commuta-
tive algebra over an algebraically closed field, then every simple R-module has
dimension one by the Nullstellensatz. However, simple modules over a non-
commutative ring can have a range of dimensions, and that dimension is an
important invariant. But that invariant is not an invariant of the simple mod-
ule as an object in ModR; it depends on a choice of progenerator. Thus, we
adopt the following strategy to use this invariant in non-commutative geometry.

Definition 4.17 Let k be a field and let (X, Ox) be an enriched space over Spec k.
Thus Ox is a fixed X-module that we call a structure module for X. The degree
of a closed point p in X is defined to be

degp = dim Homx (Ox, O,).

If, as is often the case, X is an affine space with a “preferred” coordinate
ring R, it is natural to take the right regular representation Rr as the structure
module. In that case, if p is a closed point of X, then

degp = dimy Hompg(R, Op) = dimy, O,.

Thus the degree of a closed point is equal to the dimension of the simple R-
module it corresponds to.

EXERCISES

4.1 Determine the points of Spec C®gr C and observe that this set is not the cartesian product
of the set Spec C with itself.

4.2 Let m and n be distinct maximal two-sided ideals in a ring R. Show that

mnNn=mn+ nm.
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3.5 Quivers and path algebras

This section introduces a well-understood family of finite dimensional algebras,
namely the path algebras of quivers without cycles.

Definition 5.1 A quiver is a directed graph with a finite number of vertices. It
may have multiple arrows, and loops. ¢

The pictures of quivers which appear in this section should be considered as
pictures of non-commutative spaces. The vertices are the points of the space.
The arrows between the points indicate an interaction between the points. This
is a non-commutative phenomenon. In commutative algebra, if p and ¢ are
distinct points, then all the extension groups Ext'x (O,,0,) are zero. This is
no longer true for a non-commutative space: an arrow from p to ¢ is drawn if
EXtﬁ( (Op, Og) # 0.

We denote vertices by Roman letters, and arrows by Greek letters. If « is
an arrow from a to b, and § is an arrow from b to ¢ we write af for the path
from a to ¢ which is “first traverse «, then traverse 3”. Composition of paths
is defined by concatenation in the obvious way.

If we adjoin an element that we call zero, and denote by 0, the paths form
a monoid provided we adopt the rule that a8 = 0 if the endpoint of the path «
is different from the starting point of the path 3.

At each vertex v we introduce the trivial path g,, the effect of which is that
if a is a path ending at v, and § is a path beginning at v, then ae,f = af.

A quiver determines a category in which the objects are the vertices, and
the morphisms from u to v are the paths beginning at u and ending at v.
Composition of morphisms is given by concatenation of paths. The identity
morphism on an object v is the trivial path &,. The category determined by a
quiver ) will also be denoted by the letter .

Definition 5.2 Let k be a field, and @) a quiver. A representation of @) over k is
a functor F' : Q = Modk. A map 7 : FF = G between two representations is
a natural transformation of the functors. We write Mod@ for the category of
representations.

Thus a representation of a quiver assigns to each vertex v a vector space M,,
and to each arrow « : v — v a linear map M, — M,. This data determines
the representation. A map 7: M — N between two representations consists of
linear maps 7, : M, — N, for each vertex v, such that the obvious diagrams
commute; that is, 7, o M (a) = N(a) o 7, whenever « is an arrow from u to v.

Definition 5.3 Let k be a field, and @ a quiver. The path algebra kQ is the
k-vector space with basis given by all the paths in @), and multiplication defined
by concatenation of paths. O

The identity element in k@) is the sum of all the trivial paths &,. The
elements ¢, are mutually orthogonal idempotents. They are also primitive: this
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is because each ¢, has degree zero in the natural grading which is defined on
page 134.

Example 5.4 Let () be the quiver with n vertices, and no arrows. Then k() is
isomorphic to a product of n copies of the base field. We can also view k@) as
the ring of k-valued functions on the set {1,2,... ,n}. O

Example 5.5 The path algebra of

()

. (5-1)

is isomorphic to the polynomial ring on one variable, k[z], where 2™ denotes the
path that traverses the loop n times. The path algebra of

Ce0 52

is a free algebra on two variables, k{x,y). The path algebra of the quiver with
one vertex and n arrows is isomorphic to the tensor algebra over k& on the n-
dimensional vector space. O

Example 5.6 The path algebra of the quiver

n—1

PR PRI I (5-3)

with n vertices is the ring of lower triangular n x n matrices. The isomorphism is
implemented by writing e;; for the path beginning at the i*® vertex and ending
at the j** vertex. O

The proof of the next result is obvious.

Lemma 5.7 The path algebra kQ is finite dimensional if and only if the quiver
has no cycles (i.e., no path in the quiver begins and ends at the same vertex).

A grading on the path algebra. The path algebra can be given the
structure of a Z-graded algebra by defining the degree of a path to be its length.
The trivial paths ¢, are given degree zero. Thus k@ is N-graded, and its degree
zero component is the product of fields ®,cgke,. The degree one component
of k@ has basis the arrows of Q. It is a bimodule over (kQ)o. For example, the
degree i component of the lower triangular matrix algebra in Example 5.6 is the
i*® lower diagonal.

We do not need the following result, so we do not prove it.

Proposition 5.8 Let k be a field, and QQ a quiver. Then kQ is isomorphic to
the tensor algebra of (kQ)1 viewed as a (kQ)o-bimodule.
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Theorem 5.9 Let k be a field, and Q a quiver. The category of representations
of @ is equivalent to the category of right kQ-modules.

Proof. If F is a representation of (), then each F(v) is a k-vector space M,.
The direct sum of all these is denoted by M. If v is a path in @ starting at the
vertex v, then we define the action of v € kQ on m € M by

m.y = F(y)(m.),

where m, is the component of m belonging to M,. It is easily verified that by
extending this action linearly to k@), one makes M a k@-module.

Conversely, if M is a kQ)-module, then M = ®Me,, where the sum is over
all vertices v of (). We associate to M a functor F':  — Modk as follows. For
each vertex v, F'(v) := Me,. If v is a path from u to v, we define

F(y) = ey¥ev : My = M,,.

It is easily verified that F' is a functor, and the rule M — F' is inverse to the
rule F' — M described in the previous paragraph. |

One consequence of Theorem 5.9 is that the representations of ) form a
Grothendieck category, thus making Mod@ a non-commutative space. Our con-
vention for labelling non-commutative spaces forces us to write @) = Mod(@.

Remark. Classifying the representations of a quiver can be interpreted as a
classification problem in linear algebra. For example, the classification of vector
spaces endowed with a single linear map is the same thing as the classification
of representations of the quiver consisting of one vertex and one arrow (5-1),
and Theorem 5.9 says that this is equivalent to the classification of modules
over k[z].

The classification of pairs of linear maps on a vector space (up to simul-
taneous conjugation) is equivalent to the representation theory of the quiver
with one vertex and two arrows (5-2). By Theorem 5.9 this is equivalent to
the classification of modules over the free algebra on two variables. This is a
famously intractable problem and is a benchmark against which other algebraic
classification problems are measured. A classification problem that includes the
problem of classifying all such pairs of linear maps is said to be wild.

The n-subspace problem for n > 5 is wild: the problem is to classify all
n-tuples of subspaces of a given vector space. This is almost the same problem
as that of classifying the representations of the quiver
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If M is a representation of this quiver in which one of the arrows is not injective,
then M = M' & K where K is the kernel of that non-injective arrow, and M’
is a representation of the subquiver for the (n — 1)-subspace problem. Thus,
excluding the n + 1 simple modules, the indecomposable representations are in
bijection with the classification of n-tuples of subspaces of a vector space. If
n < 3 there are only finitely many such indecomposables up to isomorphism. If
n = 4 there are a finite number of one-parameter families of indecomposables
[92]; the problem is said to be tame. For n > 5 the problem is wild.

Notation. Let R and S be rings, and let gMg and sNg be bimodules.
Suppose there are bimodule maps f : M ®s N - Rand g : N ®g M — S.
Then we form a ring

(& 5)=1G %)

The multiplication is defined using the maps f and g in the obvious way.

TER,SES,mGM,nEN}. (5-5)

Example 5.10 We call

y— (5-6)

1
[ ]

the Kronecker quiver. Its path algebra is isomorphic to

r=(f })- 7

We call this the Kronecker algebra. Let A = k[z,y] be the commutative polyno-
mial ring with its standard grading. Then R is isomorphic to the subring

Ay O
A Ao

of My(A). The row-module P, := (A4, An—1) now becomes a right R-module
via right multiplication. Viewed as a representation of the quiver, P, has the
vector space A,_1 at the vertex labelled 2, and A,, at the vertex labelled 1, and
the two arrows are multiplication by z and y.

The modules Py and P, are indecomposable projectives. It is an easy exercise
to show that every P, is indecomposable, and that Homg(P,, Phim) = Am,
with a € A, acting by left multiplication, a.(b,c) = (ab,ac). A classification of
all indecomposable R-modules can be found in [120, Theorem 8.5.7] and in [28,
VIIL7]. 0

If v is a vertex of the quiver ), we write S, for the representation that
assigns the zero vector space to each vertex other than v, and assigns to v the
one-dimensional vector space k, and assigns to every arrow the zero map. It is
clear that S, is an irreducible representation of @), or, what is the same thing,
a simple kQ-module.
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Proposition 5.11 Let Q be a quiver without cycles. Then the closed points of
the space with coordinate ring k@) are in bijection with the vertices of Q.

Proof. The k-linear span of the non-trivial paths is a two-sided ideal, say I.
The subalgebra
@vEQkEv

is a complement to I in k@, so kQ/I is isomorphic to a product of fields. The
n*® power of I is spanned by the paths of length > n. Since the quiver has no
cycles, there is a bound to the length of the paths, so I is nilpotent. It follows
that I is the nilpotent radical of kQ). So the simple k()-modules are in bijection
with the simple modules over ®,cgker, and hence with the vertices of Q). All
these simple modules are finite dimensional over k. O

This result fails if @ has cycles. For example, consider the polynomial ring
k[z], which is the path algebra of the quiver with a single vertex and a single
arrow.

Each S, can be given the structure of a graded k@-module, and, up to
shifting degree, these form a complete set of simple modules in GrModk(@). This
follows from the fact that (kQ)o = ®ke,.

Proposition 5.12 Let Q be a quiver without cycles. Then the indecomposable
projective kQ-modules are in bijection with the vertices of Q).

The indecomposable projective corresponding to the vertex v is the right ideal
P, of kQ spanned by the paths that begin at v.

Proof. Clearly P, is the right ideal of k(Q) generated by &,. It is also a graded
right ideal. Since every path begins at a unique vertex, k@ is the direct sum
of these right ideals. Thus each P, is projective. And P, is indecomposable
because the €, are primitive idempotents. O

Example 5.13 The right regular representation of k@) gives a representation
of @ for which the module concentrated at v is the projective left ideal P! :=
(kQ)e,. Each arrow from u to v gives a linear map P! — P! which is a map
of left k(Q)-modules. The component at the vertex u of the representation P, is
P,e, = £,(kQ)e,, which is the linear span of all paths that begin at v and end
at u. O

Example 5.14 The path algebra of the quiver

2 n
oe— o ® .%0

P
is the ring of n xn lower triangular matrices. The idempotent £; corresponding to
the vertex ¢ is the matrix unit e;;. A representation can be succinctly denoted
by drawing a picture that is the same shape as the quiver with each vertex
replaced by the corresponding vector space, and each arrow labelled with the
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sorresponding linear map. For example, the simple modules for this quiver can
be denoted

S1=k0...00, S;=0k0...00, ...,S,=00....0k,

Here S; consists of the row vectors having zeroes in all except possibly the
i*h position, the matrix ring acts by right multiplication. The indecomposable
projectives are the rows

00 --- 0 :
PIZ . . J"';Pn: ) )
: : 00 --- 0

of the matrix algebra. More succintly, P; = kk...k0...00 and all the maps are
the identity, or zero. The simple module S; is a quotient of P;. Left multiplica-
tion by e; ;1 gives the first map in the projective resolution 0 - P;_ 1 — P; —

The next result shows this is a general phenomenon.

Theorem 5.15 Let k be a field, and Q) a quiver. Then kQ has global dimension
at most one. The global dimension is zero if and only if there are no arrows.

Proof. If () has no arrows, then kQ is a product of copies of k, so has global
dimension zero. Now suppose that () has some arrows.

Fix a vertex v. Let © denote the set of arrows beginning at v, and for each
a € O, write t(a) for the vertex at which the arrow a ends.

Let S, denote the simple module at v. Then S,e, is zero if u # v, and
equals S, if u = v. Hence there is a surjective map ¢ : P, — S,, the kernel of
which is spanned by the non-trivial paths beginning at v. If v is a non-trivial
path beginning at v, then v = a~' for a unique a € ©, and a unique path v’
beginning at t(a). Therefore ker ¢ is the direct sum of the right ideals aP;(q)
where a runs through ©. Left multiplication by o € © is an injective right
kQ-module map Py, — P,. Hence there is an exact sequence

0— @ aPyqy = P, = S, = 0. (5-8)
a€®

Therefore pdim S, < 1. Since @ has some arrow, S, # P, for some v, whence
pdim S, > 1.

If kQ is finite dimensional we are done since {5, } is a complete set of simple
modules, and every finite dimensional module has a composition series.

If kQ is infinite dimensional we note that (5-8) is a projective resolution in
the graded category. Thus each graded simple module has projective dimension
at most one in GrMod(kQ). Since kQ is positively graded, it follows from ?7?
that gldim £Q < 1. d

An algebra of global dimension one is said to be hereditary.
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Lemma 5.16 Let P, be the indecomposable projective module, and S, the sim-
ple module corresponding to the vertex v. Then

k ifu=w,
0 ifu#w.

Proof. Let f : P, — S, be a module homomorphism. Then f(g,) = f(¢2) =
f(ev)ey. fu # v, then S,e,=0, so f(e,) = 0; but &, generates P,, so f(P,) = 0.

Now suppose that v = v. The paths that begin at v give a basis for P,. If
« is a non-trivial such path, then S,a =0, so 0 = f(e,a) = f(a). Therefore, if
I is the linear span of all the non-trivial paths beginning at v, then f(I) = 0.
But P,/I = S,, so the result follows. O

HOmQ(Pv,Su) = {

The arrows in a quiver control the homological behavior of the simple mod-
ules.

Definition 5.17 An exact sequence of the form

F LN > 0 (5-9)
is called an extension of N by L. We also say that M is an extension of N by
L. The extension is split if there is a map v : N — M such that 8 o~y = idy.
Otherwise the extension is said to be non-split. O

0 y L —2 5 M

The trivial extension of N by L is the sequence 0 = L - L& N - N = 0
with the obvious maps. It splits. If the extension (5-9) splits, then the image of
7y is isomorphic to N, and M = L@ y(N) = L& N.

Lemma 5.18 Let L and N be simple modules. The extension (5-9) is non-split
if and only if a(L) is the only proper submodule of M.

Proof. If the extension splits viay : N — M, then (V) is a submodule distinct
from a(L). Therefore, if a(L) is the only proper submodule the extension can
not split.

Suppose that K is a proper submodule distinct from a(L). Then L and
K are the two composition factors of M, so K must be isomorphic to N. In
particular, the restriction of § to K is an isomorphism ¢ : K — N. Then
~ =41 splits the sequence. |

A non-split extension between different simples can only exist if the ring is
non-commutative.

Lemma 5.19 Let L and N be non-isomorphic simple R-modules.
1. If R is commutative then every extension of N by L splits.

2. If z is a central element of R that annihilates L but not N, then every
extension of N by L splits.
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Proof. (1) Suppose M is an extension of N by L. Let p and g be the annihilators
of L and N. These are maximal ideals, and are distinct because L and N are
not isomorphic. Pick = € p such that z ¢ g. Then multiplication by z is a
module map M — M, and its image Mz is isomorphic to M/{m | mz = 0} =
M/L = N. By Lemma 5.18, the extension splits.

(2) The argument is essentially the same. O

There is an abelian group Extk (N, L) that classifies the non-split extensions
of N by L. Details can be found in any book on homological algebra. For now
it is sufficient to remark that Exth(N , L) is zero if and only if every extension
of N by L is split.

Lemma 5.20 Let @ be a quiver. There is an arrow from u to v if and only if
there is a non-split extension of S, by S,.

Proof. Suppose there is an arrow u — v. Let M be the representation with
k at both v and v, and zeroes elsewhere, and assign to the arrow u — v the
identity map k — k. It is clear that S, is a sub-representation of M, and
that the quotient is isomorphic to S,. Hence M is an extension of S, by S,.
Because the map k — k is non-zero, S, is the only proper sub-representation of
M. Thus, by Lemma 5.18, the extension does not split.

Conversely, suppose that 0 = S, - M — S, — 0 is a non-split extension.
Then dim; M = 2. We consider S, as a submodule of M. Since Sue, =
0 and Sye, = S,, Me, = S,. Since S,e, = 0 and Sye, = Syu, Mg, is a
one-dimensional subspace of M; it is not necessarily a submodule. Hence the
representation of ) associated to M has k at the vertex labelled u and & at the
vertex labelled v. If there were no arrow from u to v, then S, would be a sub-
representation of M, so by Lemma 5.18, M would split. This is a contradiction,
so we conclude that there must be an arrow from u to v. O

A more precise result is possible once one has the Ext-groups at hand.

Proposition 5.21 If u and v are two vertices, then dim Exth(SU,Su) is the
number of arrows from v to u.

Proof. We use the notation in the proof of Theorem 5.15. It follows from the
projective resolution (5-8) that Ext,lcQ (Sy, Sy) is the cokernel of the natural map

Homg(P,, Su) — HOInQ(@ aPy(a), Su)-
ac®

But this map is zero because (5-8) is a minimal projective resolution, so
dimy, Exty(Sy, Su) = dimy Homg (®acoPy(a), Su)
= Z dimy, Homg (Seg(a), Su)-

ac®

It is easy to see that this is the cardinality of {a € © | t(«) = u}, which is what
we needed to prove. O
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Propositions 5.11 and 5.21 give a recipe for recovering the quiver from a
finite dimensional path algebra. One takes a vertex for each simple module,
and from the vertex u to the vertex v one draws dimy Ext'(S,,S,) arrows.

The next result, which we do not need in this book, emphasizes again the
fundamental nature of path algebras.

Theorem 5.22 Suppose that k is a perfect field. Then, up to Morita equiva-
lence, the path algebras kQ give all the finite dimensional hereditary algebras.

We now examine a family of infinite dimensional path algebras consisting of
non-maximal hereditary orders.

Proposition 5.23 Let QQ be the following quiver with n vertices and n arrows:

= ° >e > .. O >e -1

Q bt el ] 3 (5-10)

Write x; for the arrow that ends at the vertex labelled i.
1. The path algebra is isomorphic to the ring

R zR --- zR zR
R R --- zR =zR

S = S, (5-11)
R R R 2R
R R R R

where R = k[z].
2. Under this isomorphism, © = Ei":l TiTi1 - Tipl-

3. The element u = 21 + ... + x, is normal, meaning that uS = Su. If we
identify kQ with S, then

0 0 0
10 0 0
w0 1 0 0
0 0 10

4. U™ ==x.
5. If k is algebraically closed, then the simple QQ-modules are as follows:

(a) There are n one-dimensional simple modules V;, the representations
defined by placing k ot the vertex labelled i and zero at all others.
Under the isomorphism Vie;; # 0, where e;i is the primitive diagonal
idempotent in the ii-position.
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(b) There is a family of n-dimensional simples Sy parametrized by \ €
A'\{0} obtained by placing k at each vertez, and making each arrow
the identity map, except the arrow from 1 to n which is multiplication
by .

6. If \ # 0, then S/(z — X\) = My(k).
7. The element u annihilates all the one-dimensional simple S-modules.

8. The auto-equivalence — g Su of ModS sends the one-dimensional simple
Vi to V;_1 and fizes each n-dimensional simple.

Proof. To show that z is central it suffices to show that it commutes with the
idempotents ¢; (the trivial paths) and with each z;. This is a routine calculation.

A non-trivial path begins at some vertex i, goes t times around the loop,
but not ¢ + 1 times, and ends at the vertex j. This path is

t
(SEi_lﬂfi_z .e IE,) Ti—1T;—-2..-Tj,

which equals z'2;_12;_5...z;. Thus, k[z] is a central subalgebra of k@, and a
basis for kQ over k[z] is given by the elements z;_12;_2 ...z, together with the
idempotents &;.

The claimed isomorphism is obtained as follows. If ¢ = j, we send ¢; to e;;.
If i > j, we send z;_12;_2 ...2; to e;;. Otherwise, we send z;_12;_2...2; to
ze;j. For example, 21 + ea1, T2 — €32, and =, — Tein.

It is clear that the one-dimensional simples are as claimed. It is also clear
that the modules Sy are simple. So, it remains to show that this is a complete
list of the simples.

Let M be a simple module. Then M is annihilated by 2 — A for some \ € k.
Let M = ®}-; M; be the decomposition with M; the component at the vertex
i. Any non-zero submodule of M must contain some non-zero homogeneous
element, say 0 # m € M;. We have

AN = M.T = MT;_1Li—2 - - L;-

Therefore the elements m, mx; 1, mx; 1x;_2,... span a submodule of M, which
must, by hypothesis, equal M itself. If A # 0, this is isomorphic to Sy (just
change bases in the correct way). If A = 0, then the last non-zero element
in the list m,mx;_1,mx;_12;_2,... spans a one-dimensional submodule, so we
conclude that dimg M = 1.

It follows from the earlier part of the proof that S is spanned by n? elements
as a k[r]-module (in fact these elements form a basis), so dim S/(z — \) < n?.
However, when A # 0, this ring has an n-dimensional simple module, so it must
be isomorphic to My, (k).

To see that u is normal, we need only observe that ue; = x; = €;41u, and
that ux;_1 = z;x;_1 = z;u. A simple calculation shows that 4™ = z. It is clear
that V;u = 0 for all simples (because, for example, degu > 0).

The action of — ®g Su sends any module annihilated by x — A to another
module annihilated by z — A, so Sy ®g Su =2 Sy. The one-dimensional simple
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V; is annihilated by ¢; for all j # i. Since ue; = €414, V; ®s Su is annihilated
by ¢; for all j # 4 — 1. Therefore V; ® s Su =2 V;_;. O

Proposition 5.24 Let () be the quiver in Proposition 5.23. Then Modk(Q) is
equivalent to the category GrModk[t] where k[t] is graded by the group Z., with
degt = 1.

Proof. Label the elements of Z,, by 0,1,...,n — 1 in the obvious way. It is
helpful to give the vertices of () the same labels in such a way that there is an
arrow from 4 to ¢ + 1 for each 1.

This is so obvious that explanation probably obscures the issue. Each rep-
resentation of @) gives a graded k[t]-module with the degree i component of the
k[t]-module being the component of the representation at the vertex labelled
1, and the action of ¢ on the degree ¢ component being given by the action
of the map corresponding to the arrow from ¢ to i + 1. Conversely, a graded
k[t]-module gives a representation of @) in an obvious way. Morphisms in one
category obviously are morphisms in the other category. The functors between
the categories are clearly mutually inverse. |

A ring R is prime if IJ # 0 whenever I and J are non-zero two-sided ideals
of R. Equivalently, z Ry # 0 whenever z and y are non-zero elements of R. The
path algebra in Proposition 5.23 is a prime ring.

Lemma 5.25 A path algebra kQ is prime if and only if for every pair of distinct
vertices u and v there is a path from u to v.

Proof. Suppose that there is no path from w to v. Then g,0ae, = 0 for all
paths a. Hence €, Re, = 0, so R is not prime.

Conversely, suppose that there is a path between any two vertices. Let z
and y be non-zero elements of R, each written as a linear combination of paths.
Pick a path a occurring in the expression for x, and a path v appearing in the
expression for y. Let u denote the vertex where a ends, and let v denote the
vertex where v begins. Let 8 be a path from u to v. Then afy # 0, and it
follows from this that 28y # 0. Thus xRy # 0, showing that R is prime. O

Our definition of a quiver required there to be only a finite number of vertices
and arrows. However, much of the theory extends to quivers having an infinite
number of vertices and/or arrows.

If @ has infinitely many vertices, then the path algebra does not have an
identity. A representation of ) gives a module over the path algebra in the
usual way. If we define Modk@ to consist of those right kQ-modules M such
that M = Y Me,, where v runs over all the vertices of @, then each kQ-
module gives a representation of ). Thus one obtains a version of Theorem 5.9
for infinite quivers. The ring k(@ itself is a generator and a projective object in
ModkQ (cf. [88, pp. 346-347]). Furthermore, the category Modk@ is hereditary:
every module has a projective resolution of length one.

A nice application of this last fact to inverse limits appears in [43, page 96].



144 CHAPTER 3. NON-COMMUTATIVE SPACES

As a simple example consider the quiver consisting of vertices indexed by Z
and no arrows. Then the representations are just vector spaces with a specified
decomposition V' = @, V,, into subspaces. It is a tautology that the category
of representations of the quiver is equivalent to the category of graded modules
over the base field.

Example 5.26 The path algebra of the doubly infinite quiver

° ° ° ° ° B, (5-12)

is isomorphic to the ring of doubly infinite lower triangular matrices having only
finitely many non-zero entries. The category of representations of the quiver is
equivalent to the category GrModk[z] of graded modules over the polynomial
ring in one variable z having degree one. If the vertices are labelled by the
integers ... ,n — 1,n,n + 1,... beginning at the left, then a representation
M = ®&M,, of the quiver can be viewed as a graded k[z]-module with M,, being
the degree n component, and z acting on M,, via the arrow from n to n + 1.
Conversely each graded k[z]-module gives a representation by placing the degree
n component of the module at the vertex labelled n. O

Example 5.27 The path algebra of the quiver

«——e )

is right, but not left, noetherian. The path algebra of the opposite quiver

C'*“

is left, but not right, noetherian. The path algebra of the quiver

Coe D)
is neither right nor left noetherian. ¢

Maps between quivers. One source of maps between non-commutative
spaces are the “obvious” maps between quivers. These are the maps sending
vertices to vertices and arrows to arrows in a compatible way.

Definition 5.28 A morphism, or a map, f : Q — Q' between two quivers is a set
map from the vertices of () to the vertices of @)’ together with a set map from
the arrows of @ to the arrows of Q' such that if « is an arrow in @ from u to v,
then f(«) is an arrow from f(u) to f(v).

The objects in the category of quivers are all quivers, and the morphisms are
as above. We denote this category Quiver. ¢

A quiver determines a category whose objects are the vertices, and whose
morphisms are the paths. A map of quivers induces a functor between the
associated categories. However, a functor between the categories that sends
some non-trivial path to a trivial path is not induced by a map of quivers.
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Proposition 5.29 The rule QQ — kQ extends to a contravariant functor from
the category of quivers to k-algebras.

Proof. Let f : Q — Q' be a map of quivers. We define ¢ : kQ' — kQ to be the
linear map such that for each path o' in @Q’,

p(a') := Z a.

Fa)=ar

In particular, if @ = €y is the trivial path at u, then ¢(eu) = 3 ()=, €v, from
which it follows that (1) = 1.

To show that ¢ is an algebra homomorphism we must show that if o/ and
B' are paths in @', then p(a’8’) = p(a')p(B').

First suppose that o/3' = 0. Then s(8') # t(«'). Therefore s(8) # t(a) for
any paths a and § for which f(a) = o' and f(8) = p'; hence a8 = 0. Thus
p(a’)p(B') = 0.

Now suppose that o'’ # 0. Set v' = t(a’) = s(8'), and let vq,...,v, be
the distinct vertices in @ such that f(v;) = v'. Let A; be the set of arrows in
Q) that end at v; and are mapped to o'. Let B; be the set of arrows in ) that
start at v; and are mapped to 3. Then

oael#) =3 (3 o) (ZB ) (513)

1=1 “a€A;

On the other hand,

p@B)= > 7 (5-14)

f(y)=a’'p’

Each such v passes through a unique v;. Because f sends each arrow to an
arrow, there is a unique way to write v = aff with a € 4; and 8 € B;. It
follows that the sums (5-13) and (5-14) are equal. O

Corollary 5.30 A map of quivers f : Q — Q' in the sense of Definition 5.28
is also an affine map of spaces in the sense of Definition 3.1.

Proof. The induced algebra homomorphism kQ' — k@ gives rise to a map as
in Example 3.3. O

The adjoint pair of functors f* : Mod@' — Mod@ and f, : Mod@Q — ModQ@’
associated to a map f : Q — Q' of quivers can be described directly.

A representation of Q' is the same thing as a functor from Q' to Modk, where
Q' is viewed as a category in which the morphisms are the paths. Hence each
Q@'-module M, viewed as a functor, determines a functor M o f : Q — Modk.
We have f*M = M o f. Explicitly, if v € @, then (f*M), = My(,), and if a is
an arrow from u to v in @, then the action of @ on f*M sends My, to My,
via the action of f(a).
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On the other hand, if N is a Q-module, then f, N is Q'-module with (f.N), =
®©f(v)=v No, and if @' is an arrow in Q' then o' acts on f,NN as the direct sum
of the actions of f(a) as a runs through all arrows such that f(a) = o'.

Example 5.831 We call Q' a subquiver of @ if there is a map f: Q' — @ that
is injective on vertices and arrows. In this case the induced map kQ — kQ'
gives an isomorphism kQ' = kQ/I, where I is the ideal generated by those ¢,
for which v is not in @' and by those arrows « which are not in @'. Thus @’
is a closed subspace of the non-commutative space () in the sense of Definition
2.1.

A special case of this arises when @ is a quiver with n vertices, and Q' is
the subquiver consisting of the same vertices, but no arrows. The induced map
kQ — kQ' = k*™ is gotten by modding out the ideal spanned by the arrows;
that is, one quotients out the homogenous ideal of k() consisting of positive
degree elements; if k() is finite dimensional, this is the same as modding out the
nilpotent radical.

As a second special case, let ) be the quiver

n—1

n
e . 6 — e ---0 —

|

(5-15)

Let Q' be the subquiver of () obtained by deleting the first vertex and arrow (or
the last vertex and arrow). Then the induced map kQ — k@' is that obtained
by modding out the last row (or the first column) of the lower triangular n x n
matrix ring. ¢

We end this section with an example involving our favorite infinite dimen-
sional path algebra.

Example 5.32 (cf. Proposition 5.23 and Example 14.4) Consider the unique
map of quivers h: Q — Q' from

Q= / . . (5-16)

to

Q = o (5-17)

Thus h sends the vertices of () to the vertex of @)', and sends the arrows of @
to the single arrow of Q'.

The path algebra kQ' is isomorphic to a polynomial ring k[u], and kQ is
isomorphic to the subalgebra of M, (k[z]) in (5-11). The ring homomorphism
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kQ' — kQ can be viewed as the inclusion k[u] — kQ that sends u to the matrix

00 ... 0 =z
10 ... 00
01 ... 00
00 ... 10

This inclusion induces a map of spaces ModkQ — Al.
For 0 # X € k let Sy denote the simple k@Q-module annihilated by z — A.
Then dim Sy = n. The action of w on v = (vy,... ,v,) € Sy is given by

(1, ,0n)u = (Va,... ,Un, AVL).

It follows that h,Sy = k[u]/(u™ — ). If k has n distinct n'® roots of unity,
then h.S) is a direct sum of n distinct simple k[u]-modules; thus h breaks the
closed point corresponding to Sy into n distinct closed points on the affine line
parametrized by u. If M is a one-dimensional simple S-module, then h,M =
k[u]/(u). On the other hand h* sends k[u]/(u — A) to Sy, and sends k[u]/(u) to
S/Su which is isomorphic to the direct sum of the n one-dimensional simples;
to see this last isomorphism observe that the row space k™ becomes a cyclic
module, with generator (1,1,...,1), under the natural action of S C M, (k[z])
with z acting as zero.

Let g : A' — A' be the map a — o™, and let f : Q — Al be the composition
f = goh. The image to have in mind is that f : Q — A! is a covering of the
affine line by a non-commutative curve. A picture of this curve appears at (14-5)
in Example 14.4.

Since g is induced by the inclusions k[u™] — k[u], and since u™ = z (see
Proposition 5.23), the map f is induced by the inclusion of k[z] as the center of
kQ. The map f sends closed points of kQ to closed points of Al. The fiber over
0 consists of the n points of @) corresponding to the one-dimensional simples,
and the fiber over any other closed point of A! consists of a single point, one
corresponding to an n-dimensional simple k@-module. ¢

EXERCISES

5.1 Suppose that we adopt the opposite convention for the concatenation of paths—that is,
we write af to mean first traverse §, then traverse a. Write k * Q for the path algebra
obtained in this way. Show that k x Q = (kQ)°P.

5.2 Let Q be the quiver 1 — 2 — -+ — n. Show that k * @ is isomorphic to the ring of lower
triangular matrices in such a way that e;; corresponds to the path from j to <. With this
convention, the representations of the path algebra correspond to the left modules over
kxQ.

5.3 If @ is the disjoint union of quivers @1 and @2, show that kQ = kQ1 ® kQ2.

5.4 Show that the indecomposable projectives for the path algebra k * @ in the previous
exercise are the columns of the triangular matrix ring. More generally, show that the

left ideal of k x Q consisting of all paths that begin at a vertex v is an indecomposable
projective.
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5.5

5.6

5.7

5.8

5.9

5.10

If @ is a quiver, let Q°P denote the “same” quiver with the arrows reversed. Show that

kQP = (kQ)°P.

A vertex is called a source if there are no arrows ending at it. A vertex is called a sink, if
there are no arrows beginning at it.

(a) Show that v is sink if and only if S, is projective.
(b) Show that v is source if and only if S, is injective.
Show that Homg(Py, Sv) is zero if u # v, and is isomorphic to k if u = v.

Suppose that @ has no cycles. Let B denote the linear span of all arrows in Q. Determine
the (kQ)o-bimodule structure of B for some of the examples in this section. Since (kQ)o
is a product of fields [], kev, so is (kQ)o ®r (kQ)o. The simple (kQ)o bimodules are
indexed by pairs of vertices, and we denote them by . S, this being the bimodule that is
not annihilated by e, on the left, and not annihilated by e, on the right.

(a) For the quiver

2 1
e e (5-18)

show that B 22 1S5 @ 251, that B®(2n+1) o B for all n, and that B®2" > 15, @55,
for all n.

(b) Compare this with what happens for the Kronecker quiver (4-5).

(.) z 1
W
2

Let @ be the quiver

Let Mg~ be the representation

where the maps are multiplication by the non-zero scalars «, 8, v € k. Show that Mg, =
M. if and only if afy~ 1l = ppw1.

Let @ be a quiver. Let M be the matrix with rows and columns indexed by the vertices
of Q, and entry m,, the number of arrows from u to v. Show that the uv-entry in M™ is
the number of paths of length n from u to v.

The sum of the entries in M™ is the dimension of the degree n component of £Q.

Show that the Kronecker algebra R is isomorphic to the ring of global sections of the sheaf
of non-commutative algebras

e %)

on the projective line P!. Fix n € Z. Show that the action of R on O(n) ® O(n — 1) by
left matrix multiplication induces an isomorphism R = £nd(O(n) & O(n — 1)).
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5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

Retain the notation in Exercise 11. Write P = O(0) @ O(—1). Show that that there is an
exact functor
Hom(P,—) : ModP' — ModR

from quasi-coherent Op1-modules to sheaves of right R-modules.

Retain the notation in Exercise 11. Show that the global section functor HO(P1, —) gives
a left exact functor ModR — ModR. Let F denote the left exact functor ModP! — ModR
that is the composition of the global sections functor with the functor in the previous
exercise. Thus F = Homp1(P, —).

(a) For each invertible Opi-module O(n) describe F(O(n)) as a representation of the

quiver
b (5-20)

—
(b) Do the same thing for each simple P1-module Op, p € P*.

Retain the notation in Exercise 11. Let x be a coordinate function on P!, and let U be
the copy of the affine line where = has no pole. Show that R(U), the ring of sections of

R over U, is isomorphic to
((I;ECI]) lgz[cw)]) ’

where (z) denotes the ideal of k[x] generated by x, and (z~!) denotes the k[z]-submodule of
k(z) generated by z—!. Show that this ring is isomorphic to Mz (k[z]). [Hint: conjugation
by a suitable unit will give an explicit isomorphism; one can also argue by using P(U).]
Over the open set U’ where x has no poles, R(U’) is isomorphic to

kla™t (z71)
() k[z=1])”
which is naturally isomorphic to 2 x 2 matrices over k[z~1].

Retain the notation in Exercise 11. For each R-module F, F(U) is a module over R(U),
so by Morita equivalence gives a module over k[z]. For the Pl-modules M = O(n)
and M = Op describe the modules over k[z] that are obtained from the R-modules
Hom (P, M).

Define projective cover, and give a related exercise.

Let R be a finite dimensional k-algebra. Then Homy(—, k) is a duality between left and
right R-modules. Show that it interchanges projective modules and injective modules.
Show that it interchanges injective envelopes and projective covers; in particular, that it
sends the injective envelope of a simple module S to the projective cover of the corre-
sponding simple module S* := Homy(S, k). Also show that AnnS = AnnS*.

Define representations U;, 1 < ¢ < m, for the quiver (5-10) as follows. To each vertex
assign a copy of k, and assign to each arrow the identity map, except for the arrow z;
ending at i. Assign the zero map to that arrow. Show that U; is uniserial (i.e., it has
a unique composition series), and that its composition factors are the one-dimensional
simples V;, V;_1,... , Vi41 starting from the top.

Verify the claims in Example 5.27.

3.6 Maps between non-commutative spaces

Ring homomorphisms are not sufficiently plentiful or flexible enough to suffice
for the deeper study of the relations between rings and their modules. Similarly,
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the notion of an affine map is too restrictive to allow a fine analysis of the
relations between various spaces. In this section we examine the weaker, but
more appropriate, notion of a map.

Another way to see that the notion of affine map is too restrictive is to recall
that the direct image functor associated to a map of schemes is not usually right
exact, so need not have a right adjoint. The standard example is the structure
map P! — Speck.

Example 6.1 There exist non-affine maps between affine spaces. Let B be an
R-S-bimodule. Then B determines a map f: ModS — ModR defined by

[*=—-®rB, and f.=Homg(B,-).

However, if B is not a projective right S-module, then f, is not right exact, so
cannot have a right adjoint. Watt’s Theorem shows that every map between
affine spaces is induced by a bimodule in this fashion. ¢

A map f:Y — X is regular if f, M is non-zero for all simple Y-modules M.
The map f in Example 6.1 is regular provided that Homg (B, M) # 0 for all
simple S-modules M.

Other kinds of bimodules also provide maps.

Definition 6.2 Let R be a ring, and X a space. An R-X-bimodule, or an X-
valued R-module, is a pair (M, a) consisting of an X-module M and a ring
homomorphism a : R — Homx (M, M). ¢

Example 6.3 If (M,q) is an R-X-bimodule, then Homx (M, —) is a left exact
functor ModX — ModR. The natural right R-module structure on Homx (M, N)
is given by

Ar=Adoa(r)

for A € Homx(M,N) and r € R (cf. Proposition 2.3.8). Since Homx (M, —)
is left exact and commutes with products, it has a left adjoint. We use the
notation — ® g M to denote such a left adjoint. If we label this adjoint pair
(f*, f+), then these define a map f: X — Spec R of spaces. O

The next result shows that the notation — ® g M behaves in a way that is
compatible with its usual meaning for modules over a ring.

Proposition 6.4 Let R be a ring, X a space, and let (M,a) be an R-X-
bimodule. Let f : X — Spec R be the associated map. Then

1. Rp M = M;

2. under the isomorphism in (1), if 6 : R — R is left multiplication by r,
then f*(8) = a(r).
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Proof. For each X-module N and each right R-module K, we denote by vk n
the adjoint isomorphism

vin : Homg(K,Homx (M,N)) —— Homx (K ®g M, N).

We will show that the map vrm (@) : RQr M — M is an isomorphism.

By the Yoneda lemma, to show that vgas(a) is an isomorphism it suffices to
show for every X-module N that the induced map Homx (M, N) - Homx (R®g
M, N) defined by

A dovpy(a) (6-1)
is an isomorphism. By equation (1.6-4),
Aovgy(a) = vern(firoa). (6-2)
Since fiA : Homyx (M, M) — Homx (M, N) is defined by (f:A)(8) = Ao ¥,
(firoa)(r) = Aoa(r) = Ar, (6-3)

for r € R and A € Homx (M, N).
There is an isomorphism & : Homx (M, N) — Hompg(R,Homx (M, N)) of
right R-modules defined by ®(\)(r) = A.r. Therefore (6-2) and (6-3) give

Aovem(a) = vrn(®(N))

which implies that the map defined by (6-1) is vgy o ®. This is certainly an
isomorphism so (1) is true.

(2) Fix r € R and let § : R — R be left multiplication by r. We must show
that the diagram

R®r M M} R®p M

y(a)l l”(“)

M — M
a(r)

commutes. For z € R, we have

(a0 d)(z) = a(rz) = a(r)a(z) = (f«(a(r) o a)(z).
Equations (1.6-3) and (1.6-4) give

as required. O
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We continue to assume that M is an R-X-bimodule via a ring homomor-
phism a : R — Homx (M, M). Composition Homx (M, M) x Homx (N, M) —
Homx (N, M) gives Homx (N, M) the structure of a left R-module via

rA=a(r)oA.

Because Homx (M, M) is an R-R-bimodule, if K is a right R-module, then
Hompg(K,Homx (M, M)) is a left R-module via

(r.0)(z) = a(r).0(z) = a(r) o §(x)
for z € K and § € Hompg(K,Homx (M, M)).

Lemma 6.5 Let M be an R-X-bimodule via a ring homomorphism o : R —
Homx (M, M). The adjunction isomorphism

v: Homp(K,Homx (M, M)) ——— Homx (K ®g M, M)
is an isomorphism of left R-modules.

Proof. Let § € Hompg(K,Homx (M, M)). We must show that v(r.6) is equal
to r.v(@) for all r € R. The actions of r are described just prior to the lemma.

As in the previous proof, we write f, = Homx (M, —). Since a(r) : M — M,
fela(r) : fuM — f.M. Explicitly,

fe(a(r) () = a(r) o ¢.

Hence, if z € K, then (r.0)(z) = a(r)of(z) = f.(a(r))(é(z)), sor.0 = fi(a(r))o
0. Therefore I/(T 0) = v(f+«(a(r)) o 8), and this is equal to a(r) o v(8) by (6-4)
in Chapter 2. But a(r) o v() = r.v(6), thus proving the result. O

Example 6.6 The projective line is a subspace of the Kronecker space. Let R
denote the path algebra of the Kronecker quiver

—
—

L (6-4)
The P'-module O ® O(1) can be given an R-P!-bimodule structure by letting
the arrows act as multiplication by the two homogeneous coordinate functions
on P'. More explicitly,
kE 0
Endp: O ® O(1) = (k2 k) .

This provides a map of spaces f : P! — ModQ. The direct image functor is
f+« = Homp1(O @ O(1),—). Each p € P! gives a 2-dimensional representation
f+Op of @; all these are simple ()-modules except for f.Op and f,O, which
are non-split extensions between the two one-dimensional simple ()-modules.
Notice that f. is exact on finite length modules. ¢
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The maps in our sense are more general than the morphisms in algebraic
geometry. For example, some correspondences give rise to maps in our sense.

Example 6.7 Let X and Y be schemes. Let F be a quasi-coherent Oy x x-
module and suppose that its support, say Z, is finite over Y. Let pr; : Z - Y
and pry : Z — X be the projections. Since pr; is a finite morphism it is affine,
whence pr,, has a right adjoint pr}. It follows that the functor f* : QcohX —
QcohY defined by

f*M = prl*(pr;M R0, ‘7:)

has a right adjoint, namely f,. defined by
f*N = prZ*HomZ(]:7 pr'lN)7

50 (f*, f«) defines amap f : Y — X in our sense. Recall that a correspondence
from Y and X is simply a closed subscheme Z C Y x X. Hence, if pry : Z =Y
is finite, then one obtains a map in our sense by taking F = O. ¢

Definition 6.8 Let f : Y — X be a map of spaces, and let p be a closed point
of Y. If there exists a closed point ¢ € X such that f,O, € Modg, we call ¢ the
image of p under f, and denote it by f(p). We also say the p lies in fiber over q.
%

On page 111 we observed that if f : Y — X is a morphism of affine algebraic
varieties, then f,O, is a finite direct sum of copies of Oy, for all closed points
p € Y. The next example shows that this does not hold for maps between
non-commutative spaces. An even simpler example is provided by Example
11.4.

Example 6.9 Let @ be the Kronecker quiver (4-5). Write @ for the space
Modk@. Let f : Al — @ be the map induced by the inclusion of algebras

0 kQ = (k ka 2) - My(K[z]). (6-5)

There are two closed points, say p and g, in (). We label them so that O, is the
projective simple. The points A € Al are in bijection with the simple modules
over My (k[z]). The restriction of the simple module O; to kQ gives a non-split
extension

0= 0, = fi0r— 0, = 0.

In particular, f,O, is not a direct sum of simples, nor are all its composition
factors isomorphic to a single simple module. By Example 3.10, ¢ is an epimor-
phism of rings, so f. is full and faithful by Theorem 3.12. However, the “image”
of ModA! in Mod@ does not give a closed subspace, nor, once we have defined
the terms, does it give an open subspace or a weakly closed subspace. o

The next two examples show that the behavior of maps on closed points can
be quite counter-intuitive.
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Example 6.10 Let k be a field with a primitive n'" root of unity £&. Let v =
diag(1,¢,€2,...,&" 1) be the diagonal n x n matrix, and consider the inclusion
map ¢ : k[v] = M,(k). Notice that k[v] = k*", and ModM,,(k) = Modk, so ¢
induces a map of spaces that can be thought of as a map f : Spec k — Spec k*™.
Because the simple M, (k)-module is isomorphic to the direct sum of the n
distinct simple k[v]-modules, this map can be thought of as sending the single
point of Spec k to the n distinct points of Spec k*™. We will sometimes refer to
this as breaking a single point into n distinct points. 1 think of this as splitting
the atom. O

Example 6.11 Let f: A — A! be the map A = A\2. This map is induced by
the inclusion map ¢ : k[z?] — k[z]. We have associated functors f*, f., and
f'. Now f' = Homy,2)(k[z], —) is naturally equivalent to the functor f*. This
follows from the corollary to Watt’s Theorem that states that Hompg(P, —) is
naturally equivalent to — ® g PV whenever P is a finitely generated projective
right R-module. Hence f* is both a left and a right adjoint to f.. Therefore, we
may define a new map (in the non-commutative sense) g : Modk[z] — Modk[z?]
by setting ¢* = f. and g. = f*.

One way to exclude g is to deal only with enriched spaces and to define a
map f: (Y,0y) — (X,0x) to be an adjoint pair (f*, f«) as before, but with
the additional requirement that f*Ox is isomorphic to Oy. Such a definition
excludes g because g*(k[z]) & k[z?] @ k[z?]. O

Example 6.12 Suppose that R and S are k-algebras satsifying the hypotheses
in Proposition 4.16. The inclusions R -+ R®; S and S — R ® S induce
maps from ModR ®j S to ModR and ModS respectively. We refer to these as
the projections onto the first and second components respectively. If m; is the
projection to ModR, then 71,0, 4 is a direct sum of dimy O, copies of O, so
p is the image of (p, ¢) under 71, and (p, ¢) is in the fiber over p. O

Induced modules and fibers. Let R be a subring of a ring S. If M is an
R-module we call M ®g S an induced module. The inclusion R — S induces an
affine map of affine spaces f : ModS — ModR, and M®gS = f*M. When pis a
closed point in ModR we call f*O,, a fiber module. One should think of it as lying
in the “fiber over p”. Fiber modules are used extensively in the representation
theory of Lie algebras. For example, if b is a Borel subalgebra (i.e., a maximal
solvable subalgebra) of a finite dimensional semisimple Lie algebra g, and f is
induced by the inclusion U(b) — U(g), then Verma modules are defined as those
modules of the form f*O, where p is a closed point in ModU (b). When g is
solvable, and A € g*, one chooses a Lie subalgebra b that is maximal subject to
the condition that A vanish on [b, b]; then A defines a closed point p in ModU (b),
and the module f*Q, is a vehicle for carrying information from U (b) to U(g).

Example 6.13 Let k£ be an uncountable algebraically closed field. Let = be
an element in a countably generated k-algebra R. Suppose that z — A is a
regular element of R for all A € k. The inclusion k[z] — R induces a map
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f : ModR — A! = Speck[z]. For each closed point A € Al we call f*O,
the fiber module over A\. By analogy with the commutative case, one would
expect that ModR is the “union” of the fibers of f. We have not defined non-
commutative versions of these terms. However, if z is a function on an affine
scheme X, it is a tautology that X is the disjoint union of the level hypersurfaces
= A, A € k. If X, is a family of closed subschemes of an affine scheme X, then
a closed point p € X is in their union if and only if Ext’ (Oy,,0,) is non-zero
for some i and some A. This suggests that one might be able to use Ext-groups
as a way to measure the analogous non-commutative ideas. As evidence for
this, under the above hypotheses, one can show that if M is a non-zero, finitely
generated R-module, then Ext(f*Oy, M) is non-zero for some i and some .
To see this, observe that

2, R y f*Ox —— 0

0 — R

is a projective resolution, so Ext%(f*Ox, M) is computed as the homology of

the sequence
T—A

0 < M < M < 0.
If all the Ext-groups were zero then these maps from M to M would all be
isomorphisms, so viewing M as a k[z]-module it would in fact be a k(z)-module.
However, k(z) has uncountable dimension over k, whereas M has countable
dimension. Hence the action of some z — A on M fails to be bijective. It follows
that one of Ext-groups is non-zero. O

EXERCISES

6.1 Some questions 77

3.7 Open subspaces

Although open subspaces of a non-commutative space X correspond to localiza-
tions of Mod X (Corollary 7.3) we prefer a definition that resembles the definition
of a closed subspace.

Definition 7.1 Let X be a non-commutative space. A subspace U of X is open
if the inclusion functor j, : ModU — ModX has an exact left adjoint j*. We
call the map j : U — X determined by the adjoint pair (j*, j.) the inclusion of
U.

If U is an open subspace of X we call j* the restriction to U. If M is an
X-module we write M|y for j*M, and if f is a morphism in ModX we write
flu for j*(f).

A map f:Y — X is an open immersion if it is an isomorphism onto an open
subspace of X. ¢
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If z is a regular element in a commutative ring R, the natural ring homo-
morphism R — R, = R[z~!] induces a map j : Spec R, — Spec R for which j*
is the functor M — M ®g R..

Theorem 7.2 Let j : U — X be a map of spaces. Suppose that j* is exact and
that the adjunction n : j*j. — idy is a natural equivalence. Let T be the full
subcategory of ModX consisting of the X -modules M such that j7*M = 0. Then
T is a localizing subcategory of ModX and

ModU = ModX/T.

Proof. Since j* is exact, T is a Serre subcategory of ModX. Let 7 : ModX —
ModX/T be the quotient functor. By Theorem 2.13.9, there is a unique functor
g* : ModX/T — ModU such that j* = g*mn. By loc. cit., g* is exact.

Since g*mj, = j*j. = idy, g* is full and every U-module is isomorphic to
g*N for some X-module N. Hence, to show g* is an equivalence of categories
it suffices to show it is faithful (Theorem 1.6.21).

Let 6 be an X-morphism. Because j* is exact, j*(6) is an isomorphism if
and only if j*(kerd) = j*(coker) = 0. By definition of T this is the same as
the condition that 7(ker ) = w(coker#) = 0. This is equivalent to 7 () being
an isomorphism.

Let 7 :idx — j«j* be the natural transformation. Let M be an X-module,
and apply the previous paragraph to 8 = 73y : M — j.j*M. By hypothesis,
J*(ma) is an isomorphism, so

w(tym) : M — 7 j M = mj g m M

is an isomorphism. Since every object in ModX/T is of the form 7 M for some
M, this produces a natural equivalence idumogx/T — 7mjxg*. It follows that g*
is faithful, and hence an equivalence. In fact, we have g*7j,. = j*j. = idy, so
(g*,7jx) is the adjoint pair implementing the equivalence.

Because ModX is a Grothendieck category, it has enough injectives. There-
fore, by Theorem 2.14.12, to prove that T is localizing it suffices to show that
each X-module M has a largest submodule which is in T. Since j* is a left
adjoint it commutes with colimits. Therefore j* vanishes on the sum of all
submodules of M on which j* vanishes; this is the largest such submodule of
M.

If w is a right adjoint to 7, then (j*w,7j.) = (g*, g«)- O

Corollary 7.3 Let j : U — X be the inclusion of an open subspace. Then
ModU = ModX /T

where T is the localizing subcategory consisting of those M for which j*M = 0.

Proof. By Theorem 2.6.15, the adjunction j*j, — idy is a natural equivalence.
Hence Theorem 7.2 applies. O
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If F: ModX — C is an exact functor, then the full subcategory, say T,
consisting of the modules M such that M = 0 is a Serre subcategory. Let
j : U = X be the open subspace defined by ModU = ModX/T. Then there is
a unique functor G : ModU — A such that F = Gj*. There are two natural
examples.

If I is an injective X-module, then

T = {M | Homx (M, I) = 0}.

Every open subspace arises in this way: given a localizing subcategory, take I
to be the direct product of all the torsion-free indecomposable injectives.
If P is a projective X-module, then

T = {M | Homy (P, M) = 0}.

Proposition 7.4 Let P be a projective module over a ring R. Let I denote its
trace ideal. Then

1. Hompg (P, M) = 0 if and only if M is annihilated by I;
2. I=1I

Proof. (1) By definition of the trace ideal, the natural map Hompg(P,I) —
Hompg(P, R) is surjective. Hence Hompg(P,R/I) = 0. Thus R/I is a torsion
module. Since T is closed uder direct sums and quotients, Hompg (P, M) = 0 for
all R/I-modules M. Hence each R/I-module is torsion.

Conversely, suppose that M is an R-module such that M I # 0. Then ma # 0
for some m € M and a € I. There some ¢ € Hompg(P,I) such that a € im¢.
Define ¢ : P - M by % (p) = mp(p). This is a right R-module map, and
ma € im . Hence Hompg(P, M) # 0.

(2) Since I/I? is annihilated by I, Homg(P,I/I?) = 0. Hence the image of
any ¢ € Hompg(P,I) is contained in I2. Hence, the trace ideal of P is contained
in I2. That is, T = I°. O

We have not defined “unions” or “intersections” of closed or open subspaces.
However, the next result will allow us to define unions of open subspaces, and
it shows that an arbitrary union of open subspaces is again an open subspace.

Lemma 7.5 Let X be a space. Let Ty, A € A, be a family of localizing subcate-
gories of Mod X . Then their intersection T = NTy is also a localizing subcategory
of ModX .

Proof. Let 7, be the torsion functor associated to Ty. By definition T is the
full subcategory of Mod X consisting of those modules M that are in every T .
It is clear that T is a Serre subcategory of ModX.

If M is an arbitrary module, define 7M := Ny7\M. It is contained in each
Tx, so is in T. Moreover, if N is a submodule of M that belongs to T, then
it must be contained in every 7\ M. Therefore 7M is the largest submodule of
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M that is in T. Because ModX has enough injectives, Theorem 2.14.12 implies
that T is localizing. O

By Proposition 3.7, if j : U — X is the inclusion of an open subspace, and
j is an affine map, then U N Z is closed in U.

Definition 7.6 Let Ux, A € A, be a family of open subspaces of X. Write
ModUy = ModX/Ty. Their union, UyUy, is defined by declaring that

Mod Uy Uy = MOdX/T,

where T = N T). Lemma 7.5 ensures that T is a localizing subcategory, so
UU,s is an open subspace of X. If T = 0, then we say that the U,’s provide an
open cover of X. If each U, is affine we say that the Uys provide an open affine
cover of X. O

The next result says that the Uys provide an open cover if and only if every
X-module is determined by its restrictions to the U,s.

Lemma 7.7 Let Uy, A € A, be a family of open subspaces of X, and write U
for their union. Let j : ModU — ModX be the inclusion map. The Uys provide
an open cover of X if and only if the functor j* : ModX — ModU is faithful.

Proof. Adopting the notation in Definition 7.6, j* is faithful if and only if
T = 0. But this is the condition that the Uys provide an open cover. a

Thus an X-module M is zero if and only if M|y, = 0 for all . Similarly, a
morphism of X-modules is zero if and only if its restriction to each U, is zero.
And a sequence of X-modules is exact if and only if its restriction to each Uy
is exact.

Proposition 7.8 Let j : U — X be an open immersion. Let M be an X-
module, and N a U-module. Then there is a spectral sequence

Ext% (M, R%j.N) = Ext}(j* M, N) (7-1)

Proposition 7.9 Let j : U - X be an open immersion. If X is noetherian
and gldim X =1, then j is an affine map.

Proof. Let 7 be the associated torsion functor that sends an X-module to its
largest submodule that j* kills. Then

(R'j,)j* = R*r = 0.

Because j is an open immersion, j*j, = idy, whence 0 = (R'j,)j*j. = Rlj..
Thus j. is exact. By 2.16.4, j. commutes with direct sums so has a right adjoint.
Finally, because j*j. = idy, j« is full and faithful. Therefore j is an affine map.
O
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Corollary 7.10 (Goodearl) Every open subspace of a noetherian affine space
of global dimension one is affine.

Proof. This follows from Propositions 7.9 and 3.4. O

The corollary can be stated in a way that is closer to Goodearl’s original
foormulation. Suppose R is a prime noetherian ring of global dimension one
and S;, i € I, is some collection of simple right R-modules. Set X = Sp(R)
and let Y denote the weakly closed subspace of X defined by declaring ModY
to consist of all direct sums of the S;s. Then X\Y is an open subspace of X.
Goodearl showed that there is a ring Ry containing R such that — ® g Ry kills
the simple modules S; and no others. The equivalent geometric statement is
that X\Y is an affine space.

Compare the simples and closed points in X and X\Y. Show that
if Y is all except one simple, then ModX\Y is local.

EXERCISES

7.1 Some questions???

3.8 Weakly closed subspaces

Theorem 3.14 showed that the closed subspaces of an affine space ModR are in
bijection with the two-sided ideals of R. In general a non-commutative ring can
have few two-sided ideals, and for such a ring knowledge of its two-sided ideals
is not helpful in the study of ModR. Similarly, many non-commutative spaces
have few closed subspaces, and for that reason we introduce a weaker notion
that has proven to be effective.

Definition 8.1 [88, p. 395], [258] A subspace Y of X is weakly closed if ModY is
closed under subquotients, and the inclusion functor i, : ModY — ModX has a
right adjoint i'. (The inclusion functor i, is exact.) ¢

Definition 8.2 A weak map f : W — X between non-commutative spaces is a
natural equivalence class of a left exact functor f, : ModW — ModX.

The inclusion of a weakly closed subspace in its ambient space is a weak
map.

If Y is weakly closed, then ModY is closed under direct limits in Mod X.

A closed subspace is weakly closed.

Example 8.3 If X is a commutative scheme, then the modules supported on
any (possibly infinite) union of closed subschemes is a weakly closed subspace.
If 4, is the inclusion functor, then its right adjoint i' sends a module to its largest
submodule having its support on that union. If X is affine, say X = Spec R, we
can appeal to Theorem 3.14 to see that ¢, does not usually have a left adjoint;
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if it did, then the category of modules supported on that union would be of the
form ModR/I for some ideal I. This is usually not the case. O

Lemma 8.4 FEvery localizing subcategory of ModX is of the form ModY for
some weakly closed subspace Y of X.

Proof. Let T be a localizing subcategory of ModX. Since T is closed under
quotients and subobjects, the inclusion i, : T = ModX is exact. By Theorem
2.16.3, T is a Grothendieck category. The torsion functor 7 : ModX — T is a
right adjoint to ., so T is weakly closed. d

Definition 8.5 Let X be a noetherian space. If Y is a weakly closed subspace
of X, we define Mody X, the category of X-modules supported on Y, to be the
full subcategory consisting of modules M having a filtration 0 = My C M; C
My C --- such that M = U2, M; and each M;/M;_1 is a Y-module. O

Lemma 8.6 Let X be a noetherian space. If Y is a weakly closed subspace of
X, then Mody X is a localizing subcategory of ModX .

Proof. First, Mody X is closed under submodules and quotient modules be-
cause ModY is. Let 0 = L - M — N — 0 be exact, and suppose that L and
N are in Mody X. Write L and N as unions of ascending chains of submodules
L; and N; such that the quotients are Y-modules. If the number of L;’s is finite
we are done.

If M'is a noetherian X-module, then M’ € Mody X if and only if M’ has a
finite filtration with the slices being Y-modules. Since ModX is noetherian, a
module is in Mody X if and only if every noetherian submodule of it is.

So we need only show that every noetherian submodule M’ of M is in
Mody X. Set L' = M'N L, and let N' be the image of M’ in N. Hence
there is an exact sequence 0 - L' - M' — N' — 0 in which L' and N' have
finite filtrations with slices in ModY". Tt follows that M’ also has this property,
so is in Mody X. O

The intersection of a family of weakly closed subspaces is weakly closed.

Need some interesting examples e.g. fibers in Ore extensions.

EXERCISES

8.1 questions??

3.9 Open complements

It is a tautology that every Zariski-open subscheme of a commutative scheme is
the complement of a closed subscheme. The non-commutative analogue is that
every open subspace of a noetherian space is the open complement of a weakly
closed subspace (Theorem 9.3).
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Definition 9.1 Let X be a noetherian space. If Y is a weakly closed subspace of
X, we define its open complement X\Y by

ModX\Y := ModX/Mody X,

the quotient category. (Lemma 8.6 ensures that Mody X is a localizing category,
so the quotient category may be formed.) O

Proposition 9.2 IfY is a weakly closed subspace of X, then X\Y is an open
subspace of X.

Proof. Since Mody X is a localizing subcategory, the quotient functor j* :
ModX — ModX\Y has a right adjoint j.. By Theorem 2.13.8, j* is exact.
Because j*j.« = idx\y, Theorem 2.6.15 ensures that j. is fully faithful. Hence
we may view ModX\Y as a full subcategory of ModX. Finally, ModX\Y is a
Grothendieck category by Theorem 2.16.3. |

Theorem 9.3 Let X be a noetherian space. Every open subspace of X is the
complement of a weakly closed subspace.

Proof. Let j : U — X be an open subspace. By Theorem 7.2, the full subcate-
gory T consisting of the modules M for which j*M = 0 is a localizing subcate-
gory of ModX , and ModU = ModX/T. By Lemma 8.4, there is a weakly closed
subspace Y such that T = ModY. So it remains to see that T = Mody X. It is
clear that T C Mody X, so let M € Mody X. If M’ is a noetherian submodule
of M, then M' € T because T is closed under extensions. Because X is noethe-
rian, M is the direct limit of its noetherian submodules. Since T is localizing,
the inclusion of T in ModX has a right adjoint, and by Proposition 2.16.7 this
implies that the inclusion functor commutes with direct limits. Therefore T is
closed under direct limits, and we conclude that M is in T. O

Different weakly closed subspaces can have the same open complement. This
happens even in the Zariski topology because the open complement to the zero
locus of an ideal I is the same as the open complement to the zero locus of I2.

Proposition 9.4 Let Z CY C X be closed subspaces. Then
1. ModzY = ModY N ModzX;
2. Y\Z is a closed subspace of X\Z;
3. the open complement to Y\Z in X\Z is isomorphic to X\Y.

Proof. We use Proposition 2.13.11. |

The intersection of weakly closed subspaces was defined in ??? and the union
of open subspaces was given in Definition 7.6. Now that we have also defined
open complements we wish to check that these notions are compatible with the
usual topological terminology.
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Proposition 9.5 Let W1,... , W, be weakly closed subspaces of a noetherian
space X. Then

n

U X\Wi = X\([\ W3). (9-1)

=1

Proof. The result for n = 1 is a tautology, so we consider the case n = 2. Both
sides of (9-1) are obtained by localizing ModX, so it suffices to prove that the
Serre subcategories of Mod X involved in defining each localization are the same.
Thus, we must show that if M is a non-zero noetherian X-module, then M is
supported on Wi N...NW, if and only if it is supported on each W;. It is clear
that if M is supported on Wi N...NW, then it is supported on each W;. Thus,
we suppose that M is supported on W; and on Ws. Hence M has two finite
filtrations such that all the slices of one are W;-modules and all slices of the
second are Wa-modules. We must show there is a single finite filtration such that
all the slices are simultaneously W;- and Ws-modules. By noetherian induction
we may suppose that this can be done for every proper quotient module of M.
Thus it suffices to show that M has a non-zero submodule which is both a Wj-
module and a Wy-module. Let i; : W; = X, j = 1,2, denote the inclusions. By
hypothesis, iy M # 0. Being a submodule of a module supported on Wy it must
have a non-zero submodule which is a Ws-module; that submodule is now both
a Wi- and a Ws-module. This completes the proof for the case n = 2. The
general case reduces to the n = 2 case by induction. d

I haven’t been able to prove the previous result for an infinite number of W;.
Part of the problem is that even if ModX is locally noetherian then one need
not have the descending chain condition on weakly closed subspaces (or even
on closed subspaces). For example, in SpecZ there is a chain of wekaly closed
subspaces

{2,3,5,7,...} D {3,5,7,...} D {5,7,...} D ...

And, if ModX is the category of representations of the quiver consisting of
infinitely many vertices and no arrows then ModX is locally noetherian (the
simple modules at each vertex provide a set of generators), but there is an infinite
descending chain of closed subspaces. (Maybe this suggests that the locally
noetherian condition is not quite strong enough if we want a good replacement
for the usual noetherian condition.)

3.10 Divisors and hypersurfaces

Consider an affine scheme Spec R where R is a commutative ring. The open
complement to the closed subscheme Spec R/(z) is Spec R[z~!]. The inclusion
map

j :Spec R[z™'] — Spec R

is induced by the natural ring homomorphism R — R[z~!]. Since R[z !]is a
flat R-module, the inverse image functor j* is exact.
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Definition 10.1 An element z in a ring R is normal if zR = Rzx. O

Proposition 10.2 Let x be a normal regular element in a ring R. Set X =
ModR and Y = ModR/(x). Then'Y is a closed subspace of X, and

X\Y = ModR[z™'].

Proof. The canonical map R — R[z~'] induces a map of spaces f : ModR[z™!] —
X. If N is an R[z~']-module, then N ®g R[z~!] = N, so f*f. is naturally
equivalent to the identity functor.

The X-modules supported on Y are precisely those M such that every el-
ement of M is annihilated by a power of z. These are precisely the modules
such that M ®pg R[z '] is zero. Therefore f* vanishes precisely on Mody X.
It follows from Theorem 7.2 that ModR[z~!] = ModX/Mody X. But this is
Mod(X\Y) by definition, so the proof is complete. O

Questions. What is the right definition of a hypersurface? Let i : Y — X
be a closed immersion. We could say that Y is a regularly embedded hypersurface
if R%i' = 0, as James and I do. But this is equivalent to asking for an affine space
ModR that we have a two sided ideal I that is projective. This is obviously too
strong. But maybe that is adequate to begin with. Perhaps it would be better
to focus on divisors, and adopt Michel’s definition. Possibly, one could try to
phrase the definition in terms of j : X\Y — X. One might also want Mody X
to be closed under injective envelopes.

Let Y be a weakly closed subspace, and set U = X\Y. Let i : ¥ — X
and j : U = X be the immersions. Let 7 be the torsion functor “supported on
Y”. Suppose that R?7r = 0. (Is that a consequence of R%i' = 0?) If Mody X is
closed under injective envelopes, then j, is exact, so the spectral sequence (7-1)
collapses to give

Ext’ (M, j.N) = Ext;(j* M, N). (10-2)
In particular, for closed points p,q € X,
EXt‘IX(opaj*j*Oq) = EXt%J(j*Op:j*Oq)-

If they are non-zero, then j*O, and j*O, are simple U-modules. (Presumably
they give closed points.) This should enable us to relate the links between points
in X to the links between points in U.

3.11 Points and subspaces

Suppose that X is a commutative scheme, Z a closed subscheme, and U its
open complement. If p is a closed point on X, then p is either in Z or U. For
non-commutative spaces, the situation is more complicated.

Definition 11.1 If Z is a subspace of X, we say that a closed point p € X lies on
Z, and we write p € Z, if Op, € ModZ. If p does not lie on Z we write p ¢ Z. {
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Lemma 11.2 Let p be a closed point in X, and let Y be a subspace of X. If p
lies on Y, then it is a closed point of Y .

Proof. Let i : Y — X and 8 : p — X be the inclusions. The hypothesis says
that Modp € ModY. Therefore if a, : Modp — ModY denotes the inclusion,
then 8, = i.a..

To show that p is closed in Y it suffices to exhibit left and right adjoints
to a,. We define a* = $*i, and o = f',. Let M be a Y-module, and V a
p-module. Then

Hom,(a*M,V) = Hom,(8%i.M,V)
= HOmx(i*M,,B*V)
= Homx (1. M, i.a.V)
= Homy (M, a..V).

Thus o* is left adjoint to a,. And

Hom, (V, o' M) = Hom,(V, 8'i. M)
= Homx (8. V, 1. M)
= Homy (ixa.V,i. M)
= Homy (a.V, M).

Thus o' is right adjoint to a,. And O

Let p be a closed point on X. If Y is weakly closed in X, and j : X\Y — X
is the inclusion, then j*Op, =0 if and only if p€ Y.

Lemma 11.3 Leti: Z — X be a closed immersion. Then i sends closed points
of Z to closed points of X.

Proof. Let p be a closed point of Z. Let o« : p — Z be the inclusion
map. Then the adjoint triples (i*,i.,i') and (a*,a.,a'), yield an adjoint triple
(@*i*,icay, a'i') which gives a map ia : p — Z, making p a closed point of
X. Since Modp and ModZ are closed under subquotients in ModZ and ModX
respectively, Modp is closed under subquotients in ModX. Hence p is a closed
point of X. O

Open immersions do not send closed points to closed points. The next
example exhibits an open subspace j : U — X, and closed points p' € U and
p € X such that j*Op = Op, but j,Op 2 Op; thus p' is a k-valued point of
U, but j(p') is not a closed point in X. (Example 6.9 provides another such an
example.)

Example 11.4 The space X = Mod(@ of representations of the quiver

PR (11-3)
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is an affine space with coordinate ring isomorphic to the ring T' of lower trian-
gular 2 x 2 matrices. There are two closed points, p and ¢, with corresponding
simple modules O, and O,. The corresponding maximal ideals are

p= AnnO, = (2 2), and q= AnnQ, = (: 8)
Both are idempotent. By Example 5.14, O, is projective. Hence p is a projective
right T-module. On the other hand, q is a projective left T-module. Both O,
and p are injective right T-modules. As a right T-module q = O, ® O,.

We write N for the nilpotent radical of T'. It equals kea;. We have pg = N,
and gp = 0. As a left T-module, N 2 T'/q. As a right T-module, N = T'/p. It
is easy to check that O, ®1 N =0, and O, ®r N = O,.

The inclusion of N in p gives a non-split exact sequence

0=20,=p—>0, 0. (11-4)

The obvious geometric feature of X is that it has two closed points p and gq.
The point q is both open and closed because the inverse image functor associated
to the inclusion f : ¢ — X is exact: it is given by f* = — 7 T'/q, and T/q is
a projective left T-module. Nevertheless, p is not the open complement to gq.
To see this, let j : X\g = X denote the inclusion. Since (11-4) is the minimal
injective resolution of O,, j:j*Op = p. Of course j,j*O, = 0. Therefore
ModX\g consists of all direct sums of p. Since O, is not an (X\g)-module,
ModX \q is not closed under subquotients. Thus, although ¢ is open in X, X\gq
is not closed in X. In particular, X\gq # p.

In contrast, X\p = ¢. To see this, let i : X\p — X be the inclusion. Then
1404 = O, because O, is injective. Thus ModX \p consists of all direct sums
of O,, whence ModX\p = Modg.

The endomorphism ring of p is isomorphic to k, so X\g is isomorphic to
Speck. In particular, X\g has a unique point. We will label it p'. Thus
Op = p. Notice that j.O,p is not a simple X-module; although j*O, = O,
J«Op 2 Op.

Let S = M»(k). The inclusion ¢ : T'— S induces a map of spaces. Morita
equivalence gives ModS 2 Spec k. By Example 3.9, ¢ is an epimorphism, so the
induced map g : Spec k — X is such that g, is a full embedding (Theorem 3.12).
The simple right S-module is isomorphic to p as a right T-module. We therefore
identify ModS with the full subcategory of ModX consisting of all direct sums
of p. In particular, g coincides with the inclusion of X\g¢ in X. Thus j is an
affine map.

The exactness of g* is equivalent to the fact that S is projective as a left
T-module. Tt is also projective as a right T-module. O

The next result is a corollary to Theorem 4.6.

Proposition 11.5 Let X be a noetherian space over Speck. LetY be a weakly
closed subspace of X, and let j : X\Y — X be the inclusion of its open com-
plement. Let p be a closed point in X such that p ¢ Y. If j.j*O, is tiny, then
there is a closed point p' in X\Y such that j*O, = Op .
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Proof. Since O, is simple, so is 7*O,. So, it suffices to show that j*O, is a
tiny U-module. Let M be a noetherian U-module. By Lemma 2.14.19, there is
a noetherian X-module N such that M = j*N. Therefore Homy (M, j*O,) =
Homx (N, j«j*Op). This is finite dimensional by hypothesis, so j * O is tiny. O

If ¢ is another closed point of X with the same properties as p, and ¢’ is the
corresponding closed point of U, then ¢’ # p’. This is a consegence of the fact
that if O, is not isomorphic to O, then j*O, is not isomorphic to j*O, (see
Lemma 2.14.18).

Example 11.6 The path algebra of the quiver

Q= — .

=0 .. L] Ed

n n—1 2 1

is naturally a subalgebra of M, (k[z]), so there is an associated map of spaces
f : Al - Q. The central element z of M,(k[z]) is in kQ. The inclusion
kQ — M,(k[z]) induces a map kQ[z ] — M,(k[z,z!]). This map is an
isomorphism. It follows that the open subspace of () that is the complement to
the locus where z is zero is isomorphic to the open subspace of Al that is the
complement to the locus where z is zero. Thus Q\Z(z) = A'\{0}. 0

Proposition 11.7 Let M be a simple R-module, and let x be a normal element
in R. Then either Mz = 0, or x acts bijectively on M. In the latter case M
becomes an R[z~1]-module.

Proof. Since z is normal, Mz is a submodule of M, so is either zero or M. The
normality of z also ensures that the kernel of the multiplication map = : M — M
is a submodule of M. Hence if Mz # 0, x acts injectively, and Mz = 0.
When z acts bijectively, we define the action of z—! on M by defining m.z—
to be the unique element m' € M such that m'z = m. This makes M and
R[z~']-module. O

1

Corollary 11.8 Let p be a closed point of an affine space X = ModR. If x is
a normal element of R, then either p is in the zero locus of x, or in its open
complement ModR[z~1].

Questions.

Ifi:Y — X is a weakly closed subspace, and o : p — Y is a closed point,
then i,y : Modp — ModX has a right adjoint a's', but does not appear to
always have a left adjoint. I would like a simple example of this. It suggests
that we might need some notion of a “weakly closed point”. One such example
would be to take a big simple R-module M, and define ModY = Modp to be
the full subcategory consisting of all R-modules that are isomorphic to a direct
sum of copies of M.
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Maybe we should observe that big simples are those such that an infinite
direct product of them is not isomorphic to a direct sum of them.

I have not tried to define a weakly closed complement to an open subspace.
Nor have I tried to say what we might mean by “dense open”.

EXERCISES

1 Questions??

3.12 The graded line

This section concerns a commonly occuring non-commutative space, the graded
line. It, and natural generalizations of it, occur frequently as weakly closed
subspaces of non-commutative spaces that are far from being commutative (see
[228]). For example, section 4.1 exhibits a non-commutative analogue of the
affine plane containing many copies of the graded line.

Definition 12.1 The graded line is the non-commutative space L! = GrModk[x]
where k[z] is the polynomial ring with grading given by degz = 1. (cf. Example
5.26.) %

The closed points in L'. The obvious simple L'-module is k[z]/(z). We
denote this by k and call it the trivial module. If n € Z, we write k(n) for
the shift of the trivial module, which is k[z]/(z) concentrated in degree —n.
The descending filtration k[z] D (z) D (#?) D ... has slices k, k(-1), ...,
descending from the top.

We label the closed points of ! by ... ,—1,0,1,... where

On = k(—n).

Our picture of L! is the following:

(12-1)

The vertex labelled n denotes the closed point nn. There is an arrow from n to
n + 1 because Ext{ 1(0,,0,) = k if m = n 4+ 1 and is zero otherwise. The
dashed line through the point n represents the shifted module A(—n).

The picture of the graded line is, in some sense, a limit of the pictures (5-3)
of the quivers whose path algebras are the lower triangular matrix rings. It
suggests that the spaces with coordinate rings the lower triangular matrix rings
should be closed subspaces of the graded line, and that GrModk[z] should be
like the category of modules over larger and larger triangular matrix algebras.
The next two results make this precise.
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Lemma 12.2 LetT be the ring of doubly infinite lower triangular matrices over
k having only a finite number of non-zero entries. It does not have an identity.
Let ModT' denote the category of right T-modules M satisfying M = . Me;;.
Then the category GrModk|z] is equivalent to ModT'.

Proof. This is essentially proved in Example 5.26. O

Lemma 12.3 Fiz an integer n > 1. Let a € Z. The full subcategory of
GrModk[z] consisting of the modules having support in {a,a+1,... ,a+n—1}
is a closed affine subspace of GrModk[z] with coordinate ring the ring of n x n
lower triangular matrices over k.

Proof. The argument in Example 5.31 applies. O

Proposition 12.4 Speck is an open subspace of the graded line. It is the open
complement to the closed points.

Proof. Let Y be the weakly closed subspace of the graded line defined by declar-
ing ModY to be the full subcategory of GrModk[z] consisting of all semisimple
modules. Then modylL! consists of all the finite dimensional k[z]-modules.
Therefore Mody L' consists of all modules M such that every element of M is
annihilated by some power of x. Therefore

ModL!\Y = GrModk[z,z 1],

and the inclusion L'\Y — L! is the affine map induced by the graded ring ho-
momorphism k[z] — k[z,z~!]. Since k[z,z!] has a unit in every degree it is a
progenerator in GrModk[z, z~!]. Hence GrModk|[z,z~!] is equivalent to the cat-
egory of modules over the endomorphism ring of k[z,z~1]. This endomorphism
ring is isomorphic to k, so GrModk[z, z7!] is equivalent to Modk. O

The dashed lines in (12-1) are meant to represent the generic point Speck
of the graded line.

A localization of a ring is rarely isomorphic to the original ring. Similarly,
if one removes a point from a variety the resulting variety is never isomorphic
to the original variety. It is therefore a surprise that the open complement to a
closed point on the graded line is itself isomorphic to the graded line.

Let A denote GrModk|z], and let T denote the full subcategory of A consisting
of all direct sums of the trivial module k¥ = k(0). Let 7 : A — A/T be the
quotient functor, and w its right adjoint. We denote the counit by 5. Thus, for
each M € A, there is a canonical map

Ny M — wnM.

If this map is an isomorphism we say that M is saturated and torsion-free. We
denote the full subcategory of such modules by B. Since 7w = ida/1, m and w
implement an equivalence between B and A/T.
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Lemma 12.5 Let M be a graded k[z]-module. Then M is saturated and torsion-
free if and only if the action of x : My — M is a vector space isomorphism.

Proof. There is an exact sequence
0—7M - M — wrM — R'M — 0,

where 7M is the sum of all submodules of M isomorphic to k(0). Therefore nar
is injective if and only if the map x : My — M; is injective. Since wrM is the
largest essential extension of M /7T M with the quotient belonging to T, R'7M is
zero if and only if Exty (k, M) = 0. But Exty(k, M) is isomorphic to M; /z My,
so M is surjective if and only if M; = xM,. a

Theorem 12.6 If p is a closed point of the graded line L', then L'\ {p} = L!.

Proof. We must show that the categories A/T and A are equivalent.

It is well-known that A is equivalent to the representations of the quiver
having vertices labelled by the integers and arrows n — n + 1. For the purposes
of this proof it is helpful to adopt a different labelling of this quiver.

Let @ be the quiver with vertices Z\{0}, and arrowsn — n+1ifn ¢ {-1,0}
and —1 — 1. To simplify notation, if n € Z\{0} we define

n+1 ifn# -1,
®1=
" {1 ifn=—1.

Thus for every vertex n in @, there is an arrow n — n @ 1. Therefore A is
equivalent to the category RepQ of representations of (). A representation of Q)
will be denoted by (V, p) where V is a sequence of vector spaces V,,, n € Z\{0},
and p is a sequence of linear maps p,, : V, = Vag1, n € Z\{0}.

We will prove the theorem by constructing mutual quasi-inverse functors
F :B — RepQ and G : RepQ — B.

If M is a graded k[z]-module, we define a representation (F M, p) of @ as
follows. If n € Z\{0}, we set

(FM),, := M,

and
_ Jmultiplication by z  if n # —1,
pn = multiplication by z? if n = —1.

If f: M - N is a morphism in A we define F(f) : FM — FN to be the
restriction of f to F'M.

If (V, p) is a representation of @), we define the Z-graded k-vector space GV
by
V., ifn#£0,

GV), =
(@V) {Vl if n =0,

if n € Z. We give GV the structure of a graded k[z]-module by defining the
action of z on (GV),, as follows:
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o if n¢ {—1,0},then z: (GV)n = Vo, = (GV)nt1 = Vag IS pa;
e I (GV)_1 =V_i—- (GV)() =V is P—1;
e z:(GV)o =V1 = (GV)1 = Vi is the identity.

The last of these requirements ensures that GV is torsion-free and saturated, so
GV €B. If 6 : (U,u) — (V,p) is a morphism in RepQ, we define G(0) : GU —
GV on each component to be the corresponding component of §. Thus G is a
functor RepQ — B.

We define a natural transformation 7 : idg — G o F' by defining 727 : M —
GFM as follows:

id if n # 0

n:Mn GFMn:

To see that 737 is a morphism in A requires checking that 75y commutes with
multiplication by z. If n ¢ {0,—1} it is clear that z o (Tar)n = (T )nt1 0 T :
M, — (GFM),t1. The only two interesting cases, n = —1 and n = 0, are
checked by verifying the commutativity of the diagrams

Mo, DT Gy = M,
My 2= (GFEM), = M,

and
My 2= (GEM), = My

wl lid
My, 2T GEM, = M.

Thus 7as is a morphism in A. If f: M — N is a graded k[z]-module homomor-
phism, then the diagrams

M, 0 (GFM),
In l l (GFf)n
N, e (GFN),
commute for all n, so 7 is a natural transformation. It is clear that 7,7 is bijective

(because M is saturated (7ar)o is bijective), so 7 is a natural isomorphism. O

Corollary 12.7 If p1,... ,pn are closed points of the graded line L', then
Ll\{pl,... ,pn} ELI.
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Proof. This is proved by induction using one simple at a time and appealing
to the theorem. O

The local ring Ox;, at a point p on a reduced scheme X, or rather its
module category, may be obtained as the quotient category of ModX modulo
the localizing subcategory consisting of all direct limits of those finite length
X-modules that do not have O, as a composition factor.

We can carry out the analogous construction for the graded line. First we
fix a closed point ¢ € L!. Without loss of generality we can and will assume
that O, = k[z]/(z).

Proposition 12.8 Let W be the weakly closed subspace of ' such that modW
consists of the finite length L' -modules that do not have Oy as a composition
factor. Let T be the ring of lower triangular 2 X 2 matrices over k. Then there
is an open immersion j : Sp(T) — L' sending Sp(T) isomorphically to L*\W.
Furthermore, j is an affine map, and j*O4 =77 and

Proof. Write A = k[z]. Let
7 : ModL' — ModL' /Modw L' = ModL'\W

be the quotient functor. We will show that P := 7nA®wA(—1) is a progenerator
in ModL! \W and that its endomorphism ring is isomorphic to 7. Then, viewing
P as a T-(L'\W)-bimodule, it induces a map L'\W — Sp(T') which is an
isomorphism.

Since {A(n) | n € Z} is a set of generators for ModL!, their images under
form a set of generators for ModL!\W (see the proof of Theorem 2.16.3).

The L'-module E := k[z,x~!] is uniserial, its only proper submodules being
{z7"k[z] =2 A(n) | n € Z}. It follows immediately that

k[lz,z71] ifn >0,
" "k[z] ifn<O0.

wrA(n) = {

Since 7w = idp1\w,
{rA(n) | n € Z} = {rA,mA(-1)},

so P is a generator for ModL!\W.

Since gldimL! = 1, the open immersion L'\W — L! is an affine map
and w is an exact functor (Proposition 7.9). Hence m preserves projectives.
In particular, P is a projective L'\W-module. Since it has a right adjoint, w
commutes with direct sums. It follows from this that Homy 1\ (P, —) commutes
with direct sums, so we conclude that P is a progenerator in ModLL! \W, and

ModL'\W = Mod(Endy1\yw P).
It is clear that

. (Hom(wA(-1),7A(-1)) Hom(wA,wA(-1))
Endpnw P = ( (I)-Iom(ﬂ'A(—l),ﬂ'A)) (I)-Iom(wA,ﬂ'A)) )
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It is now an elementary task to check that this ring is isomorphic to T'.
By applying wm to the short exact sequence

05 A(-1) > A—>0,—0,
one obtains an exact sequence
0= 0, 271A =70, = 0.

It is clear that mA(—1) is a simple L' \W-module, and that 7 A(n) has length
two for n > 0. O

3.13 Projective modules and open subspaces

Proposition 13.1 Consider an affine space X = ModR. Let Pr be a finitely
generated projective R-module, and let T be its trace ideal in R. Let Z = Z(T)
be the closed subspace of X where T wvanishes. Then the open complement to
Z in X is isomorphic to ModS, where S is the endomorphism ring of the left
R-module P* = Hompg(P, R).

Proof. Since P* is an R-S-bimodule it induces a map j : ModS — ModR
with j, = Homg(P*,—) and j. = — Qg P* = Hompg(P,—). The adjunction
1 : j*j«idg is a natural equivalence because if N is an S-module, then

j*jx» = Homg(P,Homg(P*,—))
= HOms(P ®g P*, —)
= Hom(S,—) by Proposition 2.10.7.

By Proposition 7.4, j* vanishes exactly on ModZ. The result now follows from
Theorem 7.2. O

Proposition 13.2 Let f : Y — X be a map between the affine spaces Y =
ModS and X = ModR. Suppose that the corresponding bimodule B = f*(R) is
finitely generated and projective as an R-module. Let T be the trace ideal in R
of BY = Hompg(B, R), and let Z = Z(T) be the closed subspace of X where T
vanishes. If p is a closed point of X, then f*O, =0 if and only if p € Z.

Proof. We will prove more. We will show that an X-module M satisfies
f*M =0 if and only if M is a Z-module.

By definition, T is the image of the natural map B ®s BY — R of R-R-
bimodules. Hence there is a commutative diagram

B®SBV

|

T — R
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in which « is surjective. This gives a commutative diagram

M ®r B ®s BY

M®al

M®rT ——> M®rR=2M

in which M ® «a is surjective. The image of the bottom map is MT. Since M
is a Z-module if and only if MT = 0, M is a Z-module if and only if the map
M ® B® BV — M is zero.

But f*M = M ®g B, so M is a Z-module if f*M = 0.

Conversely, suppose that M is a Z-module. Then the map M ® B BY — M
is zero, and hence the induced map

M®B®BY®rB— M ®gB (13-1)

is also zero. By hypothesis, gB is finitely generated projective, so we may
choose dual bases by € B and ) € BY. The effect of the map (13-1) is

Y mebe @by Y m®B(b)by =mb.
A A
It follows that M ® g B = 0. Thus f*M = 0. |

Lemma 13.3 Let B be a finitely generated projective left R-module. Set S =
Endg B. Let Y = ModS and X = ModR be the associated affine spaces, and let
f:Y — X be the map corresponding to the R-S-bimodule B. Then the natural
transformation f*f. — idy is a natural equivalence.

Proof. Let BV = Hompg(B, R) have its natural S-R-bimodule structure. By
Proposition 2.10.7, BY ®g B is isomorphic to S as an S-S-bimodule. Therefore

O

Lemma 13.4 Let X = ModR be an affine space. Let e be an idempotent in R,
and define Y = Mod(eRe). Then Y is isomorphic to the open complement in
X of the closed subspace Z(e).

Proof. Write S = eRe. Let f : Y — X be the map corresponding to the
R-S-bimodule Re. This bimodule is a finitely generated projective R-module,
so f* is exact and there is a natural equivalence f*f, — idy. Hence, the result
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will follow from Theorem 7.2 once we show that f. embeds ModS as a full
subcategory of ModR. But

f« = Homg(Re,—) = Homg((1 — e)Re, —) & Homg(eRe, —),

and this is full and faithful because its summand Homg(eRe, —) is the identity
functor. 0

We wish to apply this to a space having a skew group ring as its coordinate
ring.

Definition 13.5 Let A be a ring on which a group G acts as automorphisms. We
write the action multiplicatively: the effect of g € G acting on a € A is denoted
by afd.

The skew group ring A « G is the free left A-module with basis the elements
of G, and multiplication rule ag.bh = ab/gh for g,h € G and a,b € A. A typical
element of A x G may be written uniquely as deG rqeg, where r, € A. ¢

The elements of G also provide a basis for A * G as a right A-module.

Example 13.6 Let k be a field with a primitive nt" root of unity, £. Let G
be the cyclic group of order n, with generator o. Define an action of G as
automorphisms of the polynomial ring A = k[u] by declaring «” = &u. Let
R = A x G. Then the category ModA % G is equivalent to the category of
representations of the quiver

Q = L] =0 =0

n  n-1 2 1

To see this, let M be an A * G-module. Since k has n distinct n*® roots of
unity, M decomposes as a direct sum of its o-eigenspaces, say M = My &
M &...® M, 1 where M; = {m € M | m.c = &m}. It is easy to see that
M;.u C M;y1, so we assign to M the representation of the quiver that assigns
the vector space M; to the it vertex, and assigns to the arrows the action of
u on each component. Conversely, a representation of the quiver can be made
into a kfu]-module in the obvious way. There are some details to check, but the
idea is clear. O

When a group G acts as automorphisms of a ring A, the subring of invariants
is
A% :={a€ A|a? =a}.

Lemma 13.7 Let A be a ring, and G a finite group acting as automorphisms
of A. Write R = A% G. Suppose that |G| is a unit in A. Define

e= é > (13-2)

geG
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This is an idempotent in R, and there is a ring isomorphism
eRe = A°.

Proof. Write n = |G|. Since eg = e for all g € G, Re = Ae. Similarly, eR = eA.
Hence eRe = eAe. For a € A, we define

a= |G|Za9

geG

It is clear that @ € A%, and that every element in A“ is of this form. We will
use the fact that eae = ea = ae for all a € A.

Define ¢ : eAe — A% by p(eae) = a. If @ = 0, then eae is zero because it
equals ea. Hence ¢ is injective. It is surjective by an earlier remark, so we only
need to check that ¢(eae.ebe) equals ab. We have

©(eae.ebe) = p(eabe) |G| Z Z ab? = ab

g €eq
as required. O

We are now in a position to apply Lemma 13.4.

Example 13.8 Let A be a ring, and G a finite group acting as automorphisms
of A. Write R = A x G. Suppose that |G| is a unit in A, and let e be the
idempotent in (13-2). Lemma 13.4 gives a map of spaces

j:ModAY — ModA * G (13-3)

which is an isomorphism outside Z(e). If R is a simple ring, then ReR = R, so
Z(e) = ¢, and the two spaces are isomorphic.

Now reconsider Example 13.6. The n one-dimensional representations of
@ give n one-dimensional modules over A * G. If we denote by V; the one-
dimensional representation on which ¢ acts via multiplication by &%, then V;.e =
0 for i # 0, and e acts on Vg as the identity. Therefore Z(e) contains the points
corresponding to the simples Vi,...,V,_1. If S is one of the n-dimensional
simples, then Se # 0. Now AY = k[u™], so the map j in (13-3) embeds the
affine line A! as the open complement to the closed subspace consisting of the
n — 1 points corresponding to Vi,... ,V,_1. That is, we have a map

f: Al = ModkQ.

By symmetry, if Z is the closed subspace consisting of any n — 1 of the Vs,
then the open complement to V; is isomorphic to Al. More precisely, if o; is the
rotation of () sending the vertex labelled j to that labelled j + 4, then there is
an induced algebra automorphism o; : k@ — k@, and hence an automorphism
of the space o; : Modk@Q — Modk(@Q. Thus each o; o f gives a map from Al to
Modk@Q. o
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EXERCISES

13.1 Jazz up Example 11.4, and describe the geometry of the affine space with coordinate ring
equal to the ring of n X n lower triangular matrices.

13.2 If A = k[z] and B = k[z?] show that the inclusion

(B zB

=B B)—)MQ(A)

is an epimorphism in the category of rings.
13.3 Discuss the epimorphism in the previous exercise in terms of the geometry of the spaces.

13.4 Adopting the notation in Example 13.6, show that there is an isomorphism A x G 22 kQ.

13.5 Give an example to show that there are problems with torsion in the non-
noetherian case even for a commutative ring. Take R commutative, and I a non-noetherian
ideal. Say that m € M is I-torsion, if ma = 0 for some a € T

3.14 Pictures of non-commutative spaces

We want to draw pictures of non-commutative spaces. The picture is intended
as a heuristic device which encodes some of the structure of the module category.
It is valuable to the extent that it suggests, or reflects, the existence of maps
between different spaces. The examples in section 3.6 and in this section show
that the pictures carry information about such maps.

The pictures need not be drawn according to a strict set of rules, but there
should be some conventions we all agree on. The pictures that are drawn when
talking about an algebraic variety usually contain only the data that is relevant
to the discussion at hand. When discussing a surface, we draw a picture of a
surface defined over R, and we might draw some singular points, perhaps one
or two curves illustrating their intersection points, and so on.

Convention 1. The conventions for drawing non-commutative spaces should
be compatible with the unwritten rules that are followed in the commutative
case.

For example, many non-commutative spaces contain subspaces that are com-
mutative, and the pictures should make this apparent.

Convention 2. The points we draw in the picture correspond to simple
modules.

This convention is compatible with what is done in the commutative case (cf.
the Nullstellensatz, and section 3.4). We do not always draw all the points. If
we did, then for a commutative surface, the picture would be completely black,
and we could not draw any special curves. We draw some points and leave the
reader to fill in the blanks. The white space in the picture is as important as
the parts that are filled in.

For finite spaces it is reasonable to draw all the points.
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Convention 3. If k@) is a finite dimensional path algebra, then @ itself is
a good picture of the non-commutative space Modk(Q).

The pictures of the quivers that were drawn in section 3.5 contain enough
information to reconstruct the category Modk@ (cf. Theorem 5.9). The vertices
of ) are in bijection with the simple kQ-modules, and, by Proposition 5.21, the
arrows allow one to recover the extension groups between the simples.

The data contained in the arrows is non-commutative. If X if a commutative
scheme and p and q are distinct closed points, then Extﬁg((’)p, O,) = 0. This is
false in the non-commutative case.

Convention 4. If p and ¢ are distinct points such that Ext} (0,, 0,) # 0,
then we draw an arrow p — gq.

For example, the picture of the space having coordinate ring the n x n lower
triangular matrices is the quiver

n—1 n

i et e.ec el % (14-1)

For infinite dimensional path algebras the quiver is not the appropriate pic-
ture of the space. For example, the path algebra of the quiver with one vertex
and one arrow is the polynomial ring k[z], and a better picture is that which is
usually drawn for the affine line, namely

The points on the line represent the simple modules or closed points but, the
picture carries no information about the base field. We draw the same picture
whether the field is R, or Q, or C, or C(¢), or Fpn.

Example 14.1 A variation on the graded line is given by the space GrModk[y]
with degy = n > 1. There is a non-split extension 0 — k(—n) — k[y]/(v?) —
k — 0, and it follows easily that the picture of GrModk[y] is similar to (12-1)
except that each arrow now goes n steps to the right. For example, if n = 2,
the picture is

\ | N | \ |
m\/\—\\m\

...... ° e e e e ° e [P
N | S~ 1 |
\ | \ | \ |

For simplicity we only discuss the case n = 2, but everything generalizes to
arbitrary n in a straightforward way. The fact that there are no arrows from
the even vertices to the odd vertices, and vice versa, suggests that the space
should decompose as two copies of the graded line. This is indeed the case.
Each module decomposes into two submodules, namely its even degree and odd



178 CHAPTER 3. NON-COMMUTATIVE SPACES

degree components, and there are no non-zero maps between modules concen-
trated in even degrees and modules concentrated in odd degrees. More formally,
GrModk[y] is equivalent to the category of graded modules over

(’8 g) © k[z]

where degz = 1, and degeq; = degeaa = 0. O

If Q' is a subquiver of @, then there is an obvious sense in which the picture
of Q' is a “sub-picture” of the picture of Q). More generally, one might expect
that the picture of a weakly closed subspace should be a “sub-picture” of the
picture of its ambient space. Corollary 14.3 below says the arrows in the picture
of a weakly closed subspace remain in the picture of its ambient space.

Proposition 14.2 Leti:Y — X be the inclusion of a weakly closed subspace.
Let N be a Y-module, and M an X-module. There is a Grothendieck spectral
sequence

EZ" = Ext}, (N, R%'M) = Ext% (i.N, M). (14-2)

Proof. Let F = Homy (IV,—). A right adjoint to an exact functor preserves
injectives so, if E is injective in ModX, i'E is injective in ModY". Thus i' is right
acyclic for F. Hence there is a third quadrant Grothendieck spectral sequence

(RPF)(R%") (M) = R"(F o i')(M).

But F oi' = Homy (N, =) o4’ =2 Homx (i, N, —), thus giving the result. O

The five term exact sequence arising from this spectral sequence is

0 — Ext} (N, i'M) = Ext% (i.N, M) — Homy (N, R'i'M) — (14-3)
— Ext3 (N, i' M) — Ext} (i.N, M)

Corollary 14.3 LetY be a weakly closed subspace of X. Suppose that p and ¢
are closed points of X that lie onY . If Ext}, (0,, 0,) # 0, then Ext% (0,,0,) #
0.

Proof. By hypothesis, i'O, = O, and i'O, = O,, so this follows immediately
from the five term exact sequence. d

Hence, if Y is weakly closed in X, and p and ¢ are closed points of X that
lie on Y, if we draw an arrow p — ¢ to indicate that Exty, (0,,0,) # 0, then
that arrow remains in the picture for X.

The next example, an affine space of the form ModsS, is a typical non-
commutative affine curve. The curve has a dense open subset that is a commu-
tative curve. This is because the localization S[z 1] is a matrix algebra over
a commutative ring, so its module category is equivalent to that of its center.
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Because S is a finite module over its center, say Z, the inclusion of the center
induces a finite map from the non-commutative curve to the commutative curve
Spec Z, and that map is an isomorphism on a dense open set. In Chapter ??
we will see that this behavior is typical for non-commutative affine curves.

Example 14.4 (The broken line) Let n > 2 be an integer. Let X = ModS
where S is the path algebra of the quiver

(14-4)

=0 E-4

n—1 o 2 1

.
n

The representation theory of S is described in Proposition 5.23. There are n
one-dimensional simple modules, and there is a family of n-dimensional simples

parametrized by A'\{0}. Our picture of X is as follows.

‘ e (14-5)

The picture is an affine line with the origin replaced by a cycle of n points
arranged as in the magnified circle. For this reason we call X a broken line. The
points on A'\{0} are in bijection with the n-dimensional simples, and the n
points that replace the origin are the n one-dimensional simples that correspond
to the irreducible representations of the quiver gotten by placing k at one vertex
and zeroes at the other vertices.

The arrows in the quiver give one-dimensional Ext-groups between the one-
dimensional simples, and hence give the arrows in the picture (14-5). The fact
that there are no other arrows follows from a consideration of the central ele-
ments that annihilate the simples. The center of S is isomorphic to k[z], and a
one-dimensional simple has central annihilator (z) whereas an n-dimensional
simple has central annihilator (z — A) for some non-zero A € k. It there-
fore follows from the remarks after Lemma 5.19 that any extension between
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a one-dimensional and an n-dimensional simple splits, and also that extensions
between non-isomorphic n-dimensional simples split.

The inclusion k[z] — S of the center of the algebra gives a map f: X — Al.
As explained in Example 5.32, the map f collapses the n special points of X to
the origin, and sends the other points bijectively to A'\{0}. O

The picture of the space X in the previous example in the case n = 2 is
similar to the picture of the affine line with a double origin. The affine line
with a double origin, which we denote by Z, is the standard example of a non-
separated scheme. It is usually drawn as

The difference is that in X the two origins are linked by arrows. The relation
between Z and X is made precise in Example ??.?7? where we construct a map
f: X = Z. There is a sheaf of rings R on Z such that H°(Z, R) is isomorphic
to S, the coordinate ring of X.

Example 14.5 (Example 14.4 continued). The ring S is not a maximal order.
One maximal order properly containing it is M, (k[z]). Conjugating this by the
elements u?, 1 < i < n gives n distinct maximal orders T1,... ,T, containing
S. Each T; is isomorphic to M, (k[z]). Now let Z denote the affine line with n
origins. Let Uy, ... ,U, be the n different affine lines covering Z and construct
a sheaf of Oz-algebras R by defining R(U;) = T;, and glue these in the obvious
way using the inclusions of all T; in M, (k(z)). Then H*(Z,R) = Ty N...N
T, = S. The inclusion S — T; induces a map of non-commutative spaces
fi + A' = ModS. Since S is hereditary, each T; is a projective S-module, so
each f} is an exact functor. It follows that f; embeds Al as an open subspace
of ModS.

Let P; be the i*® row of S. This is an indecomposable projective right S-
module, and it maps onto the one-dimensional simple labelled V; in Proposition
5.23. It is also a k[x]-S-bimodule, so induces a map A! — ModS. This is
probably the map f;. The direct image functor for this map is N — N Qg P;.
This sends k[z] to P;, and sends the exact sequence

0 y k[z] — klz] —— k[z]/(z) —— O

to

0 > P; y P; > P;JzP, —— 0

T

Let @; be the subquiver of ) gotten by removing the vertex labelled
i. Then Mod(@);, which is the affine space with coordinate ring the n x n lower
triangular matrices, is a closed subspace of X. The points of Mod@; are the
special points except the one at the vertex labelled i. Show that the open
complement of this is the “image” of f;. O
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Next is an example of an affine space that is presented in a way such that
its affinity is not immediately obvious. One way to show it is affine is to exhibit
a progenerator.

Example 14.6 Consider the ring A = k[t] endowed with the Z,-grading in
which degt = 1. Proposition 5.24 shows that the space GrModk][t] is isomor-
phic to the space Modk(@) where @ is the quiver (14-4) in Example 14.4. Tt is
instructive to see how drawing a picture of GrModk([t] suggests this isomorphism.

There is a family of n-dimensional graded simple k[t]-modules parametrized
by A'\{0}, namely

Sy=A/(t"—)), O0#N€k.

Multiplication by ¢ gives an isomorphism Sy — Sx(1). There are n one-
dimensional simple modules, namely k¥ = A/(t), and its shifts k(i) for i =
1,...,n — 1 € Z,. The non-split extension 0 — k(—1) = A/(#?) = k — 0,
and its shifts, show that Extg, (k(i), k(i — 1)) # 0. Tt is easy to see that there
are no non-split extensions between two non-isomorphic n-dimensional simples.
Therefore the picture of GrModk[t] looks just like that for kQ (14-5).

An alternative way of showing that GrModk[t] is isomorphic to Mod@ is to
observe that P = A® A(1)®...® A(n—1) is a progenerator in GrModA. Then,
by Theorem 2.9.6, GrModk[t] is equivalent to the category of modules over the
endomorphism ring of P.

The endomorphism ring of P can be computed by thinking of P as a row
module with its endomorphism ring acting by right matrix multiplication. Since
Homg,(A(4), A(j)) = A;_;, the endomorphism ring is the n x n matrix ring with
A;_; in the ij-position. If one writes this out explicitly, one sees that one gets
a ring that doesn’t look like the matrix ring in Proposition 5.23; it has a more
symmetric appearance. Nevertheless, it is not difficult to check that there is an
isomorphism (cf., Example 9.1).

It is also instructive to examine this broken line from the graded module
point of view. The map from it to A! comes from the inclusion k[t"] — A. The
functor from GrModA to Modk[t"] given by taking the degree zero part of a
graded module has a left adjoint — ®g4») 4, and a right adjoint Homyn (4, —),
where the grading on A is used to induce a grading on the module. For example,
the degree i component of N ®;; A is N ® A;, and the degree ¢ component of
Homk[tn] (A, N) is Homk[tn] (A_i, N)

The fiber of this map over zero is the closed subspace GrModkl[t]/(t?) of
GrModk([t], and the open complement of this is GrModk[t,t~'], which is eas-
ily seen to be isomorphic to Al\{0} because k[t,#~!] is a progenerator with
endomorphism ring its degree zero component k[t™,t~"]. ¢

Example 14.7 Let Y = ModR, where

= (Z%ﬂ k?w]) |
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is the tensor product of the lower triangular 2 x 2 matrices over k with k[z]. In
commutative algebraic geometry the tensor product of the coordinate rings of
two affine schemes is the coordinate ring of the product of the schemes. Since
our picture of the lower triangular matrices over k is ¢ — e, this suggests that
our picture of R should be

This is a picture of two copies of the affine line, with an arrow from a point p in
the top line to the point p in the bottom line. This is reasonable since R has two
families of simple modules, each parametrized by A', and there are non-split
extensions in the obvious way. Indeed, each vertical slice of the picture can be
thought of as ModR/(z — X), A € k, which is isomorphic to the 2 x 2 lower
triangular matrices. Alternatively, the inclusion of the center k[z] — R induces
a map of affine schemes f : Y — Al with the fiber above A being ModR/(z — \).
o

Pictures of commutative schemes do not usually include any data related to
non-closed points. The pictures in Mumford’s red book [165, pages 102-103],
and those in Eisenbud and Harris’ book [78, pages 40-41], show the mess that
results from drawing too many open points.

However, for non-commutative spaces it can be helpful to include a represen-
tation of non-closed points in a picture of the space. For example, the dashed
lines in (12-1) represent the generic point of the graded line.

In the commutative world it is common practice to omit data relating to
nilpotents in the structure sheaf. The pictures on [78, pages 52-53] are standard
depictions of schemes with nilpotents. For example, the standard picture of
Spec k[z]/(z?) is

o — (14-6)

But it soon becomes difficult to distinguish such pictures of Spec k[z]/(z™) for
various n.

Nilpotent ideals can play a different role in non-commutative rings, and
sometimes information about them can be encoded in the picture. For example,
the nilpotent radical of the ring of 2 x 2 lower triangular matrices links together
the two points in the picture

c——e (14-7)

Nevertheless, as the next example illustrates, our pictures do not contain much
information about the nilpotent ideals.
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Example 14.8 Let T be the ring of n x n lower triangular matrices over k.
Let I be an ideal contained in the square of the radical. Then T'/T still has n
simple modules Sy, ... ,S,, and Exth(S;, Siy1) #0fori =1,... ,n—1, so the
picture we draw for T'/I is the same as that for T'. ¢

The limitations of the pictures. Although these pictures are useful, we
should be aware of their limitations. For example, if R is a finite dimensional
local k-algebra, the picture of ModR consists of a single point, and an arrow
from it to itself if R # k. Even when R is commutative this data gives no
insight into the potentially complicated structure of ModR. A finer study of
ModR must rely on identifying “important” families of modules. Such families
might sometimes be viewed as non-commutative spaces.

Ubiquity. Several of the examples which have appeared so far turn up in
a wide range of situations. For example, any non-commutative space having an
arrow between two points has a closed subspace isomorphic to ModTy. If Q' is
any quiver having an infinite dimensional path algebra, then @' has a subquiver
of the form

L] >0

n  n—1 2 1

and hence a closed subspace that looks like (14-5).

There is a theory of blowing up for non-commutative surfaces [258]. The
fiber over the point blown up need not be isomorphic to P!, but the only other
possibilities are the graded line (12-1) and the projective completion of the
broken line (14-5). The latter is discussed in detail in Example 9.1.

EXERCISES

14.1 Let A be a ring graded by a finite group G. Show that P = @4cgA(g) is a progenerator
in GrModA, and hence that GrModA is an affine space.

14.2 Consider Example 14.6. Show directly that the endomorphism ring of the module P in
that example is isomorphic to kQ.

14.3 Let A = k[z,y]/(z% — y®) be the commutative ring graded by the group Zs x Z3 with
degz = (1,0) and degy = (0,1). Find all the simple modules in GrModA, and draw
a picture of GrModA. Use the previous exercise to find a coordinate ring of GrModA.
Directly describe the representation theory of the ring.

14.4 Draw a picture of the affine space with coordinate ring
klz] (z) (=)
k[z T—1
r=(F GL)) eu (ke Kal @)
klz] klz] k2]
[Hint: use Proposition 4.16, but observe that this tensor is over k[z], not over k.]
14.5 Draw a picture of the affine space with coordinate ring

el (@) (2)
_(de G-y (FE
= (i) km>®k@H ﬁ}éﬁ)
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Since there is a surjective ring homomorphism 7" — R, ModR is a closed subspace of ModT'
(it is a curve on the surface). Show it in your picture. [Hint: think about the kernel of
the map T' — R.]

14.6 Repeat the previous two exercises for the ring

W @) @)
(M @ 1o
n= (i} 4) (',ZH i M)

3.15 Questions

Is there a definition of map that would exclude the map g in Example 6.11
without requiring us to restrict our attention to enriched spaces?

Can we define the locus where a map f : ¥ — X is regular? Is there a
maximal open subspace of Y on which f is regular.

Can we define fibers? If f : Y — X is a map, and Z is a closed subspace of
X, how should f=(Z) be defined? Keep in mind the problem of f~1(¢) when
f : P! — Speck. There is a commutative diagram

Modf~1(Z) ModY

J

.| |-

ModZ  — ModX
where ¢ : Z — X is the inclusion, j, is the inclusion functor, and g, is the
restriction of f. to Modf~1(Z). If f. is exact, Modf~1(Z) is closed under
submodules, quotient modules, and direct sums. Therefore, if we assume that
Y is noetherian, j, has a right adjoint j'. With this definition, the fiber in
Mod(R ®y. S) over p € ModR as in Example 6.12 is equal to Mod(R/m,, ®j S),
and this is isomorphic to ModS.

Should the “image” of a closed point p € Y be the smallest (weakly?) closed
subspace Z of X such that f,Op is a Z-module, and should f.O, be the natural
structure module of the image? In Example 6.10 I would like to say that the
image of the closed point Speck is all of Spec k*™.

Given a space X, there is a unique map f : ¢ — X. It includes ¢ as a closed
subspace, and when we define open subspaces in the next section, ¢ will be the
open complement of X in X.

When f:Y — X is a map, possibly the fiber over ¢ should be the subspace
of Y where f is not defined. For example, if p is a closed point of Y such that
f+«Op = 0 we probably want to say that f is not defined at p.

Let X = ModR and Y = ModS be affine spaces. Let B be an R-S-bimodule.
Let f : Y — X be the map associated to B, and g : X — Y the map associated
to BY = Hompg(B, R). Discuss fog and go f. What is the role of the zero locus
of the trace ideals, and their open complements. We also have the S-R-bimodule
B* = Homg(B, S), and this gives another map h : X — Y that should also be
examined. What is the role of the trace ideal?
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Suppose that X is a space having an open affine cover Uy. That is, each U
is an affine space. Can we show that a map f : Y — X is affine if and only if
f~Y(V) is affine for every open affine subspace V of X? For the classical case
see [107, Exercise I1.5.17]. Rosenberg might have proved this.

Would it make sense to say that f is finite if f* preserves finitely generated
modules?
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Chapter 4

Some non-commutative surfaces

This chapter examines a family of non-commutative analogues of the commu-
tative affine plane. One reason for an extensive discussion of such examples is
to raise our geometric intuition about non-commutative planes to a level that
is comparable with our intuition for the commutative affine plane. The com-
mutative plane A2 has been a familiar feature of our mathematical lives since
elementary school. Basic notions such as points and lines are so ingrained that
they hardly need to be defined. We have an intimate understanding of how lines
intersect, of conic sections, and so on.

The position we are in with regard to non-commutative geometry is akin to
that of a mathematician before the advent of Cartesian geometry. We have a
non-commutative ring R that is like the commutative polynomial ring in two
variables, so we expect that the space ModR should be like the affine plane.
We might have an intimate understanding of the category ModR, but we must
build from scratch some geometric notions that reflect those algebraic features.
We do not have any primitive notions of things like non-commutative points,
lines, or conics to fall back on. We must invent them. On the positive side, this
gives us a certain license and liberty. We must also try to invent notions that
are reminiscent of important commutative notions like intersection.

The first non-commutative analogue of A2, in section 4.1, has as a coordinate
ring the enveloping algebra of the two-dimensional non-abelian Lie algebra. We
discuss the lines in it and their intersections, obtaining results that resemble the
commutative case reasonably well. Nevertheless, that example is rather far from
the commutative case, so in section 4.3 we examine a family of non-commutative
analogues of A2, the quantum affine planes Ag, q € k, that are much more like
A? when q is a root of unity. This is because they have coordinate rings that
are finite modules over their centers, and the centers are polynomial rings in
two variables. To prepare for those examples section 4.2 examines rings that
are finite over their centers.

In section four we consider products of pairs of non-commutative curves.

In section five we consider some non-commutative quadrics. They lie in the
non-commutative analogue of A®> having coordinate ring the enveloping algebra
of the Lie algebra slz over an algebraically closed field of characteristic zero. The

187
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closed points in this space are in bijection with the finite dimensional irreducible
representations of sl>. The quadrics in question are the zero loci of the central
elements 2 — A\, A € k, where  is the Casimir element. One sees in these
examples a futher echo of the commutative theory—there are rulings of the
non-commutative quadrics by lines.

The degree of a closed point. The affine spaces in this chapter are defined
by first specifying a coordinate ring. That ring, viewed as a right module over
itself, is a natural candidate for a structure module, so we consider the examples
in this chapter as enriched spaces

(X,0x) = (ModR, R).
The degree of a closed point p € X is therefore

degp = dim; Hompg (R, Op) = dimy, O,.

4.1 A non-commutative affine plane

In this section k denotes an algebraically closed field of characteristic zero.

We will examine the following non-commutative analogue of the affine plane.
Let U denote the enveloping algebra of the two-dimensional non-abelian Lie
algebra. Thus U = k[z, y] with defining relation

TY — YT = T.
A k-vector-space basis for U is provided by
{z'y’ 4,5 > 0}.

The polynomial ring on two indeterminates z and y is defined by the relation
zy — yr = 0, and the same monomials provide a basis. Thus U looks like a
reasonable non-commutative analogue of the polynomial ring. This analogy is
reinforced by the fact that U, like the polynomial ring, is a noetherian domain
of global dimension two. These properties follow from the fact that U is an Ore
extension of the polynomial ring in one variable. A general treatment of this
construction appears in chapter 777.

We will argue that the following is a reasonable picture of ModU.
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The solid horizontal line in the picture is the zero locus of z. It is a copy of
the affine line because U/(x) is a polynomial ring in one variable. The arrows,
which correspond to non-split extensions, go from each point A on the line to
the point A + 1, A € k. Lemma 1.3 shows that these are the only closed points
in ModU.

The dashed lines in the picture will represent lines in ModU.

Lemma 1.1 Let R be an algebra over a field k of characteristic zero. If = is a
normal element in a ring R, and xr —rx = x for some r € R, then x annihilates
every finite dimensional simple R-module.

Proof. Let M be a finite dimensional simple R-module. Then Ma = 0 for
some non-zero a € k[z]. We may choose such an a of minimal degree. Now 0 =
M(ar — ra) = Mza', where a' denotes the derivative of a. Because chark = 0,
a' # 0. Since M is and z is normal, Mz is a submodule of M. If Mz = M then
Ma' = 0, contradicting the choice of a, so we conclude that Mx = 0. O

Lemma 1.2 If M is a simple U-module, then either Mz =0 or AnnM = 0.
Proof. By writing an element of U as a linear combination of the basis elements

x'y it makes sense to define the y-degree of an element as the highest power of
y appearing in the expression for the element.
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Suppose that Mu = 0 for some u 7# 0. Choose such a u of minimal y-degree.
Notice that M(zu —uz) = 0. Write u = )7, ;a;;z'y’. A simple calculation
shows that

zu—uz =Y ai;zt (Y - (y — 1)%).
.’j

If u ¢ k[z] this element is non-zero and has lower y-degree than u, contradicting
the choice of u. Therefore u € k[z].

Now we may choose a non-zero element u € k[z] of minimal degree such
that Mu = 0. A simple calculation shows that uy — yu = zu', where u' denotes
the derivative of u. However, Mzu' = M (uy — yu) = 0, and either Mz = 0 or
Max = M because M is simple and z is normal. Because u was chosen to have
minimal degree, we conclude that Mz = 0. O

Lemma 1.3 The finite dimensional simple U-modules are
O =U/(z,y — A), A€k

Proof. Let M be a finite dimensional simple module. By Lemma 1.1, Mz = 0,
so M is a module over U/(z) which is isomorphic to the polynomial ring k[y].
The result follows. O

For each A € k, we draw an arrow from A to A+ 1 because there is a non-split
extension 0 — Oy;1 — k2 — O, — 0. This extension can be realized explicitly
through the map from U to lower triangular 2 x 2 matrices given by

ch)(0 0) H(,\+1 0)

1 0/’ 0 i)

These are the only non-split extensions (see Exercise 1) among the finite di-
mensional simples except for those of the form U/ (=, (y — A)?). But these are
extensions of U/(z,y — A\) by itself, so we do not put in any arrows to indicate
them. Comparing the arrows in the picture (1-1) with the arrows in the space

having coordinate ring the ring of lower triangular matrices, the next result is
no surprise.

Lemma 1.4 Fiz A € k. Set m; = AnnOyy;. There is a surjective map from
U to the ring of n x n lower triangular matrices having kernel momy ... m,_1.

Proof. Define ¢ : U — M, (k) by

A+n—1 0 0 ... 0 0
0 A4n—-20 ... 0 0
oly) = : : (1-2)
0 0 0 A+1

o
o
o
o
> O
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and
0 00 ... 000
1 00 0 0O
010 0 0O
o@) = | . ' (1-3)
0 00 ... 100
000 ... 0010

It is easy to check that p(z)p(y) — ¢(y)e(x) equals p(z), so ¢ extends to an
algebra homomorphism as claimed. The image of ¢ is contained in the lower
triangular matrices. The image of the restriction of ¢ to k[y] consists of all
diagonal matrices; this can be seen by viewing the standard representation of
M, (k) as a k[y]-module via ¢. It now follows rather easily that the images of =
and y generate the full lower triangular matrix ring.

Check the kernel. By Lemma 3.4.15, the fact that Ext?, (Ox, Ox11) #
0 is equivalent to the fact that mymy41 7# my N my4q. O

Lines. There are too few closed points in ModU to provide much insight into
this two dimensional space. After points, the most natural geometric objects
to consider are lines. We have not defined a line yet. Since our basic geometric
objects are categories, a line should be a certain subcategory of ModU. Just
what kind of subcategory is not clear. Therefore we begin by considering a single
module that should play the role of the “structure module” of a line. Lines in
the Euclidean plane are defined by equations of the form az + Sy + v = 0 where
a, 8,7 € k and at least one of a and § is non-zero, so we make the following
definition.

Definition 1.5 A line module over U is one of the form L = U/(az + By + v)U
where o, 8,7 € k and («, 8) # (0,0). For each i € Z, we define

L(i) =U/(ax + By + i) +7)U.
We call these shifts of L. O

Lemma 1.6 Let L = U/(azx + By + v)U be a line module. In parts (2), (3),
and (4) of the Lemma, suppose that B # 0, and set A = —y3~1. Then

1. if =0 and v #0, then L is a simple module;
2. L has a unique simple quotient, namely Oy, and dimy Homy (L, Oy) = 1;

3. there are exact sequences 0 — L(i—1) — L(i) = Ox_; — 0 for all integers
i

4. there is a unique descending chain of submodules of L, namely

LDOL(-1)DL(-2)D....
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Proof. (1) In this case L = U/(z — p)U for some non-zero u € k. Since
{z'y? | i,j > 0} is a basis for U, there is decomposition U = (z — p)U & k[y] of
right k[y]-modules. Hence L is isomorphic to k[y] as a right k[y]-module. The
right action of z on L is given by

yle =2y -1)" = py-1)"

Therefore the U-submodules of L are the ideals (f) that are stable under the
automorphism y — y — 1. The only such ideals are zero and k[y].

(2) Let M be a simple quotient of L. Using the basis for U, one sees that
U = (az+By+~)U dk[z], so L is isomorphic to k[z] as a k[z]-module. Therefore
any proper quotient of L is finite dimensional. Thus Mz = 0, and M is a
quotient of

U/zU + (az + By + Y)U = U/(z, By + ) = Oa.

(3) It suffices to prove the result when ¢ = 0 because the general case is
obtained from that by changing . The kernel of the map L — O, is generated
by the image of z in L, so it follows from the calculation

z(az + By —1) +7) = (az + By +7)z

that there is a surjective map from L(—1) to the kernel. However, because L
and L(—1) are both isomorphic to k[z] as right k[z]-modules, any non-zero map
L(—1) —» L of U-modules is injective. Hence there is a short exact sequence
0—->L(-1) > L— O0x—0.

(4) It follows from (3) that L has a unique maximal submodule, namely the
kernel of the surjection L — Oy, which is isomorphic to L(—1). Similarly, each
L(7) has a unique maximal submodule, and that submodule is isomorphic to
L(i — 1). The result follows. O

When there is a surjective map L — ), we say that the point X lies on
the line L. This terminology is consistent with the commutative case because,
if Y and Z are closed subschemes of a scheme X, then there is a surjective
Ox-module map Oz — Oy if and only if Y is contained in Z. On the other
hand, if # = 0, then there are no points on L.

Definition 1.7 We call a line module U/(ax + By + )U strange if 8 = 0, and
skew if 3 # 0 and v # 0. 0

Thus, there are three kinds of line modules—the strange ones, which have
no points, the skew ones, which have a single point, and U/zU which is the
affine line z = 0.

We now consider how to associate to a line module L a line in the space
ModU. In particular, we seek a non-commutative space, to be called ModL,
that is determined in some way by L. First, ModL must be a Grothendieck
category. Second, the line should be a “subspace” of its ambient space, so L-
modules should be U-modules. Thus ModL should be a subcategory of ModU,
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and it it is reasonable to insist that it is a full subcategory. Third, the inclusion
of the line in the ambient non-commutative plane should be something like
an affine map. Thus, we will ask that ModL be a weakly closed subspace of
ModU. It should also contain L, and will therefore contain all submodules and
all quotients of L. When L is a skew line module, ModL will therefore contain
L(—1) and and Oy; for all ¢ > 0. But compare this with ModL(1). There are
infinitely many points that lie in both ModL and ModL(1), and in commutative
algebraic geometry, two irreducible curves with infinitely many common points
are equal. So, we should define ModL so that it equals ModL(1). This leads us
to make the following definition.

Definition 1.8 Fix a line module L.

o If L is strange, define ModL to be the full subcategory of ModU cosisting
of the modules that are isomorphic to a direct sum of copies of L.

o If L is skew, define ModL to be the smallest weakly closed subspace of
ModU containing all the L(7).

o If L =U/2U, define ModL to be the full subcategory of ModU consisting
of the modules annihilated by z.

In all cases we call ModL the line with structure module L. O

In the picture of ModU on page 188, the dashed lines parallel to x = 0
represent the strange lines ModU/(x — u)U, and the dashed lines at angle to
x = 0 represent skew lines ModU/(az + fy + v)U with g # 0.

Because of Morita equivalence, a non-commutative affine scheme can have
several different coordinate rings. Similarly, if L is a line module, any one of
the L(i) can play the role of a structure module for the line ModL.

Lemma 1.9 If L and N are line modules, then ModL = ModN if and only if
N = L(i) for some i.

Proof. O

Lemma 1.10 Let L be a strange line module. Then ModL = Modk, and ModL
s weakly closed in ModU .

Proof. Endy L = k. Finish

O

If L = U/zU, then ModL is the category of modules over the ring U/(z) =2
k[y], so ModL = Al. Tt remains to determine the structure of the skew lines.

It follows from Lemma 1.6 that the submodule structure of a skew line
module L is like the submodule behavior of k[z] in GrModk[z] (cf. Section 3.12).
Explicitly, L(—i) behaves like k[z](—¢) and Ox_; is like k(). Further, the non-
split extensions between the O)_; are like the non-split extensions between the
various k(i)s. Therefore, the next result is not a complete surprise.
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Theorem 1.11 [228] If ModL is a skew line, then ModL is isomorphic to the
graded line GrModk[z].

The fact that skew lines are isomorphic to the graded line is an a posteriori
justification of the definition of ModL.

Intersection. An essential feature of geometry is the notion of incidence.
Since ModU has so few closed points a notion of incidence based on points is
unlikely to be very useful. For example, there are no points on the strange lines,
so they certainly will have no points in common with the skew lines. However,
we will re-interpret the notion of intersection in terms of an Ext-group and show
that this leads to a theory of incidence relations among the lines that closely
mimics the commutative case.

Recall the commutative case. Let A = k[z,y] be the polynomial ring. We
view A as the coordinate ring of the affine plane. Let C' and D be curves in A2,
which are the zero loci of the polynomials f and g respectively. For simplicity,
we will assume that f and g are irreducible, and that C' and D are distinct.
A point p lies on both C' and D if and only if f(p) = g(p) = 0. Hence the
intersection points of C' and D are the points in Spec A/(f,g). Indeed, the
scheme-theoretic intersection of C' and D is defined to be Spec A/(f,g). If the
coordinate rings of C' and D are viewed as A-modules, then the module A/(f, g)
is constructed from these as their tensor product. That is,

A/(f,9) = A/fA®A A/gA.

We can not adopt this approach for non-commutative spaces because we cannot
tensor together two right modules. There is another way to construct A/(f, g)
that can be copied for non-commutative rings.

Lemma 1.12 Let A = k[z,y] be the polynomial ring. If f and g are non-zero
elements of A, then

A/(f,9) = Exty(A/fA,A/gA).

Proof. The sequence

0 yA—L 5 4 » A/fA —— 0

is a projective resolution of A/fA. Therefore, Ext} (A/fA,A/gA) can be com-
puted as the appropriate homology group of the complex obtained by applying
Homy(—, A/gA) to this resolution. The resulting complex is

0«—— AJgA «L— AjgA «—— 0

and the appropriate homology group is the cokernel of the middle map, namely
AlgA+ fA. O
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Definition 1.13 We say that two lines ModL and ModN meet if

Exty, (L(i), N(j)) # 0
for some ¢, j € Z. If they do not meet we say the lines are parallel. ¢

It is not apparent that the definition of meet is symmetric in L and N.
However, Theorem 1.15 shows that it is. Although Theorem 1.15 shows that
our definition of “meet” is sensible, it makes no sense to speak of two lines
meeting at a point. Similarly, we have no analogue of the notion of three lines
meeting simultaneously.

Definition 1.14 The slope of the line ModL is infinity if L = U/(z — u)U, and
is —af~tif L2U/(az + By +v)U with 8 #0. O

Linear Automorphisms. Let «, 8,7 € k, and suppose that 5 # 0. Then
there is an algebra automorphism ¢ of U such that

2’ =z and Y’ =7 oz + By + 7).

Each o determines an auto-equivalence of the category ModU, or, equivalently,
an automorphism of the space ModU. We call this a linear automorphism of
ModU. It sends skew lines to skew lines, and fixes the lines with infinite slope.
It sends lines with the same slope to lines with the same slope. Also two lines
meet if and only if their images under the automorphism meet.

It is useful to observe that any skew line is conjugate under a linear auto-
morphism to the line U/yU.

Theorem 1.15 1. Every line meets itself.
2. Two distinct lines are parallel if and only if they have the same slope.

Proof. Let . = U/fU and N = U/gU be line modules. Then Ext};(L, N) is the
appropriate homology group of the complex obtained by applying Homy (—, U/gU)
to a projective resolution of L. Such a resolution is

0 y U f>U y L » 0

so Ext}; (L, N) is the cokernel of the middle map in the complex

0 «—— U/gU +2— U/gU +— 0.

The map is right multiplication by f, so
Ext;;(L,N)=U/gU +Uf = N/N{.

The statements in the theorem are invariant under linear automorphisms.
(1) First consider a line with infinite slope, say ModN where N = U/(z —
w)U. We will compute Exty,(U/(z — 7)U, N), which is isomorphic to N/N(z —
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7). As in the proof of Lemma 1.6, we identify N with k[y]. Doing so, the
action of z on N becomes y'.x = u(y — 1)*. Hence k[y].(x — 7) is spanned by
{(p—7)(y —1)* | i > 0}. It follows that

0 ifu#mr,

14
N ifu=r. (1-4)

Exty, (U/(z — 1)U, N) = {

In particular, dimy, Ext};(N, N) = oo, so N meets itself.

Now consider a skew line, ModN. By applying a linear automorphism to
ModU, we can assume that N = U/yU. Since U = yU ®k[z], N is isomorphic to
k[z] as a right k[z]-module. The right action of z is then given by multiplication,
and the right action of y on N is given by

iy = (y +i)z’ = izt
If L = U/(ax + By +)U, then Ext}, (L, N) = N/N(azx + By +v), and N(az +
By + ) is spanned by .
{z"(ax + Bi+) | i >0}

Taking the case L = N, we see that
Exti (U/yU,U/yU) = k.

The unique non-split extension is 0 — U/yU — U/y*U — U/yU — 0.

(2) (<) We must show that Exty, (L, N) = 0 if ModL and ModN are distinct
lines with the same slope.

First, suppose the lines have infinite slope. Therefore N =2 U/(z — p)U and
L2=U/(z — 1)U with u # 7. By (1-4), Ext{;(L,N) = 0.

Now suppose that the lines have finite slope. Up to a linear automorphism
of ModU we can assume that N = U/yU, whence L = U/(y + v)U for some
v € k. Since the lines are distinct, N % L(i) for any i € Z, so v ¢ Z. We
use the calculation in part (1). If we identify N with k[z], then Extj;(L, N) =
k[z]/k[z](y + ), and k[z].(y + ) is spanned by

{z'(i+ ) |i >0}

Since y ¢ Z, k[z].(y + v) = k[z] and Extj,;(L, N) = 0, as required.

(=) We must show that if ModL and ModN are lines with different slopes,
then Ext(;(L, N) # 0.

Suppose that ModN has infinite slope. Thus N = U/(z — p)U for some
p € k. Since ModL is a skew line, we can apply a linear automorphism and
assume that L = U/yU; this linear automorphism fixes ModN. If we identify N
with k[y] as in the proof of part (1), we see that Extj; (L, N) = k[y]/k[y].y = k.

Now suppose that ModN has finite slope. Applying a linear automorphism
we can assume that N = U/yU. Once more, we identify N with k[z] with
y-action given by x'.y = iz. If ModL has infinite slope, then L = U/(z — p)U
and

Ext}; (L, N) = k[z]/k[z].(z — p) =k,
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so the lines meet. On the other hand, if ModL is a skew line and L = U/(z +

By + ), then
Extyr (L, N) 2 k[z]/k[z].(z + By + 7).

But z'.(z + By + v) = 1 + (Bi + v)z¢, and because deg(f.(z + By + 7)) =
deg f + 1, we conclude that Ext}, (L, N) # 0. O

The formulation of Theorem 1.15 is quite satisfying, but the situation is even
better than it suggests. Taking a little more care in its proof, one sees that if
ModL and ModN are distinct lines that meet, then dim Exty;(L, N) = 1 so, if
we define the multiplicity of meeting as the dimension of this Ext-group, then
the lines meet with multiplicity one. By the discussion prior to Lemma 1.12,
such a definition of intersection multiplicity is compatible with the commutative
definition. Further, there is a non-commutative analogue of a projective plane
that contains ModU as an affine open subspace (as the complement to the line
at infinity, and that line is isomorphic to P!). In that projectiove plane, two
parallel lines in ModU meet at infinity.

Notice that if L and N are line modules such that O, lies on both, but
ModL # ModN, then Oy4; is in both ModL and ModN for all ¢ € Z. So, we
have distinct lines having infinitely many points in common, but meeting with
multiplicity one. This is slightly disturbing at first. We shall see later that there
is a notion of divisor for non-commutative spaces, and ModO, is not a divisor
on ModL, but all the Oy, can be bundled together to give a divisor on ModL.

Example 1.16 Consider the Weyl algebra in characteristic zero. This is the
ring D = k[t,0] with defining relation 0t — t0 = 1. It has no points at all.
It turnd out that if we define the line modules to be D/(ad + Bt + ) with
(a,8) # (0,0), then all line modules are simple. There is a close relation
between ModD and ModU. They have isomorphic open subspaces. This is
because Ulz~!] = D[t71]. O

EXERCISES

1.1 Verify the claim that Ext{,(On,0y) =0 if u ¢ {\, A + 1}

1.2 Classify the simple U-modules when the field k is algebraically closed of characteristic
p>0.

1.3 Continuing the previous exercise, let L be a line module, and classify the points on the
non-commutative affine curve U/ AnnL. What are the extensions between the various
point modules O,7

1.4 The ring k[z,z~!] is a left module over the ring D = k[z,zd,x2d], where = acts by
multiplication and & = d/dx acts by differentiation. Show that k[z,z~!] is a uniserial
module of length three with its top isomorphic to its socle.

Thus the space ModD contains a (weakly closed?) subspace that is isomorphic to the
closed subspace that appeared in the previous example. This category is the simplest
example of a category O, an important family of catagories occuring in the representation
theory of semisimple Lie algebras. The ring D is a quotient of the enveloping algebra of
the Lie algebra sl> of traceless 2 x 2 matrices.
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This is the representation category for the quiver

with the relation Sa = 0.

1.5 Let X be the affine space with coordinate ring the path algebra of the quiver @ in Proposi-
tion 5.23. Using the picture of that space in Example 14-5 for inspiration, determine what
the automorphism group of the enriched space (X,Ox), where Ox = kQ. An automor-
phism of an enriched space is an auto-equivalence of ModX sending Ox to Ox. (Check
this is the same as the automorphism group of the k-algebra Ox when X is affine.)

4.2 Rings finite over their centers

The center of a ring is denoted by C(R). If R is a finitely generated C(R)-
module we say that R is finite over its center.
The following two results are fundamental to the study of such rings.

Theorem 2.1 (Artin-Tate Lemma) Let R be a finitely generated k-algebra.
If R is finite over its center, then

1. its center is a finitely generated k-algebra, hence noetherian;
2. R is noetherian.

Proof. Write C for the center of R. Suppose that R = k[z1,...,%m] and
R=Ca; + ...+ Ca,. There is a finite set

{apqraﬂst} C C
such that

n n
apaq = E Qpgrlr and Ty = E Bstas.
—1 =1

Since C" := k[opgr, Bst] is a finitely generated, commutative k-algebra, it is a
noetherian ring. Since any product of the z;s is in C'a; + ... + C'a,, R is
generated as a C'-module by as,...,a,. Hence R is a noetherian C'-module,
and is therefore a noetherian ring. Since C' C C' C R, C is a finitely generated
C'-module, hence a finitely generated k-algebra, and thus a noetherian ring. O

Theorem 2.2 Let R be o finitely generated k-algebra that is finite over its
center. Let M be a simple R-module. Then

1. dimp M < o0, so M is tiny;
2. M is annihilated by o mazximal ideal of the center of R;

3. if k is algebraically closed, Endg M = k.
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Proof. Let M be a simple R-module. The hypotheses on R also apply to
R/ AnnM, so it is enough to prove the result for R/ AnnM. Therefore we can,
and do, assume that AnnM = 0.

Write C' = C(R).

Because R is prime, C' is a domain. By the Artin-Tate Lemma, C' is noethe-
rian. The map C — Endg M is injective. Because R is a finitely generated
C-module, so is M. Therefore End¢c M, and hence Endg M, is a finitely gen-
erated C-module. By Schur’s Lemma, Endg M is a division ring. Therefore
each non-zero element z in element of C' has an inverse in Endg M, and the
chain C ¢ Cz~! C Cz~2 C ... is eventually constant. Hence, for some large
n, """ 1 € Cz~™". Therefore z7! € C. Hence C is a field.

By the Artin-Tate Lemma, C' is a finitely generated k-algebra, so dim; C' <
oo. It follows that dimy R < oo and that dimy M < oo. In particular, R is
artinian, so M is tiny.

It follows that Endg M is also finite dimensional over k so, if k is algebraically
closed, Endg M = k. O

Corollary 2.3 Let R be a finitely generated k-algebra that is finite over its
center. Then the closed points in the affine space ModR are in bijection with
the simple R-modules, and in bijection with the mazximal ideals of R.

We continue to suppose that R is a finitely generated algebra over an alge-
braically closed field k, and that R is finite over its center C'. Write X = ModR
and Z = Spec C. The inclusion C' — R induces a map of spaces

f:X->Z

By Theorem 2.2(2), f sends closed points to closed points; that is, if ¢ is a closed
point of X, then f.O, is a module over C'/m for some maximal ideal of C, so
f+Oy is a fnite direct sum of copies of a single simple C-module O,. We write
p = f(q). The scheme theoretic fiber of f over a closed point p € Z is defined
to be

X, := ModR/m,R,

where m,, is the maximal ideal of C' corresponding to p. Because C is finitely
generated over k, the Nullstellensatz ensures that C/m, = k. Hence R/m,R is a
finite dimensional vector space, and X, is a finite affine space. Thus R provides
a family of finite dimensional algebras parametrized by Z.

The behavior of R along one irreducible component of Z can be independent
of its behavior along another component, so we now suppose in addition that
R is prime. We will show that over a dense open set, say U, of Z there is a
uniformity to the behavior of the closed points of X. If p is a closed point in U,
then there is a unique closed point ¢ in the fiber over p, and the dimension of
the corresponding simple module O, is constant as p ranges over U. Further,
all other simple R-modules have smaller dimension. The algebra in the next
section illustrates this uniformity result.
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The first step towards this uniformity is a criterion for deciding when a finite
dimensional algebra is a matrix algebra. Suppose that A is an algebra over a
commutative ring k. Then A is an A-A-bimodule, hence a left module over
A ®j, A°P, via the action (a ® b).c = acb. The module action yields a k-algebra
homomorphism ¢ : A ®; A°? — Endy A.

Lemma 2.4 Let A be a finite dimensional algebra over an algebraically closed
field k. Then A is isomorphic to M, (k) for some n if and only if the map
p: ARy A°P — Endy A is an isomorphism.

Proof. (=) In this case, A°P is also isomorphic to M,(k), so A ®; A°P ==
M,,2(k). This is a simple ring, so ¢ is injective. But dimy, Endy A = (dimy A)? =
dimy A ®; A°P, so ¢ is also surjective.

(<) Because A is a simple ring it is a simple module over Endy A so, since
 is an isomorphism, it is a simple module over A ®; A°P. But the A ®; A°P-
submodules of A are precisely its two-sided ideals, so A is a simple ring. By
the Artin-Wedderburn Theorem it is therefore a matrix algebra over a division
ring. Since that division ring has finite dimension over k, it is isomorphic to k.
O

Proposition 2.5 Let R be a prime ring that is finite over its center C, and is
a finitely generated algebra over an algebraically closed field k. Then

1. C is a domain;

2. if F denotes the field of fractions of C, then the center of A== RQ¢ F is
F;

3. A= M, (D) for some division algebra D, and integer n;

4. the induced F-algebra homomorphism ¢ : A Qp A°® — Endp A is an
isomorphism.

Proof. (1) If z,y € C are such that zy = 0, then (zR)(yR) = 0, so either z or
y is zero.

(2) Set A = R®c F. Elements of A are of the form az~! with a € R and
z € C, so if az™! commutes with all elements of R, so does az™'z = a.

(3) Clearly A is a finite module over F', so is artinian. It is a prime ring,
because R is. But a prime artinian ring is simple, so the Artin-Wedderburn
Theorem gives the result.

(4) The theory of central simple algebras shows that A ® p A°P is a simple
ring, so ¢ is injective. However, the F'-vector-space dimension of both rings
equals (dimp A)2, so ¢ must be an isomorphism. O

Lemma 2.6 Let C be a commutative noetherian domain with field of fractions
F. Let f: M — N be a homomorphism of finitely generated C'-modules. If the
induced map M @c F — N Q¢ F is an isomorphism, then there is a non-zero
element x € C such that the induced map M[z~'] — N[z~!] is an isomorphism.
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Proof. Let K and L be the kernel and cokernel of F'. Both are finitely gener-
ated, and K @c F 2 L®c F 2 0. If a1,... ,an, is a set of generators for K,

then there are non-zero elements z1,... ,Z, in C such that a;xz; = 0 for all 4.
Similarly, we can choose elements by, ... ,b, generating L, and yi1,... ,yn in C
such that b;y; =0for alli. f x =21 ... 2,Y1 - .. Yn, then Kx = Lx = 0, whence
K ®c C[:L‘fl] =2 L®c C[:L'*l] = (0. O

Lemma 2.6 and its proof can be phrased more geometrically. If Z = Spec C
and Y = SuppK U Supp L, then f : M — N is an isomorphism on Z\Y.
Furthermore, M ®¢ F is free, of rank d say, so there is a proper closed subscheme
Y’ C Z such that M and N are both free of rank d on Z\Y".

Theorem 2.7 Let R be a prime ring that is finite over its center C, and is a
finitely generated algebra over an algebraically closed field k. Set X = ModR
and Z = SpecC, and let f : X — Z be the induced map. Then there is a dense
open set U C Z, and an integer n, such that if p € U is a closed point, then
there is a unique closed point ¢ € X such that f(q) = p, and dim, O = n.
Furthermore, if m, is the mazimal ideal of C vanishing at p, then R/ AnnO, =
R/Rm, = M, (k).

Proof. Let ¢ : R ®c R°? — End¢ R be the natural map. Let F' denote the
field of fractions of C, and set A := R ®¢ F. By Proposition 2.5, ¢ ® F' is an
isomorphism, so by Lemma 2.6, ¢ ® C[z 1] is an isomorphism for some non-zero
z in C. By the remarks after that lemma, we can also assume, perhaps after
replacing z by some zz', that R[z!] is a free C[z~!]-module of rank d. Let m
be a maximal ideal of C' that does not contain . Then ¢ ® C[z~!] ®¢ C/m is
an isomorphism. But C[z7'] ®¢ C/m =2 C'/m = k, so this is the map

¢®C/m: R/Rm®; R/Rm — End; R/Rm.

Therefore by Lemma 2.4, R/Rm is a matrix algebra over k. Since R[z~!] is free
of rank d, dimy R/Rm = d. Hence for all m not containing z, R/Rm = M, (k)
where n? = d. a

The largest open set U in the theorem is called the Azumaya locus.

Example 2.8 Let k& be an algebraically closed field of characteristic two, and
let R = k[z,y, 2] be the k-algebra with defining relations

TY —Yr =2, TZ=2T, YZ=2Y.

Thus R is isomorphic to the enveloping algebra of the Heisenberg Lie algebra,
and to the enveloping algebra of the Lie algebra sly of traceless 2 x 2 matrices.
The elements x'y’z*, (i,j,k) € N® form a basis for R. The center of R is
k[z?,y?, 2], the coordinate ring of A3. It is clear that R is a finite module over
its center. Since R/(z) is commutative, if p is a closed point of ModR lying on
the hypersurface z = 0, dim O, = 1. On the other hand, if p is a closed point
of ModR such that O, is annihilated by z — A for some non-zero scalar A, then
dim O, = 2. To see this, we argue as follows.
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Since O, is a finite dimensional simple it is annihilated by a maximal ideal
of k[z2,y?, 2], so R/ Ann(Q, is spanned by the images of 1, z, y, and zy, so has
dimension at most four. Thus the dimension of O, is at most two. On the other
hand, if its dimension were one, then both z and y would act on it as scalars,
so z = zy — yx must annihilate it, contrary to our hypothesis.

Thus the Azumaya locus of R is the complement to the coordinate plane
z=0. O

4.3 Quantum planes
Let k£ be an algebraically closed field. Fix 0 # g € k, and let
A = kylz,y]
be the algebra generated by x and y with defining relation
YT = qry. (3-1)

This ring is a noetherian domain with basis {z‘y? | 7,5 > 0}, and it has global
dimension two. Thus, A is a reasonable non-commutative analogue of the poly-
nomial ring in two variables. We will write

A? = ModA

and call it a quantum affine plane.
The structure of A, and hence that of Aﬁ, depends delicately on whether or
not ¢ is a root of unity.

Proposition 3.1 1. If q is not a root of unity, then the center of A is k.

2. If q is a primitive n'® root of unity, then the center of A is k[z™,y"], and
A is a free module over this with basis {z'y’ | 0 < i,5 <n, (i,j) # (n,n)}.

Proof. Let z be a central element, and write
a— Z Qi J)zy]
1Y)

Then
xz = E aijz Tyl and 2 = E iz yl
%,J 4,7

Also o o
yz = Z ai]-q’ac’y""l and zy = Z ai]-w’yjﬂ.
,J ]

Therefore, if a;; # 0, then ¢* = ¢ = 0. Hence, if g is not a root of unity, then
only agg could be non-zero, whence z € k.

If ¢ is an n*® root of unity, then n divides both i and j whenever a;; # 0.
Certainly z™ and y™ are central in that case. Therefore the center is k[z™, y™].
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Because the elements z'y? give a k-basis for A, k[z",y"] is a polynomial
ring, and the claimed basis is indeed a basis. |

There are two commutative affine lines in Ag, namely x = 0 and y = 0.
That is, A/(z) = kly], and A/(y) = k[z] are both polynomial rings, so we get
two lines of points in ModA, meeting at the point Spec A/(z,y). We call this
the origin, and we call the closed subspaces Z(y) and Z(z) the z-axis and y-
axis respectively. The closed points on the two axes all have degree one. The
corresponding simple modules are

O = A/ =XNy), Opax =A/(x,y—N), A€k (3-2)

Proposition 3.2 If q is not a root of unity, the only closed points of Ag are
the points on the two axes x =0 and y = 0.

Proof. Suppose that M is a finite dimensional simple module. Since y is a
normal element, it either kills M or acts faithfully on it. If it kills M, then M
is an A/(y)-module. Now suppose that y acts faithfully on M. Let m € M
be an z-eigenvector, with eigenvalue A say. Then my™.z = ¢" Amy™. Since all
my™ # 0, and since If A # 0, then since ¢ is not a root of unity, the elements
my™ have distinct eigenvalues, so are linearly independent, contradicting the
finite dimensionality of M. Therefore A = 0. But z is normal, so it follows that
Mz =0, and M is an A/(z)-module. In either case, we have shown that M is
one-dimensional. |

If ¢ is a root of unity there are many other closed points in Ag

Lemma 3.3 Suppose that q is a primitive n'® root of unity. If ((,€) € k? and
C€ # 0, define the A-module V((, ) to have k-basis v, i € Zn, and

vi.x = (q'v;, ;.Y = EVit1.
Then
1. V(¢,€) is a simple A-module;
2. the annihilator of V ((, &) is the mazimal ideal (x™ — (™, y™ — &™);

Proof. (1) First we check that V is an A-module. Because v;.zy = ({q'v;11
and v;.yxr = £(q*T w1, yT — qyz acts as zero on V. Hence it is an A-module.

Let U be a non-zero submodule of V. Because the z-eigenvalues are distinct
and have multiplicity one, an k[z]-submodule of V' has a basis consisting of
various v;’s. But, once a single v; belongs to U, the y-action shows that every
v;isin U. Hence U =V.

(2) The two indicated elements annihilate V because ¢" = 1. Hence V is a
module over A/(z™ — (", y™ — £™). But this is isomorphic to A ® C/m where
C = k[z™,y™] and m is the maximal ideal of C generated by 2™ — (™ and y™ —£™.
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Since A is a free C-module of rank n?, A ®c C/m is an n?-dimensional vector
space. The action of A on V gives an algebra homomorphism

Al = ¢ y" — €") = End, V =2 M, (k).

Because V is a simple A-module, it follows from the Jacobson Density Theorem
that this map is surjective. Since both sides have dimension n? it is also injective.
Hence the two rings are isomorphic, showing in particular that (z™ — (™, y™—£&")
is a maximal ideal. Thus AnnV is as claimed.

(3) The two modules are tiny simples, so are isomorphic if and only if
they have the same annihilators (Corollary 3.4.9). But it follows from (2)
that V((1,&1) and V((2, &) have the same annihilator if and only if (¢7*,£7) =

(¢35 €8). O

If ¢ and & are non-zero scalars, define (A, u) = (¢™,&™). We will denote the
simple module V' (¢, &) by

Oam)-

and denote the corresponding closed point of Ag by (A, ). By part (3) of the
lemma, this notation is unambiguous.

Proposition 3.4 Suppose that q is a primitive n*® root of unity. The closed
points in Ag consist of the points on the two azes and the points (\,u). The
points on the axes have degree one and the others have degree n.

Proof. We must show that up to isomorphism the simple A-modules consist of
the one-dimensional simples A/(z,y—A) and A/(z—A,y), and the n-dimensional
simples V' ((,&) in Lemma 3.3. It is clear that Oy ) and O(g,x), A € k, give all
the one-dimensional simples.

Now let M be a simple A-module of dimension > 1. Then Endgq M = k.
The action of the center on M gives a homomorphism k[z",y"| = Endg M = k,
so M is annihilated by (z™ — A\,y™ — u) for some A and p. If Ay # 0 then
A/(x™ — N\, y™ — p) = M, (k) by Lemma 3.3, so M is isomorphic to the unique
simple module over this ring, namely V' ({, &), where (¢™,£™) = (A, p).

On the other hand, if Ay = 0, we may assume by symmetry that A = 0, so
Mz™ = 0. Because M is simple and z is normal, Mz = 0 also, whence M is an
A/(z)-module. O

We continue to suppose that g is a primitive n*® root of unity.

The inclusion k[z™,y"] — A gives a map f : A2 — A%, a covering of the
commutative plane by a non-commutative plane. If p is a closed point in Aﬁ,
then O, is annihilated by a maximal ideal of k[z™,y"] so f«Op is a direct sum
of copies of a single simple module. We denote that simple by Oy,). We have

= (A p) if Ap#0.
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The fiber of f over the open set that is the complement of the axes consists of
the closed points in A§ having degree n. The fiber over the origin in A? is the
origin in A2 with some non-commutative scheme structure. The fiber over any
other point on the axes £™ = 0 or y™ = 0 consists of n closed points of degree
one.

We define lines as we did for the space ModU in section 4.1.

Definition 3.5 A line module over A is one of the form L = A/(az + By +v)A
where o, 8,7 € k and (a, 8) # (0,0). The slope of L is infinity if 8 = 0, and is
—af~! otherwise. For each (i, ) € Z2, we define

L(i,§) = A/(ag’z + Bg 7y +7)A.
We call these shifts of L. O

Consider the closed points on the line L = A/(az + By +v)A. If 3 # 0, then
there is an exact sequence

0— L(0,-1) = L = Og,_g-14) = 0.
If a # 0, then there is an exact sequence
0= L(~1,0) = L = O(_q-1,,0) — 0.

If af # 0, then both exact sequences occur. By repeating the argument with
L(-1,0) and L(0,—1) in place of L, and so on, we eventually obtain submodules
L(i,7) of L for all integers 7, j < 0. Indeed, we obtain a lattice of submodules L
that is isomorphic to the lattice of ideals (X?Y7) in the commutative polynomial
ring k[X,Y]. These ideals, together with the ideals (X Y7) of finite codimen-
sion, are the only non-zero graded ideals of k[X,Y] when k[X,Y] is given the
Z2-grading defined by deg X = (1,0) and degY = (0,1).

We will return to this shortly. First, we will prove in Theorem 3.9 that
when g is a primitive n*® root of unity, then the lines “parallel” to the axes are
isomorphic to the broken line Mod() where @ is the quiver pictured in Theorem
3.9.

Linear Automorphisms. Let A, u € k, and suppose that Au # 0. Then
there is an algebra automorphism ¢ of A such that

7 =Xz and y° = py.

Each o determines an auto-equivalence of the category ModA, or, equivalently,
an automorphism of the space ModA. We call this a linear automorphism of
ModA.

Lemma 3.6 Suppose that k is a field having a primitive n*™® root of 1, say q.
Let R = k[z]/(z™ — 1). Then the elements
qi " —1

€ = o 7 (3-3)

are o complete set of orthogonal idempotents for R.
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Proof. Write w = ¢* and e = €. To show that €2 = e, it suffices to show that
there exists f € k[z] such that

(=) -5(E=) e

Multiplying this by (z — w), and dividing it by (2™ — 1), we must show that

" w4 " 0" - 2 = (- w) f. (3-4)

However, the left-hand side of this evaluated at £ = w is zero, whence e = e2.
It is clear that e;e; = 0 if 4 # j, so it only remains to check that the sum of
all the e;s is one. We have

n—1 n—1
— 1 i n—1 i,,n—2 2%,,n—3 (nfl)i
Zez—an (m +qzr “+qgr T+ +g

i=0 i=0
1 n—1 ) n—1 ) n—1 )
— E ((Z qz)mn—l + (Z qu)wn—Z 4+ 4 (Z qnz)>
i=0 i=0 i=0
All the sums are zero except the last one, which is n, so Z?:_ol e; = 1. a

Lemma 3.7 Let R be a graded ring, and M a graded R-module. Then AnnM
is a graded ideal.

Proof. Since every element of M is a sum of homogeneous elements, AnnM
is the intersection of the annihilators Annm taken over all the homogeneous
elements m € M. If r € R, and m is a homogeneous element of M, then mr
is zero if and only if mr; = 0 for all 4, where r = )" r; is a decomposition of
r into its homogeneous components. Hence every element of Annm is a sum
of homogeneous elements, each of which is in Annm. Therefore Annm is a
graded right ideal. Hence AnnM is graded. O

Lemma 3.8 Suppose that q is a primitive n'® root of unity. The annihilator of
Al(x —1)A is (z™ —1).

Proof. Write L = A/(z—1)A. We view A as a graded k-algebra with degz =0
and degy = 1. Then L is a graded module, so AnnlL is graded. It is clear that
z™ —1 € AnnL because it is central and in (z — 1)A.

The degree i homogeneous component of A is k[z]y'.

There is a right k[y]-module decomposition A = (z —1)A® k[y], so L = k[y]
as a right k[y]-module. Identifying these, the action of 2 on L becomes

y.r=q'y’,
so, if f € k[z], y'.f = f(¢%)y’. Therefore, a homogeneous element fy’ € k[z]y’
annihilates L if and only if f(q?) = 0 for all i. But this is equivalent to the

condition that ™ — 1 divides f. Hence the intersection of Ann[L with the
degree i component of A is (z™ — 1)k[z]y*. The result follows. O
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Theorem 3.9 Suppose that q is a primitive n*® root of unity. Let L be a line
module that is parallel to one of the axes. Then ModA/ AnnL = Mod@, where
Q is the quiver

=0 =0 ce L] =0

(.) 1 n—2 n-—1

Proof. By the symmetry, and by using linear automorphisms of Mod A, we can
assume that L = A/(z — 1)A. Then AnnL = (2™ —1). Set A = A/(z™ —1).
Define the idempotents e; as in Lemma 3.6. A simple calculation shows that

€i—1Y = ye; (3-5)

for all 4

We prove the equivalence of categories by exhibiting the two functors that
implement it.

Let M be a right A-module. Assign to the vertex of @ labelled i the vector
space Me;. If a; denotes the arrow from vertex i to vertex i + 1, we associate
to a; the linear map Me; — Me;;1 given by right multiplication by y. This
makes sense because of (3-5). Therefore M becomes a representation of Q.

Conversely, suppose we are given a representation of Q). If M; is the com-
ponent at the vertex i, we define M = @7 M;. We make this into a right
A-module by declaring that = act as eg + ge1 + ¢%e2 + ... + ¢ 'en_1, where g;
is the trivial path at vertex ¢, and that y act as ag + a1 + ...+ an—1. To show
that this extends unambiguously to an A-module action we must check that the
relations ™ = 1 and yx = qxy are satisfied by these two linear operators on M.

Since the £; are a complete set of orthogonal idempotents, (g9 + g1 + ...+
q"‘lsn_l)" = 1. On the other hand, since €;a;¢,11 = a; and any other product
€jQ;€L 18 zero, yx acts as

(o +a1+...+an_1)(co+qer +... +q" ten 1)
=qao+ a1 +...+¢" Tan 2+ any
and zy acts as
(o+qer+...+¢" ten )(o+ar +...+an 1)
=ag+qgar+...+¢" tan_1.

Hence the relation yx = qzy is satisfied. |

It is natural to ask which closed points lie on which lines.

Lemma 3.10 Suppose that q is a primitive n'® root of unity. Let L = A/(az+
By—7)A, and let p be a closed point of degree n in Ag. Then there is a surjective
map L — O, if and only if f(p) lies on the line a™z™ + ™y™ — 4™ = 0 in
Spec k[z™,y™].
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Proof. Let p be the point with O, =V ((,£). Then f(p) = (A, p) = ({™, ™).
There is a surjective map from L to V({,€) if and only if there are some
scalars \;, not all zero such that ax + Sy — -y annihilates v = Z::Ol A\iv;. Since

n—1
v.(ax + By —v) = Z(vaiAi + BEX 1 — YA,
=0

there is a surjective map from L — V (¢, &) if and only if there is a non-trivial
solution (Mg, ... ,An—1) to the system of equations

(alq" —7)Xi + BEXi—1 = 0.

Writing this as a matrix equation, and taking the determinant, we see that there
is a non-trivial solution if and only if

T (aca’ =) - (58" =0.

This can be rewritten as the condition that

(@)™ + (BE" =" =0.

The result now follows at once. O

We continue to suppose that g is a primitive n'" root of unity. Lemma 3.10

provides answers to several natural questions concerning the points and lines
in A2. Given a closed point in A2, there is a family of lines parametrized by
P! passing through it. Given any two closed points in A2, there is a single line
passing through both of them. Each line L in A<21 passes through infinitely many
closed points, so there is an injective map L — [] O,, where the product is taken
over all the closed points lying on L; it follows that the common annihilator of all
those points also annihilates L, so o™z +3"y™—~™ annihilates A/(az+Ly+7)A.
If afy # 0, then a™z™ + f"y™ — +™ annihilates n points on each axis, but
L = A/(axz + By + 7v)A passes through only one point on each axis. The
explanation is that L contains submodules isomorphic to L(—i,0) and L(0, —%),
0 <14 <n—1, and these pass through the other degree one points annihilated
by az™ + ﬂnyn _ ,Yn

Let p and ¢ be points of A2. Is there a map g : A = Speck[t] — A2 such
that g(0) = p, g(1) = ¢, and g.(k[t]) = A/(az + By + v)A. Each point s € Al
appears in an exact sequence

0 — k[t] — k[t] = Os = 0,
so there will be an exact sequence
0 — g«k[t] = 9«k[t] = 9+Os.

Suppose, for argument’s sake, that a # 0. Then B = A/A(azx + Sy — ) can
be identified with k[y], and if we set t = y™, then L becomes an A-k[t]-bimodule,
so gives a map g : Spec k[t] —» A. Examine this map.
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The quotient of A by the annihilator of A/(az + By + 7)A is of the form
A/(z) where z € kz™ + ky™ + k. Moreover, this ring is isomorphic to a doubly
broken line in general. We return to this in section...???

One would expect the lines through the origin to behave differently. This
is indeed the case. Up to a linear automorphism, any line module that passes
through the origin, and is not either axis, is of the form L = A/(z —y)A. Notice
that L(i,j) = L(#', §') if n divides (i +j) — (¢’ + j'), so up to isomorphism there
are only n distinct L(Z,j). We denote them by L(i) for ¢ € Z,; explicitly,

L(i) = A/ (¢'z — y)A.
There are short exact sequences
0= L@ —1) = L(i) = O,0) = 0

because the kernel of the map A/(¢'z —y)A — A/(z,y) is generated by Z, and
because z(¢* 'z — y) = ¢ '2? — ¢ lyz = ¢ (¢'z — y)z, T is annihilated by
‘T —y.
! Wey define ModL = ModA/ AnnL. To compute AnnL the reader should
warm-up by computing (z + y)™. It will follow that if ¢ is a primitive n*® root
of unity, then ‘
(@ —q'y)" =z"+ (-1)".

Then one can show that AnnL = (z™ + (—1)"y™). We need to understand this
ring.

Now suppose that ¢ is not a root of unity.

We state a special case of a result due to Smith and Zhang [228]. Let
L= A/(az + By —v) with afy # 0. If we define ModL to be the smallest full
subcategory of ModX that contains ligL(z', Jj), and is closed under direct sums,
submodules and quotient modules, then

ModL == GrModzzk|[x, y]/ Fdim.

If o = 0, then ModL = GrModk[z]. It follows from its definition that ModL is
a weakly closed subspace of X, so there is a weak map embedding the graded
line as a weakly closed subspace of Aﬁ.

Questions. Given a single line in X = ModA, the analogy with the commu-
tative case suggests that X is the “union” of all the lines parallel to the given line.
What might this mean in the non-commutative setting? We have not defined the
union of subspaces. Set L = A/(az+ fy)A, and define L., = A/(az+ By —7)A,
v € k. Perhaps one can show that if M is any finitely generated A-module of
GK-dimension one, then Ext' (M, L.,) # 0 for some v € k. A better result would
be to take a fixed a € A, set N, = A/(a—)A, and show that Ext), (M, N,,) # 0
for some 7 € k.

One can ask the same sort of question for an Ore extension S = R[z;0,d].
The “union” of the modules S/(z — v).S should cover the space ModS.

A special case of a union is an open cover (see Definition 3.7.6).
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3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.12

EXERCISES

Consider A = kq[z,y] with ¢ not a root of unity. Show that A/(xy — 1)A is an infinite
dimensional simple A-module. We should probably think of it as a “hyperbola module”,
and if we were to draw a picture of it, it would be a dashed version of the curve zy =1
that is drawn in the commutative case.

Consider A = kq[z,y] with ¢ not a root of unity. Define a line module to be one of the
form L = A/(az + By + 7)A with (o, 8) # 0. Show that there are four kinds of line
modules, the axes A/(z) and A/(y), the lines “parallel” to one of the axes where af = 0,
the skew lines where a8 # 0, and the lines through the origin (v = 0). Discuss the closed
points that lie on the various line modules.

Consider A = kq[z,y] with ¢ not a root of unity. Develop a theory of intersection that is
like that developed for ModU. Discuss the intersection of the line modules.

Consider A = kq[z,y] with ¢ not a root of unity. What is the intersection multiplicity of
a hyperbola module with the various line modules?

Consider A = kq[z,y] with ¢ not a root of unity. Define ModL when L is a line module.
Show that the line ModL is isomorphic to the graded line when L is parallel to one of the
axes.

Consider A = kq[z,y] with ¢ not a root of unity. I do not know a good description of
ModL when L is a line module through the origin.

Consider A = kq[z,y] when g is a primitive n*® root of unity. Show that there is a ring
isomorphism
A/(a™y"™ — 1) = M (k[t, 1))

When g is a primitive n*® root of unity prove that there is an algebra isomorphism A/(z™ —
1) = kQ, where Q is the quiver in Theorem 3.9.

Show that £ = ep +qge1 + ...+ q"‘len,l in Lemma 3.6.

Suppose that g is a primitive nt? root of unity (where n # 1). Let R be the ring k[z,y]
with defining relation yz — gzy = 1. Find the finite dimensional simple R-modules. (Hint:
First show that the center of R is kq[z,y].) See

http://www.math.tamu.edu/~edward.letzter/summer.1998/paper.ps.

Describe the lines for the space ModR in the previous exercise, and the points lying on
them. Let L = A/(x — o)A with a # 0, and define ModL = A/ AnnL. Is ModL
isomorphic to Mod@ where @ is the quiver in Theorem 3.97 What does ModL look like
when L = A/(z — y)A?

Show that the algebra k[z,y] with relations zy + yr = z2 —y? = 0 is isomorphic to the
algebra k[u,v] with relations u? = v? = 0.

4.4 A product of two broken lines

This section exhibits some non-commutative curves that are natural generaliza-
tions of the the broken lines discussed in Chapter 3. Recall that broken lines
look like A! except that 0 is replaced by, or broken into, several points linked
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into a cycle. The picture is

This curve is the path algebra of the quiver

ey
2 1

. >e
n n—1

The picture suggests that there should be similar examples where instead of
breaking apart just one point of the affine line, one breaks apart several points.

Here is a picture of such a curve.

(4-7)

Example 4.1 Let R = k[u,v]/(u? — u,v? —v). Let A = ky[z,y] with ¢ = -1
There is a surjective map A — R defined by

z—=utv—1, Y= u—v.
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A computation shows that R = A/(z% + y? — 1). Under this isomorphism, we
have the following correspondences:

R/uR & A/
R/(u—1)R & A/
R/vR < AJ
R/(v—1)R & A/

z+y+1)A,
z+y—1)A,
z—y+1)A,

—y—1)A.

~ o~ o~ o~

It is not difficult to show that R has four one-dimensional modules, and a
family of two-dimensional simple modules parametrized by the affine line less
two points. Thus ModR is an affine line broken at two points, and each of those
two points has been broken into two points. The breaking occurs where the line
ModA/(z? +y* — 1) meets the two axes z = 0 and y = 0 in the quantum plane.

Explain the connection between ModR and the representations of
the quiver

O

We will motivate our construction of broken lines by describing a surface
which we would expect to contain lines that look like the previous picture.

The surface we have in mind is a product X = X; x X5 where each Xj; is a
broken line over an algebraically closed field k. Write X; = ModR;. Since R;
and R, are finite modules over their centers, so is R; ® Re. By Proposition
3.4.16, the simple R; ®; Rs-modules are all of the form Vi ®; V5 where V; is
a simple R;-module. Hence the closed points in ModR; ®; Ry are in bijection
with pairs (p1,ps) where p; is a closed point in ModR;. The dimension of the
module V; ®;, V> is the product of the dimensions of the individual V;. Hence
the picture we draw of ModR; ®; Rs should be the cartesian product of the
pictures for ModR; and ModR.

To be explicit, suppose that R; is the affine line with coordinate function x;
broken at the point ; = A, and this point is broken into two points. Suppose
that R, is the affine line with coordinate function x5 broken at the point x5 = 0,
and this point is broken into three points. Thus,

klzs]  (z2)  (2)
_ (klz] (21— A) _
Rl = and R2 = k[iL‘Q] k[iL‘Q] (.CL'Q)
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A picture of ModR; ® R» is

3;'1:/\ L

dim =6

o =0 i dim = 2

v

A\

dim =6

dim =1

dim =3

There are six one-dimensional simples, two families of three-dimensional sim-
ples parametrized by Al\{0} lying on z; = ), three families of two-dimensional
simples parametrized by A!\{0} lying on x5 = 0, and a family of six-dimensional
simples parametrized by A%\{the two axes}.

Primitive intuition suggests that a skew line, such as the one labelled L in the
picture above, would be like an affine line broken at two points: one point would
break into two three-dimensional simples, the other into three two-dimensional
simples, and the other points on L would correspond to six-dimensional simples
parametrized by the affine line less two points.

An explicit candidate for L is the line 1 = 5. Thus we define L by

ModL = ModR; ® RQ/(.’El ®R1-1® .’1}2).
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If we denote both z; and z3 by z, then 71 ® 1 -1 ® 2z =z ® 1 —1® z, and it
is easy to see that

RiQrRef(21 Q1 —-1®@x9) = Ry Qk[z] R,.

We have made the trivial observation that if

klz] (z) (o)
~ (k[z] (z-=2X) an ) - 2 (z
e ] ) e e (i )
then

klz] () () (z—X) (22-Xz) (22— )2)
RN
Tl w e B8
klz] kla] k2] Klz] k[z] kla]

One should think of the formation of R; ®kla] R> as analogous to the forma-
tion of a fiber product: There is a commutative diagram of rings

Ry Qe B2 ¢—— R»

[ |

Ry — k]
and a corresponding diagram of spaces

XxpgY —— Y

I [

X — Al

There is an obvious generalization. We can break the affine line at any
set of points we choose, and each of the chosen points can be broken into as
many points as we wish. Fix distinct points A1, A2, ... , As and positive integers
Nn1,...,Ns. We define

Al()\l,... ,)\s;nl,... ,TLS)

to be the non-commutative curve with coordinate ring Ry Q4] ® . . . Q[2] Rs,
where R; is the subalgebra

klz] (z=X\) (z—=X1) ... (z—=X\1)
k[x] k[z] (x—M) ... (z—=X\)
k[x] k[z] k[z] cee (2 — A1)

k[x] k[z] k[z] . k[x]
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of My, (k[z]). This curve is an affine line broken as described.
There is a further obvious generalization. We could begin with any commu-
tative curve in place of the affine line, and break it at any collection of points.

Show that one can find lots of these broken curves in the quantum plane

Modkg[z,y] when ¢ is a root of unity. For example, consider some skew lines,
and parabolas, and analogues of cubic curves.

EXERCISES

4.1 Show that the ring R in Example 4.1 is isomorphic to

(™ i)

4.5 Quadrics related to the Lie algebra sl,

In the section k denotes an algebraically closed field of characteristic zero.
The Lie algebra sly of 2 x 2 trace zero matrices has basis

(01 Lo (10 (00
€=\o 0)’ =\o -1/ ¢=\1 o)’

le, fl=h, [h,e]=2e, [h,f]=-2f. (5-1)

and relations

Its enveloping algebra, U (sly), is the associative k-algebra k[e, f, h] with defining
relations

ef —fe=h, he—eh=2, hf-—fh=-2f.
It follows from the PBW Theorem that U(sl;) has basis

{e'fin* | i, 4,k > 0},

and that it is a noetherian domain. This ring has played an influential role in
the development of non-commutative ring theory. In this section we study the
space ModU (slz). We view it as a non-commutative analogue of A3.

Convention. It is standard practice when studying the representation the-
ory of Lie algebras to deal with left modules, and we will do that in this section,
thus breaking with our usual convention of dealing with right modules.

Computations. Various computations inside U(slz) are needed for some
of the proofs in this section. One such is that

ef! = fle+jfi Y (h—j+1). (5-2)

This is proved by induction on j.
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Weights. If M is a left slo-module, an h-eigenvector m € M is called
a weight vector, and if h.m = Am, we say that m has weight A\. The set of
elements of weight ) is a subspace called the A-weight space, and is denoted by
M. It is easy to see that e. My C Mx;2 and f.My C Mx_». If M is generated
by My, and M =} .., Mx_2;, we call X the highest weight, and call M a highest
weight module. B

The adjoint action. We make U(sly) a left module over itself by defining
TU=2U — UL

for z € sl; and u € U(sly). One needs to check that this action of sly can be
extended to U(slz). It does. We call this the adjoint representation. Looking in
particular at the adjoint action of h, one sees that e has weight 2, and f has
weight —2. It is easy to show that U\U, C Uxy,, so each e'fIh* is a weight
vector of weight 2(i — j). Thus

U(ﬁ[g) = @HEZU(E[Q)QH- (5—3)

Thus U(slz) is a Z-graded algebra with the homogeneous components being the
weight spaces.

The Casimir element is
Q= 2ef +2fe + h%.
Since Q has weight zero it commutes with h. More is true.

Lemma 5.1 The center of U(slz) is k[Q], the polynomial ring generated by the
Casimir element.

Proof. Let Z denote the center of U(sl;), and write U,, for the n-weight space
under the adjoint action of h. Clearly Z C Uy. A calculation shows that
commutes with e, f, and h, so k[Q] C Z.

It is clear that Up is spanned by all e’fih?, and that k[ef,h] C Up. An
induction argument shows that e’ f' € k[ef, h], so Uy = k[ef, h]. But this equals
k[, h] which is a commutative polynomial ring in two variables. If we take
an arbitrary element of Uy and write it as a sum of elements according to the
decomposition Uy = @k[Q]h7, it is clear that the only elements of Uy commuting
with e are those in k[€]. O

Proposition 5.2 Consider the polynomial ring k[X,Y] with its standard grad-
mng.

1. For each integer n > 0 the action of
e=X0y, h=X0x—-Y0y, f=YO0x (5-4)

makes the degree n component k[X,Y ], a simple sla-module of dimension
n+ 1.
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2. k[X,Y], is the unique simple sla-module of dimension n up to isomor-
phism.

3. k[X,Y), is annihilated by Q — (n +1)? + 1.

Proof. (1) It is straightfoward to check that the relations (5-1) are satisfied by
the given differential operators. Thus k[X,Y] becomes an sly-module. It is clear
that each homogeneous component is preserved by the action, so it remains to
check that each component is simple. Since X®Y™ ¢ has weight 2i — n, and e
acts by lowering the Y-degree by one, and f acts by lowering the X-degree by
1, it is easy to see that k[X,Y],, is simple.

(2) Suppose that V is a simple sly-module of dimension n + 1. Then V has
an h-eigenvector, say v, with eigenvalue p say. If efv # 0, then it is a weight
vector with weight p + 2¢. Since dimy V' < 00, there is a weight vector, m say,
such that em = 0. Let A be the weight of m. Since V is simple, V = Um.
Therefore, by the PBW basis, V is spanned by the elements f7h*eim; hence
V is spanned by elements fim. These are weight vectors of weight A — 2j.
Therefore, m, fm, ..., f™m is a basis for V, and f"*'m = 0.

It follows from (5-2) that

O=ef"'m=(n+1)f"(A —n)m.

Therefore A = n. Now define a linear map V' — k[X, Y], by
Fiv (’;) Xy,

It is easy to check that this is a U(sly)-module map, so V = k[X,Y],.

(3) If the action of e, f, and h, are represented by matrices with respect to
the basis X?Y™~  a simple calculation shows that Q is sent to diagonal matrix
(n 4+ 1)2 — 1. Alternatively, each X?Y("~% is an eigenvalue for ef and fe, so
one can directly compute the action of 2ef + 2fe + h% on each XY™~ O

We will write V;, for the (n + 1)-dimensional simple module. The one-
dimensional representation V4 is called the trivial module. Notice that z.V5 =0
for all z € sly.

The action of sly on k[X,Y] makes each XY/ an eigenvector for the action
of h, with eigenvalue i — j. Thus k[X,Y],, has weights n,n —2,...,2 —n, —n.
Hence V,, is a highest weight module with highest weight n. We call X™ a
highest weight vector.

Lemma 5.3 Letg be a Lie algebra. If M and N are g-modules, then Homy (M, N)
becomes a g-module via

(z.8)(m) := z.8(m) — 8(z.m) (5-5)

forzegandme M.
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Proof. We must check that z.(y.0) — y.(z.0) = [z,y].0 for all z,y € g. This is
done by evaluating each side at m € M and calculating. O

Proposition 5.4 Every finite dimensional module over sly is a direct sum of
simple modules.

Proof. It suffices to show that if L and NV are finite dimensional simple modules,
then every exact sequence 0 - L — M — N — 0 splits. We will follow the
proof in [114, Section 6.3].

First suppose that dim; N = 1. If the central annihilators of L and N are
different, then M splits by the remarks after Lemma 3.5.19. Therefore, by part
(3) of Proposition 5.2, it suffices to show that this splits when L = N. So,
suppose that L 2 N. Because N = zL = 0 for all = € slz, zyM = 0 for all
z,y € sly. It follows that [z,y]M = 0. However, sl is spanned by the elements
[z,y] as  and y run over sl;. Therefore M = 0 for all z € sl;. Hence any
vector space decomposition M = L@ L' is an sls-module decomposition, whence
M= L& N as sly-modules.

Now let L and N be arbitrary. By Lemma, 5.3, Homy, (M, L) is an sly-module
under the action defined by (5-5). A simple calculation shows that the subspaces
S C T C Homy (M, L) defined by

S :={6|6|L =0}
T :={6 | 0|1 is multiplication by some A € k}

are slp-modules. However dimy, T'/S = 1, so the previous paragraph shows that
the sequence 0 - S — T — T/S — 0 splits. We write T' = S @ k6 with k6
an sly-module. Thus z.6 = 0 for all z € sl;. Therefore z.6(m) = 6(zm) for all
m € M and z € slo. This says that 8 : M — L is a sly-module homomorphism.
By definition of 6, it does not vanish on L, so ker@ & L = M, as required. O

Thus, in sharp contrast to the analogues of A% in sections one and three,
the set of closed points in ModU (sl,) is discrete, and there are no links between
them.

We now introduce the universal highest weight modules, M()\). Because
they are defined by two linear relations, they should be thought of as structure
modules of lines in ModU (sl5).

Definition 5.5 If A € k, the Verma module with highest weight A is

M(X) :=U/Ue+U(h— A).

It follows from the PBW basis that

U= Ue+Uh—=N)®k[f],



4.5. QUADRICS RELATED TO THE LIE ALGEBRA G£, 219

so M()) has basis given by the images of f™ for n > 0. Each f™ is a weight
vector of weight A —2n, so M () is a highest weight module, with highest weight
A. It is universal in the sense that if M is any module generated by a highest
weight vector of weight A, then there is a surjection M()\) — M because the
highest weight vector is annihilated by e and h — A.

Our labelling of Verma modules differs from that in Dixmier [75]. What we
call M(X) corresponds to the Verma module he labels M (A — 1). His labelling
is the standard one; the difference is that we do not shift by the half-sum of the
positive roots. We have chosen our labelling because we will only discuss the
special case of slz, and the extra baggage is not necessary for that.

Proposition 5.6 Consider the Verma module M ().
1. M()) is annihilated by Q — A2 — 2.
2. If n € N, then there is a non-split exact sequence

0> M(—n—-2) > M(n) >V, = 0.

3. M(X) is simple if and only if A ¢ N.

Proof. (1) Let v be a highest weight vector. A simple calculation shows that
Qv = (2A+ A2)v.

(2) By Proposition 5.2, X™ € k[X,Y],, =V, is a highest weight vector, with
weight n. Since V,, is simple there is a surjective module map ¢ : M(n) — V,,.
Let m € M(n) be a highest weight vector. Since X™ is killed by fi fori > n+1,
ker ¢ has basis {f'm i > n + 1}. Hence ker ¢ is generated by f"*'m. This
element has weight n — 2(n + 1) = —n — 2. And, by (5-2),

e.f"m = f"em + (n + 1) f"(h — n)m = 0.

Hence f™t1m is a highest weight vector in ker ¢, so there is a surjective module
map M(—n —2) — kery. Since both these are isomorphic to k[f] as k[f]-
modules, ¢ is an isomorphism. This gives the short exact sequence in the
statement of the proposition. This sequence is non-split because M () is inde-
composable as a k[f]-module.

(3) We have just seen that M()) is not simple if X € N, so it remains to
show that if A ¢ N, then every non-zero element m/' in M () generates it. Let m
be a highest weight vector in M (). It suffices to show that e™m/' is a non-zero
scalar multiple of m for some n. Choose n maximal so that m' has a non-
zero component of weight A — 2n, say m”. Replacing m’ by a scalar multiple,
we can assume that m' = f"m. Then e"m' = e™m", so we need only show
that e”f"m # 0. If n = 0 we are done, so suppose that n > 0. By (5-2),
ef"m =nf" (A —n+ 1)m. Since X ¢ N, this is a non-zero scalar multiple of
f™ m. By induction on n, e" f*m # 0. Hence M()) is simple, as claimed. O
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For each X € k, we will write

Ty = (Q — X2 —2)),
U)\ = U(5[2)/J)\,
Q» : = ModUy.

Because we view U(sly) as the coordinate ring of a non-commutative analogue
of A%, we think of the closed subspaces ), as quadric surfaces. Because M ())
is annihilated by Q — A% — 2, we should think of it as the structure module of
a line lying on Q).

Later we will see that (J_; behaves like a quadric cone, and that the other
Qs behave like smooth quadrics in A3.

Commutative quadrics in A®. Let’s review the commutative quadrics
22z —y2+ A% = 0in A3. The quadric is smooth if A # 0. There are two families
of lines on it, namely

Liag) givenby 2az—f(y—X) =pz—aly+X) =0,
lap) givenby 20z —B(y+)) =Bz—aly—)) =0,

indexed by (a, 3) € PL. It is easy to show that each family of lines provides a
ruling, making the quadric a ruled surface in two different ways. We say that
a family of lines provides a ruling of a subvariety of A™ if the subvariety is the
disjoint union of the lines.

The degenerate quadric 2zz = y? has a singular point at the origin. There
is a single family of lines on it, namely

L) givenby 2az—fy=pz—ay=0,

parametrized by (a, 3) € P!. The union of these lines is the whole quadric, but
they all pass through the singular point (0,0,0), so do not provide a ruling.

We will show that there is a non-commutative analogue of this. So far, we
only have two lines on each @,: Proposition 5.6 says that the line modules
M(X) and M (=X —2) lie on Q. (These two modules coincide when A = —1.)
However, the fact that we have only produced two line modules on each quadric
is due to the fact that we worked with a fixed basis of sls. We now make amends
for this.

Linear Automorphisms. Our analysis of U(slz) has been carried out
using the basis e, f, h. To carry out a basis-free analysis we should observe that
Verma modules can be defined with respect to any basis satisfying the relations
(5-1).

If we conjugate a matrix with an element of the group GL(2), the trace of
the resulting matrix is same as that of the original matrix. Therefore the action
of GL(2) by conjugation on Ms(k) sends sls to itself. Since conjugation is an
algebra automorphism of M (k), and since the Lie bracket is defined in terms of
the multiplication, conjugation is a Lie algebra automorphism of sly. Therefore
the action of GL(2) extends to an action on U(sl2) as algebra automorphisms.
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An elementary calculation shows that the action of every g € GL(2) fixes
the Casimir element 2. A more fundamental explanation of this fact is that Q
can be defined in a basis-free fashion as follows. The adjoint action of slz on
itself gives a map p : sl — M;3(k) sending z to [z, —]. We now define a pairing
(z,y) = Tr(p(x)p(y)), where Tr denotes the trace. Using the basis elements e,
f, and h, one sees that (—, —) is a non-degenerate symmetric bilinear form on
sla. This is called the Killing form. Let z1,x2,z3 be a basis for sla, and write
x3, x5, x5 for the dual basis. The element z1z; + zax} + zsz} of U(sly) is then
independent of the choice of basis. This element is a non-zero scalar multiple of
Q (see Exercise 8). It is therefore clear that every Lie algebra automorphism of
sly fixes the Casimir element.

Because the Casimir element is fixed by the action of GL(2), each automor-
phism of sly induces an algebra automorphism of U(slz)/Jx. We view this as
an automorphism of the non-commutative quadric Q.

Explicitly, if o is an automorphism of a ring R, then there is an adjoint pair
(f*, f«) of functors ModR — ModR which are mutual quasi-inverses. Thus f*
and f, are auto-equivalences of the category ModR. Recall that f* = — Qg B,
where B denotes the bimodule gRg with the actions z.b = o(z)b and b.x = bx
for b € B and ¢ € R. We denote f.M by M?. The R-action on M is given by

m*x = mo(x) (5-6)

for m € M. Thus, as an abelian group M? = M, but the action of R is now
given by the operation * in (5-6).

We are working with left U (sly)-modules, but the principle remains the same.
If g € GL(2), then the conjugation z — gzg~' for z € slz, induces an auto-
morphism « of U(slz), and hence new U (sly)-modules M (\)7. These are Verma
modules with respect to different Borel subalgebras. Explicitly,

M) =U/Uy~ e) + U(y(h) = N).

We should think of this as giving an action of GL(2) that moves the lines on
each @Q».

Since conjugation by a diagonal matrix is the identity, we prefer to work
with SL(2), the subgroup of matrices of determinant one.

The stabilizer subgroup in SL(2) of b consists of the subgroup of upper
triangular matrices. We denote this by B. Hence the set of all Borel subalgebras
can be identified with SL(2)/B. Indeed, with a little more care and technology,
we can make this natural, and say that the set of Borel subalgebras is a variety in
a natural way (the two-dimensional subspaces of sl can be given the structure
of P2). However, SL(2)/B = P!. To see this, look at the natural action of
SL(2) on k2. Each line is sent to another line by an element of SL(2), and all
S) is B. Therefore, the
space of lines in k2 is naturally isomorphic to SL(2)/B. But that space of lines
is also isomorphic to P! by definition.

lines lie in a single orbit. The stabilizer of the line
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Lemma 5.7 For each o € k, the elements

2
e'=a2e—f+ah=<_al @ ),

—Q

r_ o _ ("1 —2a
h' = —2ae h—(o 1),

r=-e=( 3):

satisfy the standard relations (5-1).

1 -1

, where

Proof. These elements are obtained as geg™', ghg™', and gfg

=(% o

A basis of h/-eigenvectors is given by (1 0) and (—a 1). The second
of these eigenvectors is annihilated by e’. This data can be interpreted as giving
a family of lines parametrized by P!.

O

Line modules on @)5. We return to the question of the lines on the quadrics
Q. Using the notation in Lemma 5.7, we define new Verma modules M,(\) =
U/Ue' +U(R =), and Mu(—A—2) =U/Ue' +U(K + A+2) indexed by « € k.
These provide two families of line modules on Q.

Are there maps f : ModU(slz) — P! and g : ModU(sly) — P! so
that f*On = M,(N) and ¢*On = My (=X —2)?

I do not know how to make sense of a non-commutative analogue of the
statement that the surface 2zz — y% + A\? = 0 is the disjoint union of the lines in
one of the rulings. One of the problems is that we must phrase such a statement
in terms of the category Mod@x. For a general A\, the Verma modules M()\)
are all simple, and although every Qx-module embeds in a suitably large direct
product of these simples, that is not relevant. Again for a general A, Uy has no
finite dimensional simple modules, so it is not helpful to say that every point of
@ lies on some line.

We now consider another analogy with the commutative case.

The map A% — . Fix a non-zero A € k. Let @ denote the commutative
quadric surface 2zz —y?+ A2 = 0. There is a morphism of varieties, g : A> — @Q,
defined by

g : (u,v) = (v,2uv — A, 2u(uv — A)). (5-7)
This corresponds to an injective map of commutative rings, namely

klz,y, 2]/ (2xz — y® + A?) = k[u,v], (5-8)



4.5. QUADRICS RELATED TO THE LIE ALGEBRA G£, 223

defined by
v, Yy 2uv—XN 2z 2uluv —N).

Since g sends the line u = a (isomorphically) to the line £(4,1), the image of A?
is the open complement in @) to the line £; 5. A computation shows that the
map g has an inverse on this open subvariety, so Q\£(1 ) = AZ.

The analogue for Uy of the map (5-8) is the map in the next result.

Proposition 5.8 Let R = k[z,d] denote the ring of differential operators on
the affine line over a field k of characteristic zero.

1. There is a ring homomorphism U(sl(2)) — R defined by

e 0, hw— =2z0+ X\, f— —z(xd—\). (5-9)

2. The kernel of this map is the ideal (Q — A2 — 2)).

3. If X =n €N, then k[x] has length two as an sly-module, and its socle is
isomorphic to V,.

4. If X ¢ N, then k[z] is simple.

Proof. (1) To check that the map defined on e, f, and h, extends to a k-algebra
homomorphism we need only check that the defining relations (5-1) hold for the
images in R. This is straightforward. We will call the map ¢.

(2) A calculation in R gives h? + 2(ef + fe) = A2 + 2.

(3) First, let A be arbitrary. It is clear that z¢ € k[z] has weight A — 2i. The
linear span of {1, z,... ,2™} is stable under the action of e and h. However, it is
stable under the f-action if and only if f.x™ = 0; that is, if and only if A = n. In
that case this gives a submodule which is necessarily simple, hence isomorphic
to V,. O

We will write Ry for the image of the map U(sly) — k[z,d] described in
Proposition 5.8. Thus Ry =2 U,.

Proposition 5.9 If A ¢ {—1,-2,...}, then the inclusion of Uy in R = k[z, 0]
defined by (5-9) has the following properties:

1. R is flat as a right Uy-module;

2. If M is a simple left Ux-module, then R ®y M = 0 if and only if M =
M(=X-2);

3. If M and N are non-isomorphic simple left Ux-modules, then R ®y M
and R @y N are non-isomorphic R-modules.

4. Every simple R-module is isomorphic to R ®uy M for some simple left
Ux-module M.

5. If \=n €N, then R®y V, = k[x] with its usual action of k[z,0].
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Proof. O

The geometric interpretation of this result is the following. Because R is
a noetherian domain with basis z'9?, we think of W := ModR as a non-
commutative analogue of A2. The inclusion Uy — R induces an affine map
f W = @), of affine spaces. Because R is flat as a right Ux-module, the
functor f* = R®y, — is exact, so f is the inclusion of W an open subspace of
Q-

Let L be the weakly closed subspace of () defined by declaring the L-
modules to be all direct sums of M (—\—2). The fact that f* is the localization
functor along L says that W is the open complement to the line L in Q).

There is a non-commutative analogue of the fact that the map g : A2 = Q
sends each line u = a in A? to the line £(a,1) on Q. To see this we need to use
the basis €', f’, h', given in Lemma 5.7.

The analogue of the line £, 1) is the module R/R(z — a). Now f. applied to
this is simply R/R(z — &) viewed as a U-module. I claim that it is isomorphic
to the Verma module M, (=X —2) = U/Ue' + U(h' + A + 2), where €', f', 1’
is the basis for sly defined in Lemma 5.7. Thus, f, sends this line module
for W to a line module in @,. Here is one way to verify the claim. Realize
the module R/R(x — «) as k[tle**, where z acts as the derivative d/dt, and
0 acts as multiplication by —¢. The action of f' = —e on k[t]e** is simply
multiplication by ¢, so such that k[tle*® = k[f'].e**. Therefore k[tle®* is a
cyclic U-module generated by e, and is isomorphic to k[f'] as a left k[f']-
module. A computation shows that the elements e’ and b’ +X+2 both annihilate
e, so k[tle®* is a quotient of My(—X\ — 2). However, as left k[f']-modules
both k[t]le* and M,(—X — 2) are isomorphic to k[f']. Hence, as U-modules,
R/R(x — o) =2 My(—A—2).

Do the other lines in W, namely R/R(0 — ) get sent to Whittaker
modules by f.?

The fact that R ® V,, = k[z] says that we should think of V,, as giving the
same geometric object as k[z]; in other words that geometric object is a curve,
not a point.

Example 5.10 (The case A =0.) When A\ = 0, there is a ring between Up
and R that has played a role in the development of non-commutative ring theory.
That ring, which we denote by S is the idealizer of a maximal ideal in the Weyl
algebra. Explicitly, we have

Us = k[0,20,2°9] C S=k+ RO C R.
and the associated geometry of the non-commutative affine surfaces
W = ModR, X = ModS, Qo = ModUy,

where Mod denotes the category of left modules. There are maps

w—L s x —2 Q,. (5-10)
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We will write h = gf. We think of W as the open subspace of @y gotten
by removing the line with “structure module” M (—A —2). Since M (—\ — 2) is
simple, ModS cannot be a localization of Uy, so X cannot be gotten by removing
any part of Q.

There is no reasonable commutative analogue of this. The problem is that
if we take the “corresponding” subrings of k[u,v], namely

k[v,uv,u?v] C §' = k + v.k[u,v] C k[u,v],

then the ring in the middle is not noetherian. Thus Spec S’ is not a noetherian
scheme. The scheme Spec S’ has a very bad singularity at the origin. The ring
S has infinite global dimension, and if m = v.k[u,v], then dimym/m? = co. I
think of this as a black hole. In contrast, the non-commutative ring S is left
noetherian and has global dimension one. O

We consider one more analogy between the commutative and non-commutative
quadrics.

Maps @ — P! and @ — P!. Fix one of the rulings on Q, say that provided
by the lines L, g). There is an associated map @ — P! sending the points of Q
that lie on L4, g) to (a, 3). A reasonable analogue of this for @ would be a map
f: Qx — P! such that f*O, is a line module for all p € P!. The construction
of f is a little technical. However, those technicalities are natural, and to be
expected because in the commutative case all one has really done is say what
f+Oy is for each point ¢ € Q. And in the non-commutative case we need to say
what f, is for every @ y-module. One constructs f by realizing U, as the global
sections of a ring of twisted differential operators on P!. The idea is this........

To do. Twisted difl ops. Show lines in the various rulings on
Qx meet in the expected way where “meet” is defined via Ext'. Whittaker
modules. Morita equivalence, translation principle. Hodges non-isomorphism
proof. Krull dimension, Stafford’s global dimension results. Projectivization of
this; pencil of quadrics in P? generated by 22 and yz + w?.

EXERCISES

5.1 A k-linear derivation on a k-algebra R is a k-linear map § : R — R such that §(ab) =
d(a)b + ad(b) for all a,b € R. Fix x € R. Show that the linear map [z, —] that sends a to
Ta — az is a derivation.

5.2 Let § be a k-linear derivation of R. For each A € k, define Ry = {r € R | §(r) = Ar}.
Show that the direct sum of all the R) is a graded algebra.

5.3 If g is a Lie algebra show that there is an algebra homomorphism A : U(g) — U(g)®x U(g)
defined by A(z) =z ® 1+ 1 ®x for all z € g.

5.4 Show that the map z — —z for x € g extends to an algebra ani-automorphism of U(g).
Hence the map z — 2® 1 —1®z from U(g) to U(g) ® U(g)°P is an algebra homomorphism.
Since U(g) is a left module over U(g) ® U(g)°P in a natural way, this explains why U(g)
becomes a left U(g)-module under the adjoint action.
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Show that the embedding of U(sl2) in the ring of differential operators k[X,Y][0x, 0y ]
given in (5-4) sends the Casimir element to

Give D = k[X,Y][0x,dy] the grading with

deg X =degY =1, deg Ox = deg 8y = —1.

Observe that U(slz) is contained in the degree zero component. Examine D as a graded
ring, and describe the quotient category of GrModD modulo the right bounded modules.
How is this related to ModU(sl2)? Does this data provide a map from ModU(sl2) to
ModP!? Show that D, is the n-eigenspace for [X0x + Y 8y, —]. Thus Dy is a polynomial
extension of U(sly). The inclusion k[X,Y] — D must provide something like a map
GrModD — ModP! with the modules D/(8X — aY)D being the fiber modules over the
points of P1. Are these modules important as U(sl2)-modules?

Make U(sl2) a graded k-algebra as in (5-3). Explore TailsU(sl2). The degree zero com-
ponent is k[h,Q]. Does the inclusion of this give an interesting map ModU(slz) — A2?
What are the fiber modules, U/(h — @)U + (2 — A)? This is a conic module lying on Q,
where v2 4+ 2v = . This is the point of view for hyperbolic extensions.

Carry out the computation of the dual basis for slp with respect to the Killing form
(see page 221). Show that the element Z?=1 z;x} is a non-zero multiple of the Casimir
element.

Let V be a finite dimensional vector space. Let ® : V ®, V* — End; V be the k-linear
map defined by
®(v @ a)(u) = a(u)v

(a) Show that @ is an isomorphism of vector spaces.

(b) Show that @ is a k-algebra isomorphism if V ®; V* is endowed with the product rule
(u®a).(v®p)=alv)ugp.

(c) If v1,... ,vn is a basis for V, and v},... v} is its duals basis, show that ®(>" v; ®
v}) = 1. Hence show that ) v; ® v} is independent of the choice of basis. That is, it
is invariant under the action of GL(V).

This explains why the Casimir element is invariant under the action of the automorphism
group.

Consider the map g : A2 — Q described in (eq.A2.t0.Q). Describe the images of the lines
v = in A%, and the preimages of the lines L(,p) on Q.

Let £ and y be commuting indeterminates. Fix A € k. Make N = k[z/y,y/z]z* a

U(sl2)-module through e = 9y, f = Y0z, and h = £0z — y9y.

(a) Show that Q — A2 — 2 annihilates this module.

Show that k[y/z]z> is a submodule isomorphic to M()).

Show that the quotient N/M () is isomorphic to the Verma module M’(—\ —2) with

respect to the basic ¢/ = —f, h’ = —h, and f' = —e.

(d) Show that the extension 0 - M(A) - N — M'(—l —2) — 0 is non-split, and hence
that Exty, (M'(=A—2), M(X)) # 0.

We interpret this as saying showing that one particular line in one ruling on @, meets a
particular line in the other ruling.

The quantized enveloping algebra of sls, denoted Ug(sl2), where ¢ € k is a non-zro element
that is not a fourth root of unity, is the algebra k[E, F, K, K ~!] with defining relations
K? - K~?

@ g2
Study this in the same spirit as the analysis of U(sl2) in this section.

KE =¢’EK, KF=q ?FK, EF—FE=



Chapter 5

Non-commutative projective spaces

A scheme is a pair (X, Ox) consisting of a topological space X, and a sheaf of
rings Ox on X, this data being subject to certain axioms. The scheme X can
be recovered from the pair (QcohOx, Ox), so in a sense the objects of algebraic
geometry are pairs (C, O) consisting of a category together with a distinguished
object.

Let A be a connected graded algebra over a base field k. For simplicity
suppose that it is right noetherian and locally finite dimensional. The non-
commutative projective space with homogeneous coordinate ring A the pair

Proj(A) := (TailsA, A),

where TailsA is the quotient category of GrModA, the category of graded right
A-modules, modulo its full subcategory of direct limits of finite dimensional
modules, and A is the image of the distinguished module 4 A in TailsA.

If A is a quotient of a commutative polynomial ring generated in degree 1,
Serre [204] proved that Proj A is isomorphic (in an obvious sense) to the pair
(QcohOx,Ox), where X is the projective scheme determined by A, Ox is the
sheaf of regular functions on X, and QcohOx is the category of quasi-coherent
Ox-modules. Thus TailsA is the non-commutative analogue of QcohOx, and
the objects in TailsA are the non-commutative geometric objects analogous to
sheaves of O x-modules.

We write X for the space with ModX = TailsA, and Ox for 4. We de-
fine cohomology functors H?(X,—) as the derived functors of Homx (Ox, —).
The cohomology groups H?(X, F) generalize the Cech cohomology groups—one
has the usual long exact sequence, they agree with the with usual cohomology
groups when X is commutative, and there is a version of Serre’s Finiteness
Theorem (13.4) provided a certain technical condition x holds (see Definition
12.3). Every commutative algebra satisfies x, but there exist rather nice non-
commutative algebras which do not (Example 12.8). We compute the cohomol-
ogy groups HY(X, A(d)), d € Z, when A is an Artin-Schelter regular algebra.
This family of algebras includes the commutative polynomial ring, and in that
case H1(X, A(d)) = HI(P",O(d)). Artin-Schelter regular algebras are non-
commutative algebras which enjoy many of the properties of polynomial rings;

227
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amongst the non-commutative Artin-Schelter regular algebras are most graded
iterated Ore extensions, homogenizations of enveloping algebras, and Sklyanin
algebras. Artin-Schelter regular algebras always satisfy the condition Y.

Maps between Proj A and Proj B are discussed in section ?7.

The polarized projective space associated to A is the triple (TailsA4, A, (1)),
where (1) is the twisting functor induced by the degree shift functor (1) on
GrMod(M), namely M(1); = M;y;. In particular, twisting is an auto-equivalence
of TailsA. The extra data inherent in this auto-equivalence is the analogue of
specifying a line bundle on a scheme X it is natural to ask whether that line
bundle is very ample, i.e., whether it determines an embedding of X in some
projective space (or, equivalently, whether it arises from an embedding of X
in some P™). This leads to the notion of ampleness for (1) on proj(A) (see
Definition ??). Whether or not (1) is ample in proj(A) is closely related to the
condition x.

Polarized projective schemes are objects in a category of triples (C,0O,s)
where C is a k-linear category, O is a distinguished object in C, and s is an
auto-equivalence of C. The notion of ampleness is defined in this larger con-
text. If s is ample, and (C, O, s) satisfies some modest finiteness conditions,
then (C,0,s) = (TailsA, A, (1)) for some right noetherian, locally finite, N-
graded algebra A which satisfies x;. This result gives some idea of the scope
of non-commutative algebraic geometry because it says (roughly) which C can
be non-commutative schemes. The result may also be used to exhibit some
non-commutative homogeneous coordinate rings of commutative schemes. For
example, if A is a twisted homogeneous coordinate ring (see Example ??), usu-
ally written A = B(X,0,L), where X is a projective scheme, ¢ € Aut X and
L is a o-ample line bundle on X, then (TailsA, A4, (1)) = (QcohOx, Ox, s) for a
suitable s (the hypothesis that £ is o-ample guarantees that s is ample). Since
TailsA is equivalent to QcohOx the representation theory of A can be stud-
ied via the methods of algebraic geometry. The utility of this result is due to
the fact that twisted homogeneous coordinate rings turn up rather often in the
theory of non-commutative graded algebras.

Under Serre’s equivalence of categories we have the correspondence

A © OX

where Ox (d) is the line bundle on X induced from the degree d line bundle on
P™ (by definition Ox (d)(X}) is the degree d component of k[ X, ... , X,][f}],
where X; = {p € P" | f(p) # 0}).

5.1 Projective space P"

Fix a base field k. Projective n-space over k, denoted by P™ or P}, is, by
definition, the set of lines through the origin in A”*! or, equivalently, the one-
dimensional subspaces of k"1, If (ap, a1, ... ,a,) is a point in A"T1\{0} we
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denote the line through it, thought of as a point in P, by (ao, a1,... ,ay) also.
Thus, in P™,
(ag,at, ... ,an) = (Aag, Aai, ..., Aay)

for all non-zero A € k.

One reason for introducing P is that if fi,..., f. are homogeneous poly-
nomials in k[Xo,...,X,], then their zero locus is a union of lines, so can be
viewed as a subset of P™ (after removing the origin). It turns out in retrospect
that projective spaces are better than affine ones. Many theorems are more
elegantly stated in projective space; the classical example is that any two lines
in P? intersect. Thus P, rather than A" is the arena for algebraic geometry.
We shall see that similar remarks apply to non-commutative projective spaces.

Although it makes no sense to evaluate a polynomial g at a point of P,
because g(ag,ay, ... ,a,) usually will not be equal to g(Aag, Aaq, ... , Aay), it
does make sense to speak of a homogeneous polynomial vanishing at a point in
P™. If g is homogeneous of degree d, then

g A, Aaq, ..., Aay) = )\dg(ao,al,... ,0ln)-

Thus, homogeneous polynomials are the relevant ones when dealing with pro-
jective spaces. If fi,..., f, are homogeneous polynomials in k[Xo, ... ,X,], we
define their zero locus in P™ to be the set of lines on which they vanish. Notice
that
We call
A =k[Xo,...,X,)

the homogeneous coordinate ring of P". We write Ay for the span of the homo-
geneous polynomials of degree d.

The ideals generated by homogeneous polynomials are called graded ideals.
An ideal is graded if and only if it is the sum of its homogeneous components.
That is, an ideal I is graded if and only if I = > (INA,). We write I; = INA4.
If I is graded, and g € I, then each homogeneous component of g is in I. If
I C J are graded ideals, then I/J may be given the structure of a graded module
by defining its degree d component to be the image of the degree d component
of I. Thus graded modules are the relevant ones when considering projective
spaces.

The ideal m = (Xo,... ,X,) is not relevant to the study of P" because the
only point of A"t! where it vanishes is the origin, and it therefore vanishes
at no points of P". Consequently the graded A-modules that are supported
only at the origin are irrelevant to the study of P*. These are the modules in
which every element is annihilated by some power of m. The full subcategory of
GrModA consisting of such modules is denoted by FdimA. We use this notation
because every such module is a union of finite dimensional modules: if m € M is
annihilated by m?, then mA is a quotient of A/m¢, so finite dimensional. Notice
that m? = A; & Agp1 @ ... . Conversely, if M is a union of finite dimensional
graded A-modules, then each element of M is annihilated by m? for sufficiently
large d, so is supported only at the origin.
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To remove these modules from consideration we pass to the quotient category
(cf. the passage from a space X to an open subspace X\Y). Therefore the
appropriate category of modules on P™ is the quotient category

ModP" := GrMod A/FdimA.

We write 7 : GrModA — ModP™ for the quotient functor. It is exact, and every
object in ModP” is of the form wM for some M in GrModA. The objects in the
quotient category are, by definition, the same as the objects in GrModA, but
we write the 7 in front of M to remind ourselves that we are working in the
quotient category. The difference between ModP™ and GrModA therefore lies
in the morphisms. There are more morphisms in ModP”. The morphisms in
a quotient category are described in section 2.13. If f : M — N is a map of
graded A-modules, then 7(f) : 1M — wN is an isomorphism in ModP” if and
only if ker f and coker f belong to FdimA. Thus, all finite dimensional graded
A-modules become isomorphic to zero in ModP™. And two graded A-modules
become isomorphic in ModP™ if they differ by finite dimensional modules.

The following theorem of Serre says that if A is a commutative k-algebra
generated by elements of degree one, then GrModA/FdimA is equivalent to the
category of quasi-coherent sheaves on the projective scheme Proj A.

Theorem 1.1 (Serre) Let I be a graded ideal in the commutative polynomial
ring A = k[Xo, ... ,Xn] endowed with its standard grading, viz., deg X; =1 for
all i. Let X be the subscheme of P™ defined by the vanishing of I. Let QcohX
denote the category of quasi-coherent O x -modules. Then there is an equivalence
of categories

QcohX = GrModA/FdimA.

The scheme X is constructed as follows. If A is an N-graded commutative
k-algebra of the form A =k ® A; & A2 @ -- -, then one defines the topological
space

Proj A = {non-trivial graded prime ideals}

endowed with the Zariski topology. The trivial prime is A; @ A; & ---. The
structure sheaf of Proj A is defined by declaring that the ring of sections of
Oproj 4 On the open set z # 0, where z is a homogeneous regular element of A,
is A[z71]o, the degree zero component of the localization. Thus, this open set
is isomorphic to the affine scheme Spec A[z71]o.

If A is not generated in degree one, the equivalence of categories fails. One
must therefore take care to distinguish GrModA/FdimA from Proj A.

Example 1.2 Let X = GrModk[y]/Fdim, where k[y] is the commutative poly-
nomial ring with degy = n > 0. Then GrModk[y]/Fdim = Mod(k*™), where
k*™ denotes the product of k£ with itself n times. Thus X is the disjoint union
of n copies of the point Spec k. O
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5.2 Graded rings and modules

This section introduces some of the basic language and ideas for the theory of
graded modules.

Definition 2.1 Let A be a graded k-algebra. We write GrMod A for the category
of Z-graded right A-modules, with morphisms the A-module maps that preserve
degree. We write grmodA for the full subcategory consisting of the noetherian
A-modules. O

An A-module homomorphism of graded A-modules f : N — M has degree
d if f(Nz) C Mi+d for all 1 € Z. We define

e Homs(N,M)q :={f € Homu(N, M) | deg(f) = d}, and

e Hom (N, M) := @ Homu (N, M),.
dez

Lemma 2.2 If N is finitely generated, then Hom 4, (N, M) = Hom 4 (N, M).

Example 2.3 Let V be a graded vector space such that dimj V;, > 1 for all
n €% It f:V — kissuch that f(V,) # 0 for infinitely many n, then
f & Hom, (V, k). Thus Hom, (V, k) # Homg(V, k). ¢

Definition 2.4 Let M be a graded vector space over a field k. We say that M
is locally finite if dimy M, < oo for all n. We use the notation

Myn=EPMs and Mc, = Ma.
d>n d<n

We say that M is left (respectively, right) bounded if M<, = 0 (respectively,
M>, = 0) for some n.

Mostly we are interested in N-graded algebras. Such an algebra, A say, is left
bounded, and so are its finitely generated modules. Further, if M is a graded
A-module, s0 is M>p,.

A graded k-algebra generated by a finite number of elements of positive
degree is locally finite. Finitely generated modules over a locally finite algebra
are locally finite.

If M and N are graded modules over a graded ring R, we define, for each
integer d, Hompg (M, N)q4 to be the R-module homomorphisms 6 : M — N such
that 8(M;) C N;44 for all i. We also define

HOHIR(M, N) = Dgez HOHIR(M, N)d

Thus Homp (M, N) is a graded abelian group, and its degree zero component is
Homg, (M, N).
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To show that a homomorphism ¢ : A — B of graded rings induces a map of
non-commutative spaces

g : GrModB — GrModA

we follow the idea in Example 3.3.3, but the gradings add some complications.

If R and S are graded rings, and M is a graded R-S-bimodule in the sense
that R;M,S; C Mpyiq; for all i and j, then Homp (M, N) becomes a graded
right S-module in the obvious way. For example, if M = R is viewed as an R-R-
bimodule in the obvious way, the map Homp (R, N) — N defined by 6 — 6(1)
is an isomorphism of right R-modules. In other words, Hom (R, —) is naturally
equivalent to the identity functor.

If P is a graded R-S-bimodule, we define a grading on M ® g P by declaring
its degree-n component to consist of the span of all elements m ® p where m
and p are homogeneous and degm + degp = n.

Proposition 2.5 Let R and S be graded k-algebras. Let M € GrModR, and
N € GrModS. If P is a graded R-S-bimodule, then

Hom (M ®g P, N) 2 Homp (M, Hom (P, N)); (2-1)
In particular, — Qg P is left adjoint to Homg (P, —).

Proof. The isomorphism is implemented by the map ® defined by ®(f)(m)(p) =
f(m®p) for pe P and m € M. We leave the details to the reader. Taking the
degree zero components of (2-1) gives the adjointness property. O

Proposition 2.6 Letyp : A — B be a map of graded k-algebras. Then ¢ induces
an affine map of spaces g : GrModB — GrModA.

Proof. We define g, : GrModB — GrModA to be the functor that sends a
graded B-module N to N viewed as a graded A-module. Formally, this is

9+N = Homg(B, N). (2-2)
By Proposition 2.5, g, has a left adjoint g* given by
M =M®sB (2-3)

where B is made into a graded A-B-bimodule in the obvious way. We may also
write g«N = N ®p B, where B is viewed as a graded B-A-bimodule in the
obvious way. Therefore, the functor

9'M = Hom (B, M). (2-4)

is a right adjoint to g.. Finally, it is clear that g, is faithful. O

Corollary 2.7 If I is a graded ideal in a graded ring A, then GrModA/I is a
closed subspace of GrModA.
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The degree-shift functor, or twisting. If M is a graded A-module and
n is an integer, we define M (n) to the graded A-module that is equal to M with
its original A-action, but is graded by

M(n); == Mnyi

for all i € Z. It is clear that the rule M — M (n) extends to an auto-equivalence
of GrModA4; (n) acts on morphisms as the identity. We call this the degree-shift
functor. In keeping with the terminology of algebraic geometry we also call this
the nth twisting functor.

It is an easy but worthwhile exercise to check that

Hom 4 (N (i), M (j)) = Hom 4 (N, M)(j — 1)

as graded vector spaces.

Since Homy4 (4, —) is exact, so is Homg,(A(n),—) for all n € Z. Thus A(n)
is projective in GrModA, whence GrModA has enough projectives. A module
M is free if it is a direct sum of shifts of A. In general A is not a generator in
GrModA; for example, if My = 0, then Homg,(A, M) = 0. However, the pair
(4, (1)) acts somewhat like a generator in that P = €P,,., A(n) is a generator.

If A has a homogeneous unit of positive degree, say n, then GrModA is an
affine space because P = A® A(1)®...®» A(n—1) is a progenerator in GrMod A.

Definition 2.8 A graded k-algebra A is connected if
A=k A0 AD.... (2-5)

We write m = A; & A; @ ... and call this the augmentation ideal. We write
k = A/m and call this the trivial A-module.

For a connected algebra, the only simple modules in GrModA are the shifts
k(n) of the trivial module.
There is a useful analogue of Nakayama’s Lemma for connected algebras.

Lemma 2.9 Let A be connected. If M € GrModA is left bounded, then M =0
if and only if M @4 k= 0.

Proof. Suppose that M # 0. Since M is bounded below, we can choose
0 # m € M, homogeneous of minimal degree. Such m cannot belong to M A>,.
This is absurd, since M ® 4 k¥ = 0 implies that M A>, = M, so we conclude that
M =0. O

Lemma 2.10 Let A be connected, and M € GrModA. If M is bounded below,
then
1. M is free if and only if Tor](M,k) =0

2. M is projective if and only if M is free.
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Proof. (1) (<=) Choose a graded vector space V such that V & MA>, = M.
Then (M/V A)®ak = 0 so, by Nakayama’s Lemma M = VA. Let ¢ : VQr A —
M be the multiplication map. Since Tor{*(M, k) = 0, there is an exact sequence

0 — > kerp@uk —— VarAoak 21 Mesk —s 0.

Since ¥ ® 1 is an isomorphism, kery ® 4 £k = 0. But ker ) is bounded below so,
by Nakayama’s Lemma, 1 is an isomorphism.
(2) This follows immediately from (1). O

5.3 Tails

Throughout this section k will denote a field.

One could at this stage proceed quickly to the definition of the homogeneous
coordinate rings and their associated projective spaces. But we prefer to post-
pone that and use this section to build some of the machinery that is needed to
proceed beyond the definitions.

Definition 3.1 Let A be alocally finite graded k-algebra. We define the following
categories.

o fdimA is the full subcategory of grmodA consisting of the finite dimensional
graded A-modules.

e FdimA is the full subcategory of GrModA consisting of the direct limits of
finite dimensional graded A-modules.

e TailsA is the quotient category GrModA/FdimA. We write 7 : GrModA —
TailsA for the quotient functor.

o tailsA is the full subcategory of TailsA consisting of the noetherian objects

0

Torsion. Modules in FdimA are called torsion modules, and we denote by 7
the functor that sends a graded A-module to its torsion submodule

7M := the sum of all finite dimensional submodules of M.

In other words, TM = liln}Ho_m A(A/A>n, M) and the right derived functors of
T are

R'r = lim Ext’y (A/A>n, -).
An A-module M is torsion if 7M = M, and is torsion-free if 7M = 0. It is clear
that M /7TM is torsion-free. Since every module has a largest torsion submodule,
FdimA is a localizing subcategory of GrModA.

Theorem 3.2 The functor w : GrModA — TailsA has a right adjoint,
w : TailsA — GrModA.
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Proof. This follows from the preceding remarks and Theorem 1.14.12 because
GrMod A has enough injectives. d

Recall how wrM is constructed. Since it depends only on M/TM, we can,
for simplicity, assume that M is torsion-free. Let E(M) denote the injective
envelope of M in GrModA. Then wrM is the largest submodule of E(M) that
contains M and is torsion modulo M. If M = wwM we say that M is saturated.
Because mw = id, the saturated modules are precisely those of the form wn M.
They are saturated in the sense that they cannot be extended in a non-trivial
way by a torsion module.

We will make frequent use of the adjoint isomorphism

Hom,js(7N, F) = Homg, (N, wF). (3-1)

This implies that wF is torsion-free since, if IV is torsion then 7N = 0, which
ensures that both the above homomorphism groups are zero.

Definition 3.3 We call wrM the saturation of M, and say that M is saturated if
the natural map M — wnM is an isomorphism.

As for any quotient functor and its right adjoint, we have

mTow ~id.

Proposition 3.4 wrM = lim Hom 4 (A>n, M)
Proof. The proof is a “finger exercise”:

wrM = Hom (A, wrM) because 4 A is finitely generated,
= @ Home, (A, wrM(d))
dez.
= @ Homryys(wA,7M(d)) by the adjoint isomorphism,
dez.
= @ limHome (A>n, M(d)) by Proposition 3.7,
dez.

d€EZ
= h_In)HOInA(AZnaM)

O

Since GrModA is a k-linear abelian category, so is TailsA. By Theorem
1.13.8, 7 is an exact functor. The objects in the quotient category are the same
as those in the original category—they are of the form 7 M—but there are more
morphisms in the quotient category. In particular, if f : N — M is a degree
0 homomorphism of graded A-modules, such that ker f and coker f are finite
dimensional, then 7 f is an isomorphism in TailsA.

Thus, up to isomorphism, every object in TailsA is of the form 7N for some
torsion-free N € GrModA. We will use script letters like A/ to denote objects in
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TailsA so as to reinforce the idea that objects in TailsA are analogues of sheaves
of modules. In particular, we will write

A=7mA

for the image of A in TailsA.
The origin of the name Tails is as follows. If M is a graded A-module, then

Msg:=Mg® Mg41®...

is called a tail of M. It is an A-submodule, and since every element of M /M4 is
annihilated by a suitably large power of m, (7 applied to) the inclusion M>4 —
M is an isomorphism in TailsA. Thus #M depends only on the tail of M.

Proposition 3.5 If M,N € grmodA, then M = wN if and only if M>, =
N>, for some n.

Proof. Suppose that 7M = 7 N. By Proposition 3.7, the isomorphism is given
by nf for some f : N>, = M. Thus ker(f) and coker(f) are torsion, and hence
finite dimensional by the noetherian hypotheses. It follows that for » > 0,
f: N>, = M5, is an isomorphism, as required. The converse is trivial. O

The noetherian hypothesis is essential to the previous result: if A = &k and
M = ®p<ok(n), then 7M = 0, but M>,, % 0 for any n.

As we will see in section 5.4, in projective geometry TailsA is more important
than GrModA. It is not just a case of the tail wagging the dog—the tail is the
dog!

The morphisms in TailsA can be a little tricky to understand. By definition
of the quotient category, if M and N are graded A-modules

HOI’IlTaus(Tl'N, 7TM) = li_n;HomGr(N',M/M')

where the direct limit is taken over the directed set, I say, consisting of all pairs
(N', M'") of submodules of N and M respectively, for which N/N' and M' are
torsion modules. The quasi-ordering on [ is defined by

(N',M') < (N",M") i N"CN'and M' C M".

Since I is directed, every morphism 7N — wM is of the form 7 f for some
f € Homg,(N', M/M'") some (N', M'") € I; that is, every morphism in TailsA is
the image, in the appropriate direct limit, of a morphism in GrModA.

Under reasonable hypotheses this description of the morphisms in TailsA
may be simplified.

Proposition 3.6 Let N and M be graded A-modules. Then
Hom,is(7 N, M) = hﬂ Homg, (N', M /TM)

where the direct limit is taken over the submodules N' C N such that N/N' is
torsion.
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Proof. By Lemma ??, the set (N',7M) is cofinal in the index set I defined
above, so the result follows. O

Proposition 3.7 Let A be an N-graded, k-algebra. Suppose that M € GrMod A
and that N is a noetherian module.

1. If A is left noetherian or locally finite,

Homais(nN, M) = h_n}u Homg (N>n, M/TM).

2. If A is left noetherian,

HOIIlTaiIs (7TM, ’/TN) = hﬂ HomGr(NZH’ M)

Proof. (1) If N/N' is torsion, then N/N' is right bounded so N>, C N’ for
n > 0. Hence {(N>n,7M) | n € Z} is cofinal in the index set I defined above,
and the equality follows.

(2) First we prove this when M is finitely generated. The direct limit over
n of the exact sequences

0 — Homg,(N>,, ™M) — Homg,(N>p, M) —

Homg,(N>pn, M/TM) = Extg,(N>p, TM)
remains exact. Since M is noetherian, 7M is right bounded so Homg(N>n, 7M) =
0 for n > 0. Since a minimal free resolution of N>, is zero in degree < n, it
also follows that Extg,(N>n,7M) = 0 for n >> 0. Therefore, the direct limits
of the first and last terms are zero, so the direct limits of the middle two terms
are isomorphic. Hence the result follows from (1).

Now suppose that M is arbitrary, and write M = lim M, as a direct
limit of finitely generated graded modules. The index set is directed. Clearly
TMy, = M, NTM, so li_n;}(TMa) = 7M. Therefore, taking the direct limit of
the exact sequences 0 - 7M, — M, — My/TM, — 0, Proposition 1.5.7 im-
plies that hg(Ma /TMy) = M/TM. Since N>, is finitely generated, the functor
Homg, (N>, —) commutes with direct limits. Thus

Homys (N, 7 M) = h_n}n Homg, (N>n, M/TM)
= lim,, Homg,(NZn,liga(Ma/TMa))
= lirg » lim o Home, (N, Mo /7Mo)
= lim o ling , Homg, (N>, Mo /7Mo)
= lim o lim , Homg: (N>, Ma)
= lim , lim o Homg: (N>, Ma)
= h_n;n HomGr(NZH,hEa M,)
= lim , Homg, (N>, M)
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as required. O

Twisting. The subcategory Fdim A is stable under the shift functor because
M is torsion if and only if M (1) is. Hence there is an induced automorphism
on TailsA, which we still denote by (1), and call the twisting functor; there is no
ambiguity in writing 7 M (1).
Notation. It is convenient to write

HO—mTaiIs(j:a g) = @HomTa”S(]:a g(d))
dez
With this notation, the proof of Proposition 3.4 says that wF = Hom(A4, F); in
fact, there is a natural equivalence of functors

w ~ Hom(A, -).
We also note that there is a natural map

p: A — Hom(A, A) = P Hom(A, Ald])

deZ

sending a € A4 to mp,, where p, : A — A is right multiplication by a. It is easy
to check that p is an anti-homomorphism of graded algebras, so each Hom(A, F)
has a natural right A-module structure. Of course,

Hom(A, F) = lim Hom 4 (4>, wF)

already has a natural right A-module structure coming from the right action of
A on As,. These two actions of A on Hom(A, F) coincide.

Although Proposition 3.4 gives an explicit description of w, its existence
and basic properties are usually established by defining w as follows. Given
M € GrModA, let E denote the injective envelope of M = M /7M. Then wrM
is defined to be the largest graded submodule, H say, of E such that M C H
and H/M is torsion. Thus H/M = 7(E/M), and there is an exact sequence

0—>7M — M — wrM — torsion — 0;

the last term in this sequence will be described in Proposition 11.5.

Example 3.8 Let A = k[z]. One can check directly that £ = k[z,z7'] is an
injective A-module, and hence is the injective envelope of A in GrModA. (Notice
this shows that, in contrast to projectives, injectives in GrModA need not be
injective in ModA.) Since E/A is torsion it follows that wrA = E. (We will see
later that for the polynomial ring in > 2 variables, wrA = A.) In particular,
wmA is not a finitely generated A-module. ¢

Generalization The construction of TailsA can be made for graded rings
that are not locally finite, and the theory in this section should be developed
in that generality (as Artin and Zhang did in [228]). In that case the cate-
gory FdimA is replaced by TorsA which is defined to be the full subcategory of
GrModA consisting of those M such that very m € M is annihilated by A, for
some sufficiently large n.
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5.4 Non-commutative projective spaces

Throughout this section & will denote a field.

The equivalence QcohX = GrModA/FdimA in Serre’s theorem equates a
topologically defined category with a purely algebraically defined category. For
a non-commutative graded algebra, the construction of the topologically defined
category presents insurmountable problems. There may be too few two-sided
ideals to give a topological space of reasonable size, and it is usually not possible
to localize in any reasonable way at prime ideals. However, there are no obstacles
to forming the algebraically defined category GrMod A/FdimA. That is therefore
the approach we take. We consider this category as if it is the category of “quasi-
coherent modules” on some imaginary non-commutative projective space.

Definition 4.1 Let A be a right noetherian, locally finite, connected graded k-
algebra. The (non-commutative) projective space with homogeneous coordinate
ring A is the space X defined by declaring

ModX = TailsA.
We define Proj A to be the enriched projective space
ProjA := (X, Ox)

where Ox is A viewed as an object in TailsA = ModX. That is, X is given the
structure module Ox = wA. O

Example 4.2 A non-commutative homogeneous coordinate ring of Spec k x k.
First give My (k[z]) = My (k) ® k[z] the grading with deg M>(k) = 0 and degz =
1. Let A be the subring

4= (aieh W)

with the inherited grading. Let X denote the projective space with homogeneous
coordinate ring A. Thus ModX = TailsA. To see that TailsA is equivalent to
Modk x k first observe that a graded A-module is finite dimensional if and only if
it is annihilated by 2. Thus FdimA consists of exactly those graded A-modules
in which every element is killed by some power of 22. Thus TailsA is equivalent
to GrMod A[z~2]. However, A[z~2] has a unit of degree one, namely

0 z!
1.71 0 )

so A[z?] is a progenerator in GrModA[z~2]. The endomorphism ring of A[z~?]

in GrModA[z~?] is
- k0
Al 2]02(0 k )
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Thus GrModA[z?] is equivalent to Modk x k. Under the equivalence of cate-
gories Ox = mA corresponds to k& X k, so Proj X = (X, Ox) is isomorphic to
Speck x k with its usual structure sheaf.

The ring A is isomorphic as a graded ring to the path algebra of the quiver

1 2
S E— (4-1)

0

T'm a bit puzzled about this example. Example 3.14.5 showed that
the affine space with coordinate ring A has two open subspaces isomorphic to
the affine line. The only difference between those two lines occurs at the two
points where z? is zero: each point belongs to just one of those lines, and
the lines are the same once those two points are removed. So, after removing
those two points the affine space with coordinate ring A[z 2] is isomorphic to
Al\{0}. However, by analogy with the commutative case, the closed points in
Proj A should be in bijection with the lines in ModA[z~2]; obviously that does
not happen!?

Using the twisting functor we define, for F,G € TailsA,

Hom(F,Q) := @ Homris(F,G(n)).

n€Z

In this way Hom(F, G) is a graded k-vector space with
Hom(F,G), := Hom(F,G(n)).

By Proposition 2.6, a map ¢ : A — B of graded k-algebras induces an affine
map of spaces g : GrModB — GrModA. Whether g*, g., and ¢', induce functors
between the Tails categories, and hence a map between the associated projective
spaces, depends on whether they send torsion modules to torsion modules. In
the situation 4 — A/I, it is easy to see that g*, g., and ¢', all send torsion
modules to torsion modules, so induce functors between TailsA and TailsA/I.
To show that I determines a closed subspace of Tails4, we must show that the
induced functors are adjoints to one another. We require some preparatory
results.

Lemma 4.3 Let 0 = M — E — T — 0 be an exact sequence of R-modules.
Let I be a two sided ideal in R. If MI = 0, then there is a surjective R-module
map T @p I — EI.

Proof. The map (E/M) x I — EI defined by
(e + M],z) — ex

is well-defined, bilinear, and agrees on ([er + M), z) and ([e+ M], rz), so induces
a surjective R-module homomorphism (E/M)®gr I — EI. O
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Lemma 4.4 Let A be a left noetherian graded ring, I a graded two-sided ideal,
and T a right A-module such that if t € T, then tA, = 0 for n > 0. If
t@xeT®al, then (t ® x)A>p, =0 for n > 0.

Proof. Since A is left noetherian, there is a surjective map of graded left
A-modules
@leA(TLi) -1

for some finite set of integers n4,... ,ns. The induced map
O_ 1 T®aAN;) > T R4l

is surjective. However, T ®4 A(n;) = T'(n;) via the map t®a + ta, sot®a =0
in T ® A(n) if dega > 0. The result follows. O

We will use the following notation for the rest of this section

GrModA/I —*—  GrModA

S =

TailsA/T TailsA

Lemma 4.5 Let I be a graded ideal in a graded ring A. Let g : GrModA/I —
GrModA be the associated map. Then

1. if P € GrModA is torsion-free and saturated, then ¢'P = wim g'P;
2. wlmg! = g!w27f2;
3. waTags = GxW1T1-

Proof. (1) Clearly ¢'P is the submodule of P annihilated by I. The injective
envelope of ¢' P embeds in the injective envelope of P. Hence w;m¢' P, which is
an essential extension of g'P, is a submodule of that injective envelope. Since
wim1g' P/g'P is torsion, so is wym1 g' P+ P/P. But P is saturated, so wym1¢g'P +
P = P. Thus wymg'P C P. Tt is an A/I-module though, so it must be
contained in ¢g'P. Hence the result.

(2) Let N € GrModA, and set N = N/7N. The last term in the exact
sequence

0—= ¢'(rN) = ¢'N = ¢'N — Ext! (A/I,TN).

is a subquotient of Hom 4(A/I,J'), where 0 - 7N — J* = J! —» ... isa
minimal injective resolution of 7N. But all the J! are torsion because FdimA
is closed under injectives, so Hom ,(A/I,J') and Ext! (A/I,7N) are torsion.
Therefore m1g'N = m1g'N. Also maN = m N, so to prove that both functors
take the same value at N, we can, and will, assume that N is torsion-free.
Applying 7 g' to the exact sequence 0 = N — womN — T — 0 gives an
exact sequence 0 — m¢g'N — mg'wemaN — m1¢g'T. Since T is torsion, so is
g'T, whence m ¢'N = mg'wamoN. Therefore, wimg'N = wimg'wameN. But
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part (1) applied to P = maws N gives g'wsma N = w1 g'wamy N. Combining the
last two sentences gives the result.

(3) Let M € GrModA/I, and set M = M/TM. Since m M = m M and
TogsM = mag. M, to prove that both functors take the same value at M, we
can, and will, assume that M is torsion-free. To prove the result it suffices
to show that womeM = wym M. More precisely, it suffices to show that the
maximal essential extension, in GrModA, of M by a torsion module is actually
an A/I-module.

Consider the exact sequence 0 = M — wyma M — T — 0. It suffices to show
that weme M is an A/I-module. By Lemmas 4.3 and 4.4, (wama M) is a quotient
of T ®4 I, so is torsion. However, M is an essential submodule of wema M, so if
(wama M)I were non-zero it would meet M in a non-zero submodule. But M is
torsion-free, whence (wama M)I = 0. O

Proposition 4.6 Let A be a graded ring, and I o graded two-sided ideal. Then
TailsA/I is a closed subspace of TailsA.

Proof. We will exhibit an adjoint triple (f*, f«, f') so that f. : TailsA/I —
TailsA makes (4-2) a commutative diagram (up to natural equivalence).

Let g : GrModA/I — GrModA be the natural map. Since the functors g*,
g, and ¢' send torsion modules to torsion modules, m;¢' and 7 ¢g* vanish on
FdimA, and w29, vanishes on FdimA/I. Therefore the universal property of the
quotient categories, as expressed in Theorem 2.13.9, guarantees the existence of
functors f*, f., and f', satisfying

mg = f'me, mage = fim, mg*=f*m. (4-3)

(Of course, these are not really equalities, but natural isomorphisms.) It follows
that f*, f., and f', could be defined as

f! = 7T1g!w2, e = magawr, f*=migtws. (4-4)

To prove that (f*, f«, f') is an adjoint triple, we fix modules M € TailsA/T
and NV € TailsA. There are torsion-free saturated modules M € GrModA/I and
N € GrModA such that M = mM and N = maN. We will use the results in
Lemma, 4.5.

Write Y = TailsA/I and X = TailsA. Then

Homy (f*N, M) = Homy (f*na N, w1 M)
= Homy (71 9*N,m M)
= Hom4 (N, gsw1m M)
= Hom 4 (N, wamag« M)

M
M)

= Homx (ma N, fim

(
= Homx (N, fiM).
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Furthermore,

Homx (fu M, N) = Homx (fm1 M, m>N)
= Homx (mag« M, w2 N)
~ HomA/I(M, g!w27r2N)
= Hom 1 (M, w,m1g'N)
=~ Homy (m; M, f'maN)
= Homy (M, f'N).

This proves the adjointness.
By Lemma 4.5, waTags =2 gew1m1, SO

wa fr = Wamagewi = a1 MW = guw

and

faTl = Taguw1 T = TowaTags = T2gs.

Also, the natural transformation f*f. — idmsa/r is @ natural equivalence be-
cause

* * * * .
[ fe = mgtwamagiwn = mgTgawimwr = mgTgiwr = mwr = idraisayr -

Hence, by Theorem 1.6.15, f, is full and faithful. It follows from these remarks
that we can view TailsA/I as a full subcategory of TailsA, and simply write 7
and w without any ambiguity. That is, if M is an A/I-module, then M and
wmM are unambiguously defined.

It remains to show that TailsA/I is closed under submodules and quotients.
Let M € TailsA/I, and consider an exact sequence 0 - L - M - N — 0 in
TailsA. Write M = 7 M, where M = wM is in GrModA/I. There is an exact
sequence 0 = wl = wM — wN — R'wL. Since w/ is a submodule of wM,
it is in GrModA/I. Therefore mwC is in TailsA/I. But this is isomorphic to L.
Although wN is not necessarily a quotient of wM, it differs from a quotient of
wM by a torsion module because R'w/. is torsion (Corollary 11.4). Applying 7
kills the torsion, so the result follows. |

Perhaps the crucial point in the proof is the fact that wsf. = g«w1, which
can be interpreted as saying that if M is in TailsA/I, then wM is in GrModA/I.

We call TailsA/I the closed subspace of TailsA cut out by I, or the zero locus
of I.

Lemma 4.7 Let A be a right noetherian graded ring, and I a graded two-sided
ideal. Write X = GrModA, X = TailsA, Y = GrModA/I, and Y = TailsA/I.
Let M be an X-module. Then M is supported on Y if and only if wM is
supported on Y.
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Proof. Because the inclusion of Mody X in ModX has a right adjoint, Mody X
is closed under direct limits. Similarly, Mody)? is closed under direct limits.
Therefore it is enough to prove the lemma for noetherian modules.

(=) Suppose that M is noetherian. Then there is a finite chain 0 = Mg C
M; C ... C M, = M such that each M;/M;_; is a Y-module. Since w is
left exact, this gives a chain 0 = wMy C wM; C ... C wM, = wM. By
the remark preceeding this lemma, each w(M;/M;_1) is a Y-module. Since
wM;/wM;_1 is a submodule of w(M;/M;_1), it is also a Y -module. Hence
wM is supported on Y.

(<) Suppose that M is noetherian. By Lemma 2.14.19, there is a noetherian
submodule M of wM such that 7M = M. By hypothesis, M is supported on
f’, so there is a finite chain 0 = My C M; C ... C M,, = M such that each
M;/M; ; is a Y-module. Since 7 is exact, this gives a chain 0 = 7 My C 7M; C
... C M, = M, with each slice a Y-module. d

In preparation for the next section, we now specialize to the case of a closed
subspace of TailsA cut out by a normal regular element of degree one. We will
show that the open complement is an affine space.

Lemma 4.8 If A is a connected graded algebra, and let z be a homogeneous
normal regular element of degree one. Then

GrModA[z™'] = ModA[z"]o.

Proof. If a graded algebra B contains a homogeneous unit of degree n, then
B& B(1)®...® B(n — 1) is a progenerator in GrModB. Hence GrModB is
equivalent to the category of modules over the graded endomorphism ring of that
module. Applying this to B = A[z7!], we see that B itself is a progenerator,
and its endomorphism ring is its degree zero component. O

Example 4.9 If A is strongly graded, then 4.4, = A, so TorsA consists only
of the zero module, whence TailsA = GrModA = ModA,. ¢

Theorem 4.10 Let A be a right noetherian graded ring, and let z be a regular
normal element of positive degree. Let Y be the closed subspace of X = TailsA
defined by z = 0. Let j : X\Y — X be the inclusion. Let 7 : GrModA — TailsA
be the quotient functor, and let w be its right adjoint.

1. An X -module, M say, is supported on'Y if and only if wM is z-torsion.
2. ModX\Y is equivalent to GrModA[2~1], and to TailsA[z71].

3. If a : GrModA[z~1] — GrModA is the open immersion induced by A —
A[z71], then j* = a*w and j. = Ta.

4. If degz =1, then ModX\Y = ModA[2~1].
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Proof. By definition, ModX\Y is the quotient category Mod X /Mody X . Since
ModX = TailsA is a quotient category of GrModA, it follows from Proposition
2.13.11 that

ModX\Y = GrModA/T,

where T is the full subcategory consisting of those M such that M is in
Mody X. By Lemma 4.7, this is precisely Mody X, where X = GrModA and
Y = GrModA/(z). Therefore

ModX\Y = ModX/Mody X = ModX\Y.

We follow the proof of Proposition 3.10.2 to compute ModX \}7. The map
A — A[27!'] induces a map of spaces g : GrModA[z!] — X. If N is an
Alz71]-module, then N ® 4 A[z7!] = N, so g*g. is naturally equivalent to the
identity functor. The X-modules supported on Y are those M such that every
element of M is annihilated by a power of z. These are the modules M such that
M ® 4 A[z~"] is zero. Therefore g* vanishes precisely on Mody, X. Tt follows from
Theorem 3.7.2 that GrMod A[z~'] = Mod X /Mody X. But this is Mod(X\Y) by
definition.

Finally, GrModA[z~!] 22 ModA[2~!]y by Lemma 4.8. O

Show in the previous result that j : X\Y — X is such that j*(# M) =
M[Z_l]o.

Do I really need the noetherian hypothesis for this? I think it might
be need to show that z-torsion is a stable torsion theory i.e. that an essential
extension of a z-torsion module is z-torsion. Check. If so, we would need a
noetherian hypothesis to prove 5.3.

Questions. Suppose that ModY C GrModA is weakly closed and stable
under the shift functor. Is its “image” under = weakly closed in TailsA?

EXERCISES

4.1 Suppose that A is a finite dimensional graded k-algebra. Show that every object in TailsA
is isomorphic to zero. Find weaker conditions on A for which the conclusion still holds.

4.2 Let A = k[X] with deg X = 1. Show that TailsA contains a unique irreducible object and
that every object is isomorphic to a finite direct sum of copies of this irreducible object.

4.3 Let A = k[X] with deg X = r > 0. Show that tailsA contains r irreducible objects up to
isomorphism, that all these are shifts of a single one, and that every object is isomorphic
to a finite direct sum of copies of these irreducible objects.

4.4 Let A = k[z,y]/(f) where k[z,y] is the commutative polynomial ring with its usual grad-
ing, and f is a homogeneous polynomial of degree n > 1 which is a product of n distinct
linear terms. Show that TailsA has m non-isomorphic irreducible objects, and that ev-
ery object is isomorphic to a direct sum of various irreducible objects. Are any of these
irreducible objects shifts of other ones?

4.5 Let A = k[z,y]/(y?) be commutative with degz = degy = 1. Show that there is a unique
irreducible object in TailsA and show that there exists an object of length two in TailsA
which is not a direct sum of copies of this irreducible object.
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4.6 If F is a non-zero irreducible object in TailsA show that wF is critical.

4.7 Show that the algebra A in Example 4.2 is isomorphic as a graded algebra to the path
algebra of the quiver

1 2
F—— i (4—5)

5.5 Embedding an affine space in a projective space

A standard proceedure in algebraic geometry is to embed an affine variety as an
open subvariety of a projective variety. In this section we show that the same
proceedure can be carried out in the non-commutative setting.

Example 5.1 We examine how an affine curve is embedded in a projective
one in the commutative case. We take the polynomial ring k[X,Y, Z] with its
standard grading, deg X = degY = deg Z = 1, as the homogeneous coordinate
ring of P2.

A plane projective curve is defined to be the zero locus of a homogeneous
polynomial g € k[X,Y, Z] of degree > 1. The quotient k[X,Y, Z]/(g) is called
the homogeneous coordinate ring of the curve. For example, the line at infinity,
defined as the zero locus of Z is a projective curve. It consists of the points
(a, 3,0) and is isomorphic to the projective line P*.

The projective plane contains a copy of the affine plane. The map (a, §) —
(a, 3,1) from A% to P? is injective. We will identify A? with this subset of
P2. Thus A2 is the complement in P? to the line at infinity. The coordinate
functions on A? are z = X/Z and y = Y/Z. The coordinate ring k[z,y] of A
can be constructed directly from k[X,Y, Z] as the degree zero component of the
localization k[X,Y, Z, Z~1].

Let C be a curve in the affine plane. Suppose that C' is the zero locus of
a polynomial f € k[z,y]. We will now exhibit a projective curve C' such that
C=CnNA2. If deg f = d, where degz = degy = 1, and

= X'y,

f~ = Z /\”XZY] Zd_i_j.

we define

Thus f is a homogeneous polynomial of degree d, and therefore defines a pro-
jective curve C. Evaluating f at a point in A2 C P2, we have

.f(aaﬂa 1) = ZAijaiﬂj = f(awB)a

so C' = A2 N C. The diffence between C and C lies outside A2, so on the line at
infinity. We think of C as obtained from C by putting in some points at infinity.

Some simple examples are provided by the conics. Suppose C is the parabola
y =22 Then f =y —22and f =Y Z — X2. There is only one point at infinity
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on C, namely (1,0,0). If C is the hyperbola defined by f = zy — 1, then
f=XY — 72 and there are two points at infinity, (1,0,0) and (0,1,0). If C is
a line, say = + y + 1 = 0 for example, then C is the zero locus of X +V + Z.
This meets the line at infinity at one point. y

The polynomial f can be recovered directly from f as

1 .
1=t
We now want to consider the relation between the coordinate rings

R = klz,y]/(f)

and ~ B
R =k[X,Y,Z]/(f).

Recall that klz,y] = k[X/Z,Y/Z] = k[X,Y,Z,Z"']o. The degree zero com-
ponent of R[Z~'] is generated by X/Z and Y/Z. Since Z~f = 0, we obtain
f(X/Z,Y/Z) =0 in R[Z7']. Therefore

R=R[Z™Y), (5-1)

the degree zero component of R[Z~']. Inverting Z amounts to working in the
complement of Z = 0. O

If we are given an affine scheme Spec R in isolation, with no particular em-
bedding in any A™, how can we construct a projective scheme that contains a
copy of Spec R? For example, how can we construct R directly from R?

Let us first observe, that there is more than one way to embed an affine
variety in a projective one. For example, although the affine line embeds in the
projective line, it also embeds in the cuspidal cubic X® = Y2Z. To see this
observe that the line Y = 0 meets the curve only at its singular point (0,0, 1),
so the complement to that point is the affine curve with coordinate ring

k[X,Y, Z]

m[yfl]o =k[X/Y,Z/Y].

However, (X/Y)% = Z/Y, so this is the polynomial ring in one variable, and
the curve is the affine line.

Our construction of R in Example 5.1 began not with k[z,y]/(f), but with
f as an element in k[z,y]. Thus we started with a preferred set of generators for
R which we declared to be of degree one, and then “homogenized” f to obtain
f, a homogeneous element in k[X,Y, Z]. Here is the process in the abstract.
Let R be a k-algebra generated by elements z1, ... ,2,. Set

Ri=k+kzi+...+kz,

and define R, to be the subspace of R spanned by all products vjvs .. .vg where
each v; € R;. That is, Ry = (R;)?. We set Ry = k. This gives subspaces

ROCR1 CRQC...,
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and R is the union of them. These subspaces also satisfy
RiRj C Ri+]-.

Such an ascending chain of subspaces is called a filtration on R, and R is called
a filtered ring. We say that the elements in R4 have degree < d.

There are several graded rings one can associate to a filtered ring.

The associated graded ring of a filtered ring R is defined to be

Ri Ry
R =R — =D
gr O@ROGBRIEB ,

with multiplication defined by
[a+ Ri1].[b+ Rj1] := [ab + Riyj1]

whenever a € R;\R;_; and b € R;\R;_1.
Make the polynomial extension R[Z] a graded ring by setting deg R = 0,
and deg Z = 1. The Rees ring of a filtered ring R is defined to be the subring

R=RyORZORZ*®---
of R[Z]. Check this is a ring.

Proposition 5.2 Let R be a filtered ring, and write R for its Rees ring. Then
1. R is connected, and is generated as an algebra by its degree one component;

2. Z 1is a central, regular element in R, so the natural map R — R[Z 1 s
injective;

8. R[Z™']o = R;
4. R/(Z) = grR.

Proof. (1) The statement concerns two subrings of R[Z, Z~']. We will show
they are equal. The degree zero component of R[Z~!] equals

Ry + (R1Z)Z_1 + (R2Z2)Z_2 L

However, Ry C Ry = (R1Z)Z~' C Ry = (RyZ*)Z~2 C---,s0 R[Z7'] = R.
(2) We have
E ®(R)q ®R4Z¢ R,Z¢ Rq

= Z - =D =3P .
(Z)  @®(ZR)y ©ZRgq 174! Ry 177 Ra-1

It is now a matter of checking that the multiplications match up. O

Theorem 5.3 Let U = ModR be an affine space where R is a finitely generated
k-algebra. Then there is a non-commutative projective space X with a closed
hypersurface Y, such that U = X\Y. Furthermore, Y = Tails(gr R).
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Proof. Fix a finite set of algebra generators for R, and let Ry C Ry C ... be
the associated filtration. Let A denote the associated Rees ring, and z € A; be
the homogenizing element. Set X = TailsA4, and let Y be the zero locus of z.
Then X\Y is isomorphic to ModA[z7!]¢ by Theorem 4.10, and A[z7']o = R by
Proposition 5.2. This proves the result. |

Theorem 5.3 says that the affine space ModR embeds as an open subspace
of the non-commutative projective space TailsR. It is the open complement to
a closed subspace that is isomorphic to Tailsgr R.

Let j : U - X and i : Y — X be the inclusions in Theorem 5.3. We now
proceed to describe the inverse and direct image functors.

Let M be an R-module. We will construct a graded R-module M such
that M = j*(xM) = M[Z']o. The construction of M depends on a choice of
filtration on M and, if i : Y — X is the inclusion, then i*(x M) = n(M /M Z) =
w(gr M), where gr M is the associated graded module.

Show that j*(7M) doesn’t depend on the choice of filtration.

Fix a set of generators m; for M, and define

Mn = ZmiRn.

Then
My C My CMyC...

is an ascending chain of subspaces of M such that M = U2, M, and M;R; C
M;y;. Such data gives M the structure of a filtered R-module. There are many
choices of generators for M, and therefore many different ways to make M a
filtered R-module.

We write M[z] for the R[z]-module M ® g R[2]. It can be made into a graded
R[z]-module by defining deg M = 0 and degz = 1. We define

MzM()@MlZ@MQZZ@....

It is a graded module over the Rees ring R. Of course, M depends on the choice
of filtration on M.

We define M[z '] = M ®p R[z1].

If M is a filtered R-module, its associated graded module is defined to be

M, M,
M=Mo-Lto 2g....
& °® 1 @ ©

It is made into a graded module over gr R by defining
[m + Mi_1].[b+ Rj_1] := [mb+ Miy ;]

whenever m € M;\M;_, and b € R;\R;_1.
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Proposition 5.4 Let R be a filtered ring, and write R for its Rees ring. Let
M be a filtered R-module, and let M be the module constructed above. Then

1. M[Z o = M, and
2. M/MZ = gr M.

Proof. (1) O
Notice that M[Z '], does not depend on the choice of filtration.

Proposition 5.5 Let U = ModR be an affine space where R is a finitely gen-
erated k-algebra. Let U, X, and Y, be the spaces constructed in Theorem 5.3.
Let j:U — X and i : Y — X be the inclusions. If M is an R-module, and M
an associated Rees module, then j*rM = M and i*rM = n(gr M).

Proof. O

EXERCISES

5.1 View the polynomial ring R = k[z] as the coordinate ring of the affine line. Consider the
three embeddings of AA! into the projective curves that are obtained by forming the Rees
rings of R with respect to the filtrations induced by the three generating sets {z}, {z, 2%},
and {z,z3}. Show that the ambient projective curves are P!, a smooth plane conic, and
the cuspidal cubic respectively.

5.2 Let R be an arbitrary k-algebra, o a k-linear algebra automorphism of R and § a k-linear
o-derivation of R. Consider the Ore extension A = R[t; 0, d] with defining relations
tr =r7t+ 0(r)

for r € R. Give A the ascending filtration defined by An = R+ Rt + ...+ Rt"™ for n > 0.
Show that the Rees ring A is isomorphic as a graded algebra to the extension R[u,v] with
defining relations

ur = r°u + 6(r)v, uv = vu, rv = vr,

for r € R. Hence show that the affine space with coordinate ring R[t; o, 4] is isomorphic
to X\Y, where X = TailsR[u,v], and Y is the zero locus of v.

5.6 Closed points in projective spaces

Throughout this section k denotes an algebraically closed field of characteristic
Zero.

Let A=Fko® A1 ®... be anoetherian graded k-algebra, and set X = TailsA.
It is usual to impose some technical conditions on A (the condition x of Artin
and Zhang [22]) to ensure that X behaves like a commutative projective scheme.
The condition ensures that dimjg Ext’ (M, N) < oo for all 4 and all noetherian
X-modules M and N. Rather than discussing this condition, we will make the
following assumption. It is mild, and is sufficient for our present needs.

Hypothesis. Throughout this section we suppose that
dim; Homx (M,N) < o
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for all noetherian X-modules M and N.
The hypothesis implies the following.

Proposition 6.1 Let A be a connected graded noetherian k-algebra. Let X =
TailsA. Every simple X-module is tiny.

Proof. If S is a simple X-module, and M is a noetherian X-module, then
Homx (M, S) is finite dimensional over k, and therefore finite dimensional over
D =Endx S. O

Therefore every simple X-module gives a closed point in X.

Definition 6.2 A graded A-module M is 1-critical if M,, # 0 for all n > 0, but
(M/N), =0 for all n > 0 whenever N is a non-zero submodule of M. O

If M is 1-critical, then 7w M is simple, so there is a closed point p € X such
that Op = 7M.

Corollary 6.3 If M is a noetherian X -module, then there is an epimorphism
M — O, for some closed point p € X.

Hence there is a reasonably rich supply of points. (Perhaps if X is a surface
there will be at least a curve of them.)

I do not think that every simple X-module really deserves to be called a
closed point. The next example provides a simple module that probably does
not deserve to be considered as a closed point. Perhaps we could call it a strange
point.

Example 6.4 Let B = B(E, 0, L) be the twisted homogeneous coordinate ring
with respect to a degree three line bundle £ on an elliptic curve E, where o
is an automorphism of E having infinite order. If I is a non-zero two-sided
ideal of B, then dimy B/I < co. Hence, if B is viewed as a right module over
A = B°P ®y B, then 7B is a simple module over X = TailsA. However, since
GKdim B = 2, 7B will be a strange simple module. ¢

The next result provides reassurance by showing that our notion of closed
point agrees with the usual one for projective varieties.

Theorem 6.5 Assume that k is algebraically closed. Let A denote the homo-
geneous coordinate ring of a projective algebraic variety X C P}. Then there is
a bijection

{closed points in X} + {closed points in TailsA}

given by
pe 71'(-’4/11!7)

where I, is the ideal generated by the homogeneous f € A such that f(p) = 0.
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Proof. Choose homogeneous coordinate functions Xg,... ,X, on P”. Let p =
(a0,-..,an) € X. Then I, is generated by {a; X; — a; X; |0 < i,j <n}. We
may assume that ag = 1, whence X, generates A/I, as a k-algebra. Thus
A/I, = k[T], the polynomial ring in one variable. If we give T degree one, then
this is an isomorphism of graded algebras. Since every proper quotient of k[T
is finite dimensional, A/I, is 1-critical, whence w(A/I,) is a simple module.

Before proving that every closed point in TailsA is of this form we make
an observation. The exact sequence 0 — (T') — k[T] — k — 0 translates to
an exact sequence 0 — (A/I,)(-1) - A/I, - k — 0. Therefore n(A4/I,) =
w(A/I,)(—1). It follows that w(A/I,) = w(A/I,)(r) for all r € Z.

Now let 7M be a closed point of TailsA. We may assume that M is finitely
generated and 1-critical. Choose a graded ideal which is maximal amongst
those which annihilate some non-zero homogeneous element of M; say I =
Ann(m) with 0 # m € M,.. It follows that I is a prime ideal: if not, there exist
homogeneous elements z and y such that mzy = 0 but neither mz nor my is
zero—hence Ann(mz) is strictly larger that I, contradicting the choice of 1.

Since M has no non-zero finite dimensional submodules, I is not equal to
the augmentation ideal of A. Hence V(I) C X is non-empty. If p € V(I) then
I C I, so A/I, is a quotient of A/I = mA(r). But m(mA) = «M since M is 1-
critical, so 7(A/I,)(r) is isomorphic to a quotient of wM; but 7 M is irreducible
so M = w(A/I,)(r) = w(A/I,) as required. O

Possibly Example 6.4 should be interpreted as saying we need a dif-
ferent definition of a closed point. What is needed is a new notion of dimension;
to avoid confusion with other notions of dimension, like Krull dimension, let’s
call it size. The size of a module M should be defined in terms the behavior of
Ext% (M, N) and/or Ext’ (N, M). The bigger M is the more likely that these
Ext groups are non-zero for a wide range of 4 and N. A somewhat simpler
possibility is to use the Euler form on Kq(X).

Let U = ModR be an affine space. Let X = TailsR be a projective space
containing U as the open complement of a hypersurface Y = Tails(gr R). Show
that j : U — X sends closed points to closed points, and that the union of the
closed points on U together with the closed points on Y gives all the closed
points in X.

5.7 A non-commutative projective plane

Throughout this section k denotes an algebraically closed field of characteristic
Z€ero.

In this section we study the non-commutative projective plane corresponding
to the two-dimensional non-abelian Lie algebra.

Let U = k[z,y] be the algebra studied in section 4.1 of chapter 4. Its defining
relation is zy — yz = x. The Rees ring, or homogenization, of U with respect
to the generators z and y is the graded algebra A = k[z,y, z] with defining
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relations
2r =22, 2Yy=4YyYz, TY—Yr = 22 (7-1)

The ring A is a noetherian domain with basis {z'y’z* | i,j,k > 0}. It is
a reasonable non-commutative analogue of the projective plane, and we shall
therefore think of

X = TailsA

as a non-commutative analogue of P2. The locus of z = 0 is TailsA/(z). Since
A/(z) is a commutative polynomial ring in two variables, TailsA/(z) = ModP!.
We will call this the line at infinity and denote it by L. By Theorem 5.3,
X\ L is isomorphic to the affine space ModU.

Now consider a line module in ModU, say L = U/(ax + Sy +v)U. Then the
corresponding line module in TailsA is A/(ax + By + 7)A. It meets Lo, at the
point A/(z,ax + By). This is the point (—f,a,0). Recall that the slope of L
is —aB~1, or infinity if 8 = 0. Thus, we see that L N L., is the slope of L, so
parallel lines in ModU meet at infinity.

In particular, the strange line modules U/(z— A)U, or rather their projective
completions M = A/(z — Az)A all pass through the point (0,1,0). Write £ =
m(A/(x — Az)A). Applying 7 to the exact sequence 0 — M(-1) - M —
A/(z,z) — 0 gives a sequence

0—+>L(-1) > L0, 0.
There are exact sequences
0> Ln—1)—> L(n) = 0, =0

for all n.

We define a line L with structure module £ by defining ModL to be the
smallest weakly closed subcategory of ModX that contains all the £(3), and the
obvious direct limit of the £(¢)s. I do not understand ModL.

5.8 Another projective plane

Example 8.1 Let X = TailsA, where A = k[z,y, 2] be the ring with defining
relations
yr = axy, zy=pPyz, xz=n~yzz

where a, 8, € k are such that afy # 1. If afy = 1, then A is a Zhang-twist of
the commutative polynomial ring in three variables, so X = P2, meaning that
ModX is equivalent to ModP?2.

The three normal elements z, y, and 2z, cut out three closed subspaces.
Each of these is isomorphic to the projective line P! because each of the three
homogeneous coordinate rings is a Zhang-twist of the commutative polynomial
ring in two variables.
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The open complements to these three lines are all isomorphic to Modk,[z,y],
where ¢ = afy. We will only check this for the open subspace z # 0. One has
Alz7Yo = klyz™!, z27!], and elementary computations give

2 2

(ya~")(zz™) =7 yza™® and (z27V)(y2 ') = afyza,

so if we set u = zz~! and v = yz~', then vu = quv. One needs to check that

there are no other relations but this will follow from a suitable Hilbert series
argument.

This shows that X is a projective space covered by three open affine spaces,
each of which is isomorphic to AZ, and that any one of these copies of AZ is the
open complement to a closed subspace that is isomorphic to P!. We will call
the line z = 0 the line at infinity.

%

Example 8.2 Let R = k[z,y] with defining relation zy — yz = 1. Thus R is
the first Weyl algebra. Consider the graded algebra A = k[z,y, 2] with defining
relations

2x =122, 2y=vyz, TY-—Yr=2".

It is not hard to show that {ziyiz* | i,j,k > 0} is a basis for A. Another
important feature of A is that it is a noetherian domain. Thus, we consider
TailsA as a non-commutative analogue of the usual projective plane.

Then A/(z) is the commutative polynomial ring on two variables, so the
locus z = 0 is isomorphic to the usual projective line. We call this the line at
infinity.

The open complement to the line at infinity is isomorphic to ModR because
Az = R. Thus, the non-commutative affine plane ModR has been embed-
ded in this non-commutative projective plane.

Although ModR has no closed points (Example 4.14) when chark = 0,
TailsA has a projective line of closed points. Every known example of a non-
commutative projective surface contains a commutative curve. We might say
that although ModR has no closed points, it has some closed points at infinity.

Notice that the “lines” R/(z — A)R all pass through a common point at
infinity, namely (0,1,0) = TailsA/(z, 2).

%

EXERCISES

8.1 Let A = k[z,y] be the Z-graded commutative polynomial ring with degz = 2 and degy =
3. Examine TailsA, and draw a picture of it.

8.2 Do the general case of the previous example including the case where degxz = 1 and
degy < 0.

8.3 Let A = k[z,y,2]/(zy — 22) be the Z-graded commutative ring with deg z = 2a, degz = b
and degy = 2a — b. Examine TailsA, and draw a picture of it.
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5.9 Some curves

If A is commutative, but not generated in degree one, then TailsA can be a non-
commutative space. The next example exhibits a family of non-commutative
curves Cp, n > 1. We have C; = P!, but C, is non-commutative for n > 2.
There are maps f : C, — P!. This is an isomorphism on P!\{oo}, but f~1(oc0)
consists of n closed points which are linked in a cycle. The curves C, are
projectivizations of the affine curves which were discussed in Proposition 3.5.23
and Example 3.14.4. Our picture of C,, for n > 2 is

This is a picture of the projective line with a point replaced by n points linked
as in the magnified portion of the picture.

Example 9.1 Fix a positive integer n. Let C' = TailsA, where A = k[z,y] is
the commutative polynomial ring with degz = 1 and degy = n where n is a
positive integer. If n = 1, then C' = P!. Suppose that n > 1.

Consider first the loci where z and y are zero. We denote these closed
subspaces by Z(z) and Z(y) respectively.

The zero locus of y is TailsA/(y) = Tailsk[z]. Since degz = 1, Tailsk[z] =
Modk, so is a single point, Proj k[z]. We call this the point at infinity, and label
it co. The zero locus of z is TailsA/(xz) = Tailsk[y]. Since degy = mn, this is
isomorphic to the space in Example 1.2, namely Spec k*™.

There are some obvious simple C-modules. The graded A-modules A/(z™ —
Ay), 0 # X €k, and A/(x)(i), 0 <i < n — 1, are all isomorphic to polynomial
rings in one variable, so any proper quotient of them is finite dimensional. Tt
follows that the images of these modules are simple C-modules. These deserve
to be called points of C. The n points arising from A/(z)(i), 0 <4 <n —1, are
the points where z is zero, and A/(y) is the point at infinity.

We now consider the open complements to the closed subspaces Z(z) and
Z(y).

The complement to Z(z) is Tailsk[z,z !,y]. Since this ring has a ho-
mogeneous unit of positive degree, its only finite dimensional graded mod-
ule is the zero module. Thus Tailsk[z,z7!,y] = GrModk[z,z1,y]. Write
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D = k[z,z~',y]. Since D has a unit of degree one, it follows that D is strongly
graded, and that GrModD =2 ModDy. But Do = k[yz "], so C\Z(z) = A'.

We will show that C\{oo} is isomorphic to the curve Mod@ where @ is the
quiver

L] rad =0

n  n-1 2 1

A picture of this curve appears at (14-5) in chapter 3.
By definition, C'\{oo} = TailsE, where E = k[z,y,y !]. A straightforward
computation shows that Eq = k[t], where t = 2"y ~!, and that

_JamEy ifm >0,
"o z™tEy if m <O.

Since y is a unit of positive degree in E, TailsE = GrModE. Notice that E is
not strongly graded because E_1 E; # Ey. It is not difficult to show that

P=E(n-1)e---©oEQ1)®E

is a progenerator in GrModE, so GrModE = ModEnd,, P. If we view the
elements of P as row vectors, then End,, P can be viewed as matrices acting by
right multiplication. The ij*® entry of Endg, P is

(Endg: P)ij = Homge(E(n — i), E(n - j)) = Ei_; =

T IEy  ifi>j,
i ItEy ifi < j.

This is a subalgebra of M, (k[z,y,y!]). Explicitly,

B E. ... ... ... E .
E, Ey ... ... ... By,
End,, P =
E,_» U E_,
E,._, ... ... E E,

To show that C\{oo} is isomorphic to the affine curve above, it suffices to show
that End,, P is isomorphic to the ring S described in Proposition 5.23. We do
this by verifying that v—!(Endg, P)v = S where

10 0 -- 0
0z O 0
0 0 2° 0
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1

The it diagonal entry of v is v; = 2°~!, so the entry in the ij*" position of

v~ (Endg, P)v is

xl_i(Endgr P)ijxj_l _ {EO lf'L Z .7'7
tEy ifi<j.
Since Ey = k[t], it follows that v~'(Endg, P)v has entries k[t] on and below
the diagonal, and entries tk[t] above the diagonal, so it is isomorphic to S, as
claimed.
The nt"-Veronese subalgebra A(™) = k[z™,y] is generated in degree one, so
by Serre’s Theorem, TailsA(™) = P!, There is a map of spaces f : C — P!
induced by sending a graded A-module M to the graded A(™-module M. {

5.10 The affine line with a double point

Let A = k[z,y] be the commutative polynomial ring with degz = 1 and degy =
—1. The points in Z = TailsA are Oy = A/(xzy — A) for 0 # A € k and
Op = A/(z) and Oy = A/(y).

Define Oz to be the image of A in TailsA.

5.11 Homological algebra in TailsA

In this section A denotes a noetherian connected graded k-algebra.

Since GrModA is a Grothendieck category it has injective envelopes. An
injective resolution
0-M-=E"SE' — ...

in GrModA is minimal if E7 is the injective envelope of the image of Ei~1 for
all j > 0.

For each ¢ > 0 we write Ext{ (N,—) for the right derived functors of
Homg, (N, —). We may compute these by taking injective resolutions of the
argument in the usual way. Ext{ (N, M) can also be computed by taking a
projective resolution of N. We will use the following notation:

Ext% (N,M) = the usual Ext groups in ModA,
Exty (N,M)q = the derived functors of Hom4(N, —)g4,
Exth(N,M) = @ BExt}(N, M),

nEL

The field £ is a graded algebra concentrated in degree zero. The graded dual
of a graded vector space is

V* := Hom, (V, k).

Thus (V*)q = Homg (V_g, k).
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Proposition 11.1 The injective envelope of the trivial module is isomorphic
to A* = Hom, (A, k) with right action of x € A given by (\.z)(a) = A(za) for
A € A*. The copy of k inside A* is ke, where € : A — k is the projection with
kernel A>;.

Proof. It is easy to see that A* is an essential extension of ke. To see that A*
is injective, suppose that f : N — M is an injective map of graded A-modules
and that @« : N — A* is a graded A-module map. Let a* : A — N* and
f*: M* — N* be the maps dual to a and f. These are homomorphisms of
graded left A-modules. Since f* is surjective and A is projective, there is a
homomorphism 6 : A — M* of left A-modules such that f* o8 = a*. Now
define 8 : M — A* by

Then S is a right A-module map satisfying 8o f = a. It follows that A* is
injective. O

Lemma 11.2 An essential extension of a torsion (respectively, torsion-free)
module is torsion (respectively, torsion-free). In particular, FdimA is closed
under injective envelopes.

Proof. Let M C E be an essential extension. If 7FE is non-zero it has non-
zero intersection with M, so 7M is non-zero. Thus, if M torsion-free so is E.
Conversely, suppose that M is torsion. Let e € E. Then eANM is torsion, hence
finite dimensional since A is noetherian. Thus eA>, N M = 0 for n > 0, whence
dimy eA < oo, since A is locally finite. Thus E is a sum of finite dimensional
modules, hence torsion. d

Lemma 11.3 1. FEach injective in GrMod A decomposes as a direct sum of a
torsion injective and a torsion-free injective.

2. If A is connected, then every torsion injective is a direct sum of shifts of
A* = Hom, (A, k).

Proof. (1) Let E an injective. Being injective it contains a copy of the injective
envelope of TE, say I. Since I is injective, E = I & @ for some other submodule
@2; being a summand of an injective, @) is also injective, and torsion-free since
7E C I. Finally, by Lemma 11.2, I is torsion.

(2) Let I be a torsion injective in GrModA. If 0 # M € FdimA, then
Hom 4 (k, M) # 0. We may consider S = Hom 4 (k, I) as a submodule of I; it is
a (possibly infinite) direct sum of shifts of 4k. If M is a non-zero submodule
of I then, since M is torsion, Hom4(k, M) # 0, whence M NS # 0, so S is
essential in I; thus I = E(S). Since A is right noetherian, a direct sum of
injective modules is injective, whence E(S) is a (possibly infinite) direct sum of
shifts of E(4k) = A*. O
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Corollary 11.4 Let A be a connected graded k-algebra. If i > 1, and M €
TailsA, then RiwM is a torsion module.

Proof. It follows from Theorem 2.14.15, that (R'w) o 7 = Ri*+!7 for all i > 0.
But, Ri*17 takes values in FdimA by definition. O

Proposition 11.5 For each M € GrModA, there is an exact sequence
0—=7M = M — wrM — lig Exty (4/A5n, M) — 0.

Proof. Over directed sets lim is an exact functor, so taking direct limits of the
exact sequences

0 — Hom 4 (A/A>n, M) — Hom 4 (A, M) — Hom 4 (A>n, M) — Ext} (A/A>n, M) = 0

yields the result, because ligHomA(A/AZH, M)=1M. O

If A, B,C are graded algebras, and 4 Mp and 4N¢ are graded bimodules,
then Ext? (N, M) is a graded C-B-bimodule.

The Ext-groups inherit good properties from their second argument.

Proposition 11.6 Let A be right noetherian, and N-graded. If N € grmodA
and M € GrModA, then

1. if M is left (or right) bounded, so is Ext? (N, M);
2. if M is locally finite, so is Ext? (N, M);

3. if M is a graded A-B bimodule, where B is a right noetherian graded
algebra, and M € grmodB, then Ext? (N, M) € grmodB too.

Proof. Take a projective resolution for N, each term of which is a finite direct
sum of shifts of A. Apply Hom 4(—, M) to get a complex in which each term is
a finite direct sum of shifts of M. Each Ext? (N, M) is a subquotient of these
terms, so inherits the relevant property from M. a

In section 5.13 we define cohomology groups for projective spaces. To estab-
lish the basic properties of the cohomology groups requires an understanding of
injectives in TailsA. The following is a special case of Theorem 2.14.14.

Proposition 11.7 1. TailsA has enough injectives.
2. If Q € TailsA is injective, then wQ is a torsion-free injective.

3. If Q € GrModA is torsion-free injective, then wQ is injective and @ =
wr@.
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If F € TailsA, then Homrys(F, —) is left exact, so we may define its right
derived functors, and compute them via injective resolutions. That is, if G — £°
is an injective resolution in TailsA, then

Ext!(F,G) := h1(Homrys(F,E®)),
the ¢*" homology group of the complex. We also define

Ext’(F,6) := P Ext*(F, G[d)).

deZ

These Ext groups are k-vector spaces. We will show that they can be computed
in terms of Ext groups in GrModA by using w.

Proposition 11.8 Let N € grmodA and M € GrModA. Let E*M be a minimal
injective resolution of M, and write E*M = I*M & Q°*M, where I*M is the
torsion part of E*M (it is a subcomplex) and Q* M is a torsion-free complement.
Write N = 7N and M =nM. Then

1. Ext!(NV, M) = hi(Homg (N, Q*M))
2. Ext!(V, M) 2 ling Ext}, (N3, M)

Proof. (1) Although Q*M is not usually a subcomplex of E* M, we may identify
it with the complex E*M/I*M. The exactness of 7 implies that M — 7E® ~
w(*® is an injective resolution of M in TailsA. But

HOIII(N, WQ.) = HomGr(N: w’/TQ. = Q.)J

so the result follows.

(2) First observe that limHom (N>n,I%) = 0: if f : N>, — I®, then
N>, /ker f is finite dimensional because I® is torsion and N is noetherian,
whence N>, C ker f for r > 0, which implies that in the direct limit f be-
comes zero. Therefore

li Ext?, (N5, M) = lig h?(Hom (N5, I* © Q%))
h4(ling Hom 4 (N>, Q*))
h?(Hom(N, 7Q*))

= mq(NaM);

1%

as required. O

5.12 The condition y

Throughout this section A is a noetherian connected graded k-algebra.
In order to prove a non-commutative version of Serre’s Finiteness Theorem
in the next section we need some technical results.
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Lemma 12.1 Write [I,r] = {T € GrModA | T; = T>, = 0}.
If Ext), (A/A>1, M) € [lI',r'] for all j < i, and T € [l,r], then

MQ(T:M) € [ll - Tarl - l]
for all j <.

Proof. By induction on r —1, we reduce to r —1 = 1, in which case T is a direct
sum of shifts of A/A>q; the lemma is easy for such T'. O

Proposition 12.2 Let M € grmodA and fix i > 0. The following are equiva-
lent:

1. for all j <1, MQ(A/AE,M) is finite dimensional;
2. forall j <1, MQ(A/AZ,L,M) is finite dimensional for oll n;

3. for all j < i and oall N € grmodA, MQ(N/NZTL,M) has a right bound
independent of n;

4. for all j <i and oll N € grmodA, QMQ(N/NZH, M) is right bounded.

Proof. First, by Proposition 11.6, if T' € grmod A, Ext (T, M) is a subquotient
of a finite direct sum of shifts of M, so is left bounded and locally finite.

We will prove the result by induction on ¢. For i = 0, (1)—(4) all hold because
dimy T' < oo implies that Hom 4, (7", M) C Hom 4 (T, 7M) which is finite dimen-
sional since dimy (7 M) < oo; notice that (4) holds because lig Hom A(AJ/A>n, M)
7M. So suppose the Proposition is true for ¢ — 1; i.e., the four conditions are
equivalent. '

(1) & (2) If (1) holds, the previous lemma implies that Ext’,(A/A>n, M)
is bounded, and hence finite dimensional by the first paragraph; thus (2) holds.
The converse is a tautology.

(1) = (3) The exact sequence 0 - T — N/N>p41 = N/N>, — 0 yields
an exact sequence.

Ext’; (T, M) — Ext’, (N/Nspn, M) = Ext’y (N/N>ni1, M) — Ext}y (T, M).

But T € [n,n], so by Lemma 12.1, the first and last terms are bounded, and
their right bounds approaches —oo as n — oco. Hence, given d € Z, there is a
natural isomorphism

Ext)y (N/N>n, M)>q = Ext)y (N/Non41, M)>a (12-1)

for n > 0. By Lemma 12.1, these are right bounded, so have a right bound
which is independent of n.

(3) = (4) This is immediate.

(4) = (1) Consider the exact sequence

Extyy " (A>1/A>n, M) = Ext}y (4/A>1, M) = Ext}y (4/A5n, M).
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By hypothesis the direct limit of the last term is right bounded. Since (4) holds
for 4, and hence for i—1, the direct limit of the first term is right bounded. Hence
so is the direct limit of the middle term. But that is simply Ext% (4/A>1, M),
which we already know is left bounded and locally finite, whence it is finite
dimensional. Thus (1) is true. O

Definition 12.3 Let M € grmodA. We say that
e x;i(M) holds if the equivalent conditions of Proposition 12.2 hold;
e x(M) holds if x;(M) holds for all 4;
o A satisfies x if x(M) holds for all M € grmodA.

Proposition 12.4 If M € grmodA, the following are equivalent:
1. x1(M) holds;
2. coker(M — wwM) is right bounded;
3. (wrM)>q is finitely generated for all d € Z.

Proof. We will use the exact sequence
0= 7M = M — wrM — lig Exty (A/A>n, M) = 0.

The equivalence of (1) and (2) is a restatement of the equivalence of (1) and
(4) in Proposition 12.2, noting that the proof of (4) implies (1) only used the
truth of (4) for N = A.

(1) = (3). Fix d € Z, and consider

Ms>q — (wwM)Zd — li_rl;Mh(A/AzmM)Zd — 0. (12-2)

By hypothesis the first term is finitely generated. Since x1(M) holds, part (3)
of Proposition 12.2 ensures that the last term of (12-2) is right bounded and
hence finite dimensional. It follows that (wmM)>q is finitely generated too.

(3) = (1). The hypothesis ensures that the last term of (12-2) is finitely
generated, but it is also torsion, hence finite dimensional. Therefore part (4) of
Proposition 12.2 holds for ¢ = 1 (with N = A) and, as noted, this ensures that
part (1) of Proposition 12.2 holds too; i.e., x1 (M) holds. O

Rephrasing part (2) of Proposition 12.4, if A satisfies xi, then wrM is
finitely generated up to torsion whenever M € grmodA (Example 3.8 showed
that wm M is not generally finitely generated). Part (3) of Proposition 12.4 says
that if ww M is considered as a rather nice module with respect to torsion, then
M is not too far from being nice—at least M>4 = (wnM)>q4 for d > 0.

The condition x is a non-commutative phenomenon. The next two results
show that quotients of polynomial rings satisfy it, and the example which follows
these positive results exhibits a non-commutative algebra which does not satisfy

X1-
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Definition 12.5 A locally finite connected k-algebra, A say, is Artin-Schelter reg-
ular of dimension n + 1 if

e gldmA=n+1< oo,

e GKdim A < oo, and

0 ifi#gEn+1

e A is Gorenstein, meaning that Ext% (4%, A) = { Eoifientl

Polynomial rings, and more generally iterated Ore extensions
k[XO][XI; o1, 61] Tt [Xny On, 611]

where each o; is an automorphism and deg(X;) = 1 for all 4, are Artin-Schelter
regular; so too are the Sklyanin algebras.

Theorem 12.6 Noetherian Artin-Schelter reqular algebras satisfy x.

Proof. Let A be such an algebra, and M € grmodA. We proceed by induction
on pdim(M). If pdim(M) = 0, then A is a finite direct sum of shifts of A; but
Ext’, (A/A>1, A) is finite dimensional by the Gorenstein hypothesis, so x1(M)
holds. If pdim(M) > 0, write 0 - K — P — M — 0 with P projective, and
pdim(K) = pdim(M) — 1. By the induction hypothesis, the last term of the
exact sequence

Ext’, (k, P) — Ext’, (k, M) — Ext’;}"' (k, K)
is finite dimensional, as is the first term, whence so is the middle term. a
Proposition 12.7 If A is noetherian and satisfies xi, so does A/I for all ideals
I.

Proof. Write B = A/I and let M € grmod(B). We will proceed by induction
on i; since B satisfies xg, we will assume the result is true for i — 1. Thus B
satisfies x;—1, and we must show B satisfies x;.

Consider the spectral sequence

Ef? = Extf;(Tor; (B, A/A>,), M) = Ext}{"(A/ A5, M).

Since A is noetherian, each term in the minimal projective resolution of By is
a finite direct sum of shifts of A, whence each Torj;‘(B, AJA>,) is finite dimen-
sional. In particular, it is right bounded. Since A is projective,

Tor, (B, A/Asn) = Tor,' | (B, A>n)
for ¢ > 2, and

Tori' (B, A/A>n) C B®a Asp.
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By taking a minimal resolution of Ay, it is easy to see that
Torj;‘fl(B,AZn) € [n,0)

for all ¢ > 1, whence
Tor;‘(B,A/AZn) € [n, )

for all ¢ > 1. Since B satisfies x;—1, Lemma 12.1 with T' = Tor:;‘(B,A/AZn)
implies that, for all p < i — 1, the right bound of EY? tends to —oco as n — oo.
Thus, given d€ Z,p<i—1,and ¢ > 1,

(E3")>a =0
for n > 0. Hence, for all p <1,
(E5")>a = Ext}y (A/A>n, M)>4
for all n > 0. That is, for all p <4, and all n > 0,
Exty(B/Byn, M)>a = Ext)y (A/A>n, M)>a.

But A satisfies x;, so the condition in part (3) of Proposition 12.2 implies that
B satisfies x; too. O

Example 12.8 [236] Fix 0 # ¢ € k, and suppose that ¢ is not a root of unity.
Let B = k[z,y], with defining relation zy — qyz = y. (It is easy to show that
B = k[u,v] with relation vu = quv.) Define A =k + zB.

It is standard that B is (right and left) noetherian, and not too difficult to
deduce from this that A is also noetherian. As a right A-module, B is finitely
generated, namely B = A+yA. In contrast, as a left A-module, B is not finitely
generated: indeed, as a left A-module,

BIAZ k(-1)®k(-2)® -

is an infinite direct sum of shifts of the trivial A-module 4k = A/A>;. To see
this, simply observe that B/A has a basis given by the images of {y¢|i > 1}, and
that A>1y = By C A. Since A is a domain, 74 = 0, whence A C wnA. Since
Fract(A) = Fract(B), B is an essential extension of A; since 4(B/A) is torsion,
it follows from the definition of w that A C B C wnA. Thus coker(A — wrA)
is not right bounded, so x1(A4) does not hold. Alternatively, one can see from
the description of B/A that Ext!(4/A>1, A) is not finite dimensional. O

5.13 Cohomology for projective spaces

Throughout this section A denotes a noetherian connected graded k-algebra,
and X denotes the enriched projective space

(X,0x) = ProjA = (TailsA, wA)

with homogeneous coordinate ring A.
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Definition 13.1 The cohomology groups of an X-module F are
HY(X,F):=Ext!(Ox,F)
and the cohomology modules
HY(X,7F) := Ext*(Ox, F),
which are graded by
H(X, F)a := Ext?(Ox, F(d))-

¢

Ifo—-»> F —- F - F" — 0 is exact, there is a long exact cohomology
sequence

0 H(X,F) = HX,F) - HYX,F") - H'(X,F') - H (X, F) = --- .

We have already observed that Hom(Ox,—) ~ w, so the H/(X, —) are the
right derived functors of w.

If X is a scheme then the Cech cohomology groups H4(X, —) agree with the
derived functors of the global section functor I'(X,—) on Ox. But I'(X, —) =
Homp, (Ox,—), so H1(X,—) are the derived functors of Hom(Ox,—). Hence
by Serre’s equivalence of categories (Theorem ??), this definition of cohomology
agrees with the classical one for projective schemes.

The following result is mostly a specialization of earlier results.
Proposition 13.2 Let M € GrModA and write M = M. Then

1. H'(X, M) 2 wrM;

2. HY(X,M) = ﬁg@i(Azn,M);

3. HY(X, M) = lim Ext%" (4/A5n, M) for ¢ > 1;

4. HY(X, M) = hat1(I*M) for ¢ > 1, where I®M is the torsion part of the
minimal injective resolution of M.

Proof. (1) and (2) follow from Proposition 11.8 and Proposition 3.4.
(3) For ¢ > 1, the long exact sequence for Ext ,(—, M) gives

mg(“lzm M) = Mi]:l(A/AZm M)

since A is projective, so (3) follows from (2).
(4) Consider the exact sequence of complexes

0> I'M - E*M = Q*M — 0.
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Since Q*M is torsion free, and A/A>, is torsion, there is an isomorphism of
complexes

Hom 4 (A/A>n, I°M) = Hom 4 (A/A>n, E*M).
Taking direct limits and homology yields
h**! (ling Hom 5 (A/A >, I*M)) = H'(X, M).
But I*M is torsion, so the sum of its finite dimensional submodules, whence

lim Hom 4 (A/A3n, I*M) 2 I° M. =
Each H?(X, M) has a natural right A-module structure arising from the left
action of A on A, in Proposition 13.2(2). Its degree d component is equal to
H1(X, M(d)).
One of the first things to do after defining sheaf cohomology is to compute the
cohomology groups H?(P", O(d)) of the line bundles on P”. The next example
extends that computation to a larger class of spaces.

Example 13.3 Let A be Artin-Schelter regular of dimension n +1 > 2. We
compute H4(X, Ox(d)) for d € Z.

First we show that EO(X ,Ox) = wrA. The Gorenstein property ensures
that Hom 4(A/A>1, M) = 0, whence 74 = 0. Also, Ext}y(4/A>1, M) = 0 by
the Gorenstein property, whence Ext!,(A/A>,, M) = 0 for all n (by induction).
Hence by Proposition 11.5, A = wn A. That is,

H(X,0x)=A and H°X,0x(d)) = Aa.

Now suppose that ¢ > 1. Since Ext%"'(k, A) = k(l), the trivial right A-
module shifted by some integer [, it follows that for any finite dimensional
A-module T, Ext’;t! (T, A) = T*(I); one argues by induction on the length of
T, the case of a shift of k£ being obviously true. Hence

HY(X,0x) = limExt}" (4/45,,4)
_ oy { 0 q#n,
B (A/As) (D) g=n.
_ 0 g#n
B A*(l) q=n.

Thus H"(X, OX(d)) = (A*)l+d = (A,l,d)*.

When A is a polynomial ring on n + 1 generators the Koszul complex gives
a linear resolution of the trivial module 4%, so I = n + 1, whence we recover the
usual result for H?(P", O(d)). ¢

Theorem 13.4 (Serre’s Finiteness Theorem). Let A be a noetherian connected
graded k-algebra satisfying x. Let X = ProjA. If F € modX, then

1. dimy H1(X,F) < oo for all q, and
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2. ifq>1, then H1(X,F(n)) =0 for n> 0.

Conwersely, if A satisfies x1, and (2) holds for all F € modX, then A satisfies
X-
Proof. Write 7 = 7 M where M € grmodA.

Suppose that ¢ = 0. Since x1(M) holds, (wmM)>¢ is finitely generated,

hence locally finite. In particular, (wnM)o = H°(X, F) is finite dimensional.
Suppose that ¢ > 1. Since A satisfies xg+1,

limg Ext?;" (4/ 45, M)

is right bounded; but this equals H?(X, F), so (2) follows because H (X, F), =
H?(X,F(n)). The proof of Proposition 12.2 showed that, given d € Z,

limg Ext% (A/Azn, M)>a = Ext} (A/As,, M)sa

for r > 0; in particular, this is locally finite, which proves (1) for ¢ > 1.
Conversely, (2) implies that H=!(X, F) is right bounded for i > 2, but this

is isomorphic to li_n;mz(A/AZn,M ); thus, since x1(M) holds, condition (4)

in Proposition 12.2 is satisfied for all . Thus A satisfies . O
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