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0 Introduction

This is a reasonably faithful account of the five lectures I delivered at the
summer course “Geometria Algebraica no Commutativa y Espacios Cuanti-
cos” for graduate students, in Spain, July 25-29, 1994. The material covered
was, for the most part, an abridged version of Artin and Zhang’s paper [2].

Fix a field k. Given a Z-graded k-algebra, A say, which for simplic-
ity is assumed to be left noetherian and locally finite dimensional, its non-
commutative projective scheme is defined to be the pair

proj(A) := (tails(A), A),

where tails(A) is the quotient category of grmod(A), the category of finitely
generated graded left A-modules, modulo its full subcategory of finite di-
mensional modules, and A is the image of the distinguished module 4A in
tails(A). If A is a quotient of a commutative polynomial ring generated in
degree 1, Serre [4] proved that proj(A) is isomorphic (in an obvious sense) to
the pair (Coh(Ox), Ox), where X denotes the projective scheme determined
by A, Ox is the sheaf of regular functions on X, and Coh(Ox) is the category
of coherent Ox-modules. Thus tails(A) is the non-commutative analogue of
Coh(Ox), and the objects in tails(A) are the non-commutative geometric
objects analogous to sheaves of Ox-modules.

For each F € tails(A) there are cohomology groups H?(F), ¢ > 0, which
generalize the Cech cohomology groups—if A is commutative as above, then
HY(F) coincides with H?(X,F) for F € Coh(Ox). The functors H?(—)

have the properties one would want/expect for a satisfactory generalization
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of HY(X,—). In particular, there is a version of Serre’s Finiteness Theo-
rem (4.16) provided a certain technical condition y holds (see Definition
4.11). Every commutative algebra satisfies x, but there exist rather nice
non-commutative algebras which do not (Example 4.15). We compute the
cohomology groups H!(A[d]), d € 7Z, when A is an Artin-Schelter regular
algebra. This family of algebras includes the commutative polynomial ring,
and in that case HI(A[d]) = HY(P",O(d)). The Artin-Schelter regular al-
gebras are non-commutative algebras which enjoy many of the properties of
polynomial rings; amongst the non-commutative Artin-Schelter regular alge-
bras are most graded iterated Ore extensions, homogenizations of enveloping
algebras, and Sklyanin algebras. Artin-Schelter regular algebras always sat-
isfy the condition y.

The functorial behavior of tails(A), and maps between proj(A) and
proj(B) are discussed in Section 5.

The polarized projective scheme associated to A is the triple (tails(A), A,
[1]), where [1] is the degree shift functor on grmod(M ), namely M[1]; = M,41.
Including [1] with proj(A) is analogous to specifying a line bundle on a scheme
X; it is natural to ask whether that line bundle is very ample, i.e., whether
it determines an embedding of X in some projective space (or, equivalently,
whether it arises from an embedding of X in some P"). This leads to the
notion of ampleness for [1] on proj(A) (see Definition 5.18). Whether or not
[1] is ample in proj(A) is closely related to the condition y.

Polarized projective schemes are objects in a category of triples (C, O, s)
where C is a k-linear category, O a distinguished object in C, and s is an
auto-equivalence of C. The notion of ampleness is defined in this larger con-
text and plays a key role in whether a given triple (C,O,s) arises from a
graded algebra A. Indeed, if s is ample, and (C, O, s) satisfies some finiteness
conditions, then (C, O, s) = (tails(A), A, [1]) for some left noetherian, locally
finite, N-graded algebra A which satisfies x;. This result gives some idea of
the scope of non-commutative algebraic geometry because it says (roughly)
which C can be non-commutative schemes. The result may be used to show
that some non-commutative algebras behave as if they are commutative from
the point of view of tails( ); for example, if A is a twisted homogeneous coor-
dinate ring (see Example 5.16), usually written A = B(X, 0, L), where X is
a projective scheme, o € Aut(X) and L is a o-ample line bundle on X, then
(tails(A), A, [1]) = (Coh(Ox), Ox, s) for a suitable s (the hypothesis that £

is o-ample guarantees that s is ample). In particular, tails(A) is equivalent to
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Coh(Ox), which allows A to be studied via the methods of algebraic geome-
try. The utility of this result arises because twisted homogeneous coordinate
rings turn up rather often in the theory of non-commutative graded algebras.

1 Graded Algebras and Modules

In all that follows,
e kis a field, and
o Ais a Z-graded k-algebra; that is A= @ A, and A, A, C Apgn.

neZ

An A-module, M say, is graded if it has a vector space decomposition M =

@ M, such that

- AZM] C M'H—j
for all ¢ and j. Elements in M; are homogeneous of degree 3, and M; is the de-
gree j homogeneous component of M. The graded A-modules are the objects
in the category GrMod(A). The full subcategory of GrMod(A) consisting
of finitely generated modules is denoted by grmod(A). The morphisms in
these categories, denoted Homg, (N, M), are the A-module maps f: N — M
such that f(N;) C M, for all i. More generally, if f : N — M satisfies
F(N;) C M,4q for all ¢ € Z, we say that the degree of f is d.
We need to consider several other Hom spaces:

e Homu(N, M) := {all A-module homomorphisms f: N — M };
e Homa(N, M)y :={f € Homa(N, M) | deg(f) = d}
e Hom (N, M) := @ Homu(N, M),.

d€Z
Lemma 1.1 If N is finitely generated, then
Hom 4(N, M) = Homu4 (N, M).

Example 1.2 Let V be a graded vector space such that dim; V,, > 1 for all
n€7Z. If f:V — kis such that f(V,)) # 0 for infinitely many n, then
f ¢ Hom, (V. k). Thus Hom, (V. k) # Homg(V, k).



The field k itself is a graded algebra concentrated in degree zero. If V' is
a graded vector space, the graded dual of V' is

V* := Hom,(V, k).

Thus V*; = Homg(Vy, k). A graded vector space, V' say, is locally finite if
dimg V,, < oo for all n. A graded k-algebra generated by a finite number of
elements of positive degree is locally finite. Finitely generated modules over
a locally finite algebra are locally finite.

We use the notation

Mzn = @Md and Msn = @ Md.

d>n d<n

We say that M is left (respectively, right) bounded if M<, = 0 (respectively,
Ms,, = 0) for some n. From Section 2 onwards our attention is restricted to

N-graded algebras. Such an algebra, A say, is left bounded, and so are its
finitely generated modules. Further, if M € GrMod(A), so is M>,.

GrMod(A) is an abelian category and one’s intuition from the category of
ungraded modules carries over. A small difference is that A is rarely a gen-
erator in GrMod(A); for example Homg, (A, M>1) = 0 for all M. This minor
irritation is alleviated by introducing the shift functor [1] : GrMod(A) —
GrMod(A) defined as follows: as an A-module M[1] equals M, but the
grading is now M[1], = M,4;. The pair (A,[1]) now acts somewhat like
a generator; more precisely P = @,,c; A[n] is a generator. It is an easy but
worthwhile exercise to check that Hom 4(N[¢], M[j]) = Hom (N, M)[j — ]

as graded vector spaces.

The algebra A is connected if it is N-graded and Ag = k. In this case there
is a distinguished A-module, namely A/Asg; it is the only irreducible object
in GrMod(A), and is called the trivial module. For connected algebras there
is a useful analogue of Nakayama’s Lemma.

Lemma 1.3 Let A be connected. If M € GrMod(A) is left bounded, then
M =0 tf and only if k @4s M = 0.

Proof. Suppose that M # 0. Since M is bounded below, we can choose
0 # m € M, homogeneous of minimal degree. Such m cannot belong to



Asi M. This is absurd, since ¥ @4 M = 0 implies that As1M = M, so we
conclude that M = 0. [ |

Since Homy (A, —) is exact, so is Homg:(A[n],—) for all n € Z. Thus
A[n] is projective in GrMod(A), whence GrMod(A) has enough projectives.
A module M is free if it is a direct sum of shifts of A.

Lemma 1.4 Let A be connected, and M € GrMod(A). If M is bounded

below, then
1. M is free if and only if Tors (k, M) =0
2. M is projective if and only if M is free.

Proof. (1) (<) Choose a graded vector space V such that V & A1 M =
M. Then k ®4 (M/AV) = 0 so, by Nakayama’s Lemma M = AV. Let
¥ : A®@p V — M be the multiplication map. Since Tor{ (k, M) = 0, there is

an exact sequence

0—k@aker(th) > k@s AR VS k@ M — 0.

Since 1 ® @ is an isomorphism, k ®4 ker(¢) = 0. But ker(¢) is bounded
below so, by Nakayama’s Lemma, v is an isomorphism.
(2) This follows immediately from (1). [

The existence of injectives in GrMod(A) is more complicated than the
existence of projectives, but we have the following positive result.

Proposition 1.5 GrMod(A) has enough injectives.

As in the category of ungraded modules, £ € GrMod(A) is injective if
and only if it has no essential extensions. There is an obvious notion of the
injective envelope of a module, and it may be characterized as the largest
essential extension. Hence we have injective resolutions. If 0 — M —
EOL EY 5 s an injective resolution, we say it is minimal if E7 is the
injective envelope of d£7~! for all j > 0.

For each ¢ > 0 we may define Extg_ (IV, —) as the right derived functors of
Homg, (N, —), and compute these by taking injective resolutions in the usual



way; Extg (N, M) can also be computed by taking projective resolutions of
N. We will use the following notation:

Ext4(N,M) = the usual Ext groups in Mod(A),
Exty (N, M); = the derived functors of Hom (N, —)q,
Exth(N. M) = @ Exty(N, M),.

nel

Example 1.6 If A is connected, the injective envelope of 4k = AJ/As; is
A* = Homy (A, k) with left action of v € A given by (x.\)(a) = Aax) for
A € A*. The copy of k inside A* is ke, where ¢ : A — k s the projection
with kernel Asy. It is easy to see that A™ is an essential extension of ke.

The injectivity of A* follows from the projectivity of Ax as follows. If
[+ N — M is injective and o : N — A* are maps in GrMod(A), then
B: M — A* is defined by

B(m)(a) = b(a)(m),

where 8 : A — M* is a right A-module map such that f* o = o*, and
o 1 A— N* f*: M* — N* are the maps dual to o and f. It is easy to
check that B is a left A-module map satisfying o f = «, showing that A* is
injective.

It A, B, C are graded algebras, and 4 Mg and 4 N¢ are graded bimodules,
then Ext% (N, M) is a graded C-B-bimodule.

The Ext-groups inherit good properties from their second argument.

Proposition 1.7 Let A be left noetherian, and N-graded. If N € grmod(A)
and M € GrMod(A), then

1. if M s left (or right) bounded, so is Ext’ (N, M);
2. if M is locally finite, so is Ext’ (N, M);

3. if M is a graded A-B bimodule, where B is a right noetherian graded
algebra, and M € grmod(B), then Ext} (N, M) € grmod(B) too.

Proof. Take a projective resolution for NV, each term of which is a finite direct
sum of shifts of A. Apply Hom,(—, M) to get a complex in which each term
is a finite direct sum of shifts of M. Each Ext% (N, M) is a subquotient of
these terms, so inherits the relevant property from M. [ |
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2 Torsion

From now on A is a locally finite, left noetherian, N-graded algebra over a

field k. Hence each M € grmod(A) is left bounded and locally finite.
Definition 2.1 The torsion submodule of M € GrMod(A) is
TM = the sum of all finite dimensional submodules of M.

We say that M is torsion (respectively, torsion-free) if TM = M (respectively,
M =0). We define Tors(A) (respectively, tors(A)) to be the full subcategory
of GrMod(A) (respectively, grmod(A)) consisting of the torsion modules.

It follows from the definition that M/7M is torsion-free.

A module M € grmod(A) is torsion if and only if dimy M < oo (since M
is noetherian, an ascending sum of finite-dimensional submodules stabilizes
after finitely many terms). Thus

tors(A) = {finite dimensional modules}.

A useful reformulation of this is that 7M = limHom ,(A/A>,, M).

Proposition 2.2 Tors(A) and tors(A) are dense subcategories of GrMod(A);
that is, if 0 = L — M — N — 0 is exact in GrtMod(A), then M is torsion
if and only if L and N are.

Proof. (=) Suppose M is a sum of finite dimensional modules. Then N
is the sum of their images, so is torsion. Also, each m € M belongs to a
finite sum of finite dimensional modules, so dimgz(Am) < oo, whence every
submodule of M is a sum of finite dimensional modules, so is torsion.

(<) Suppose L and N are torsion. For m € M, we have an exact sequence

0—=AmNL— Am — Am/Am N L — 0.

By the first part of the proof, AmnNL is torsion since L is, and so is Am/AmNL
since it is isomorphic to Am + L/L, which is a submodule of N. But AmnN L
and Am/Am N L are noetherian, since A is, whence they are finite dimen-
sional. Thus dimg(Am) < oo also. Hence M is a sum of finite dimensional
modules, as required. [ |

The relation between injective envelopes and torsion is described by the
next result.



Lemma 2.3 An essential extension of a torsion (respectively, torsion-free)
module is torsion (respectively, torsion-free).

Proof. Let M C F be an essential extension. If 7F #£ 0, then TEN M =0,
so TM # 0. Thus M torsion-free implies F is too. Conversely, suppose that
M =71M. Let e € E. Then AeN M is torsion, hence finite dimensional since
A is noetherian. Thus As,e N M = 0 for n > 0, whence dim;(Ae) < oo,
since A is locally finite. Thus F is a sum of finite dimensional modules, hence
torsion. [ |

3 Tails

Since Tors(A) and tors(A) are dense, there are quotient categories

Tails(A) := GrMod(A)/ Tors(A)
tails(A) := grmod(A)/tors(A).

We write
7 : GrMod(A) — Tails(A)

for the quotient functor, and

A=rA.

The objects in a quotient category are the same as those in the original
category so, to avoid confusion we will write 7 M for the image of M €

GrMod(A) in Proj(A).

The basic properties of quotient categories may be found in [3].

Theorem 3.1 (Serre) If A is a quotient of the polynomial ring k[ Xo, ..., X,]
with deg(X;) =1 for all v, there is an equivalence of categories

tails(A) ~ Coh(Ox),

the category of coherent Ox-modules, where X C P" is the closed subscheme
cut out by the ideal defining A, and Ox s the sheaf of regular functions on
X.



Thus the objects in tails(A) are the non-commutative analogues of sheaves
of Ox-modules—they are the objects of non-commutative geometry, and the
category tails(A) is the main object of study in non-commutative geometry.
To reinforce the analogy with sheaves of Ox-modules, we will use script
letters to denote objects in Tails(A).

Since [1] sends Tors(A) to Tors(A), the functor [1] passes to Tails(A).

Under Serre’s equivalence of categories we have the correspondence

.A — OX
Ald] & Ox(d),

where Ox(d) is the line bundle on X induced from the degree d line bundle on
P" (by definition Ox(d)(X}) is the degree d component of k[Xo, ..., X, ][/ '],
where Xy = {p € P" | f(p) # 0}).

A scheme is a pair (X, Ox) consisting of a topological space X, and a
sheaf of rings Ox on X, this data being subject to certain axioms. The space
X can be recovered from the pair (Coh(Ox),Ox), so in a sense the objects
of algebraic geometry are pairs (C, O) consisting of a category together with
a distinguished object. Hence we make the following definition.

Definition 3.2 The (noetherian) projective scheme associated to a graded al-
gebra A is the pair
proj(A) := (tails(A), A).

The general projective scheme associated to A is
Proj(A) = (Tails(A), A).
The morphisms in Tails(A) can be a little tricky to understand; by defi-
nition
Hommaps(7 N, 7 M) = liLnHomGr(N’, M/M")

where the direct limit is taken over all pairs (N', M") of submodules of N and
M such that N/N' and M’ € Tors(A), and (N', M") < (N", M")if N" C N’
and M’ C M". The hypotheses on A allow us to simplify this description.

Proposition 3.3 If N € grmod(A) and M € GrMod(A), then

Hom s (7 N, 7 M) = lim Homg( Ny, M).



This direct limit is similar to a union, with the proviso that it is not really
a union since the restriction of f: N>, — M to Ns,41 may be zero, even if

f#0.

The main properties of Tails, and the functor =, which we need are con-
tained in the next few results.

Proposition 3.4 If f: N — M is a morphism in GrMod(A), then
1. ker(n f) = w(ker f) and coker(x f) = x(coker f);
2. mf =0 if and only if Im(f) is torsion;
3. wf is a monomorphism if and only if ker([f) is torsion;
4. mf is an epimorphism if and only if coker(f) is torsion;
5. wf is an isomorphism if and only if ker(f) and coker(f) are torsion.

Proposition 3.5 1. Tails(A) is an abelian category and 7 is exact.

2. If D is another abelian category, and F : GrMod(A) — D is an ezact
functor such that FN =0 for all N € Tors(A), then there is a unique
functor G : Tails(A) — D such that F = Gor.

3. A functor G : Tails(A) — D is exact if and only if G o7 is.

We mention two applications of Proposition 3.5. First, #(M/7M) = =M,
so given F € Tails(A), F = x N for some torsion free N. Second, since A is
N-graded each M, is a submodule of M, and 7 M = 7 Ms>,; we call M5, a
tail of M, and this explains the name of the quotient category—its objects are
determined by the tails of A-modules. More precisely, we have the following
result.

Proposition 3.6 If M,N € grmod(A), then #M = xN if and only if

M, = N>, for some n.

Proof. Suppose that #M = 7N. By Proposition 3.3, the isomorphism is
given by 7 f for some f : N5, — M. Thus ker(f) and coker(f) are torsion,
and hence finite dimensional by the noetherian hypotheses. It follows that
for r > 0, f : N>, — M5, is an isomorphism, as required. The converse is
trivial. [
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Theorem 3.7 The functor 7 has a right adjoint w : Tails(A) — GrMod(A).
We will make frequent use of the adjoint isomorphism
Hommais(7 N, F) = Homg, (N, wF).

This implies that wF is torsion-free since, if N is torsion then # N = 0, which
ensures that both the above homomorphism groups are zero.

Proposition 3.8 wrM = limHom,(As,, M)

Proof. The proof is a “finger exercise”:

wrM = Hom,(A,wrM) because 4 A is finitely generated,
= @ Home, (A, wrM|[d])

d€ez
= @ Hommpas(7A,#M[d]) by the adjoint isomorphism,
d€Z
= @ limHomg,(A>,, M[d]) by Proposition 3.3,
dez — -
= lim @ Homg,(A>,, M[d])
T dEr B

= limHom,(A5,, M). [

Notation. It is convenient to write

Homp,s(F,G) = @HomTaﬂs(}",g[d]).

dEZ

With this notation, the proof of Proposition 3.8 says that wF = Hom(A, F);
in fact, there is a natural equivalence of functors

w ~ Hom(A, —).
We also note that there is a natural map

p: A — Hom(A, A) = P Hom(A, Ald])

A€

sending a € Ay to wp,, where p, : A — A is right multiplication by a. It is
easy to check that p is an anti-homomorphism of graded algebras, so each
Hom(A, F) has a natural left A-module structure. Of course,

Hom(A, F) = lim Hom y(Asp, wF)

11



already has a natural left A-module structure coming from the right action
of Aon As,. These two actions of A on Hom(.A, F) coincide.

Although Proposition 3.8 gives an explicit description of w, its existence
and basic properties are usually established by defining w as follows. Given
M € GrMod(A), let E denote the injective envelope of M = M/7M. Then
wr M is defined to be the largest graded submodule, H say, of £ such that
M C H and H/M is torsion. Thus H/M = 7(E/M), and there is an exact
sequence

0—=7M — M — wrM — torsion — 0;

the last term in this sequence will be described in Proposition 4.6.

Example 3.9 Let A = k[z]. One can check directly that E = k[x,x™"] is an
injective A-module, and hence is the injective envelope of A in GrMod(A).
(Notice this shows that, in conlrast to projectives, injectives in GrMod(A)
need not be injective in Mod(A).) Since E/A is torsion it follows thalt wr A =
E. (We will see later that for the polynomial ring in > 2 variables, wr A =
A.) In particular, wr A is not a finitely generated A-module.

The following result is crucial.
Proposition 3.10 7o w ~ Id.

Proof. We must show that the natural map 7wF — F is an isomorphism
for all F € Tails(A). By Yoneda’s lemma, it is enough to show that the map

Hommais(7 N, 7wF) — Hommans(7 N, F)

is an isomorphism for all N € GrMod(A); in fact, it suffices to do this for
finitely generated N, by writing an arbitrary module as a direct limit of
finitely generated ones. The map in question is the horizontal map in the
following diagram

12



lim Homeg,(Ns,, wF) = Hommpais (7 N, 7wlF)

—

HOHlTaﬂS(T('N, F)

T
I mmorphism
N,wF)

Homg,(

where the isomorphism on the left is a consequence of Proposition 3.3 and the
torsion-freeness of wF. It suffices to show that the vertical map, which is 7 on
morphisms, is an isomorphism. The functoriality of the adjoint isomorphism
yields a commutative diagram

Homg, (N,wF) ——— Hommus(7N,F)
HomGr(Nzn,w}_) ; HOHlTaﬂs(’R'NZn,F)

where the vertical maps are restriction, and the horizontal maps are the
adjoint isomorphisms. Since the inclusion map N>, — N induces an isomor-
phism 7Ns, — 7N the right hand vertical map is an isomorphism, hence
so is the left hand one. Hence all maps in l_ig Homg(Nspn,wF) are isomor-
phisms, so |

lim Homgy( Ny, wF) & Home (N, wF),

which is precisely what we required. [ |

4 Cohomology

We will define the cohomology groups H?(F) for F € Tails(A), and prove
a version of Serre’s Finiteness Theorem. An essential preliminary step is to
understand injectives in Tails(A).

Proposition 4.1 1. Tails(A) has enough injectives.
2. If Q € Tails(A) is injective, then wQ is a torsion-free injective.

3. If @ € GrMod(A) is torsion-free injective, then ©Q is injective and
>~ won@).
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Proof. (2) The adjoint isomorphism gives the natural equivalence
Hommans(—, Q) o 7 ~ Homg,(—,wQ).

The left hand side is a composition of exact functors, so we conclude that
w@ is injective. It is torsion-free since wF is always torsion-free.

(3) By definition of w, @ = wr @, so
Hommais(7 NV, 7Q) = Home, (N, wr @) = Homg, (N, Q)
for all N € GrMod(A). That is

HomTails(_v T‘-Q) om X HomGr(_v Q)

By hypothesis the right hand side is exact, hence so is Homras(—, 7Q) by
Proposition 3.5. Thus #() is injective.

(1) Let F € Tails(A), and let f: wF — @ be the inclusion of wF in its
injective envelope. Since wF is torsion-free, so is (). Thus 7() is injective by
(3). Also ker(wf) = w(ker f), so nf : 7wF ~ F — =@ is injective, which

shows F embeds in an injective, as required. [ |

Lemma 4.2 1. Each injective in GrMod(A) decomposes as a direct sum
of a torsion injective and a torsion-free injective.

2. If A is connected, then every torsion injective is a direct sum of shifts

of A* = Hom, (A, k).

Proof. (1) Let E an injective. Being injective it contains a copy of the
injective envelope of T7F, say I. Since [ is injective, £ = [ & () for some
other submodule @); being a summand of an injective, () is also injective,
and torsion-free since 7 C [. Finally, by Lemma 2.3, [ is torsion.

(2) Let I be a torsion injective in GrMod(A). If 0 # M € Tors(A), then
Hom,(k, M) # 0. We may consider S = Hom 4(k, I) as a submodule of I; it
is a (possibly infinite) direct sum of shifts of 4k. If M is a non-zero submodule
of I then, since M is torsion, Homu(k, M) # 0, whence M N S # 0, so S
is essential in I; thus [ = E(S). Since A is left noetherian, a direct sum of
injective modules is injective, whence F(S) is a (possibly infinite) direct sum

of shifts of F(4k) =2 A*. [ ]
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If F € Tails(A), then Hommus(F, —) is left exact, so we may define its
right derived functors, and compute them via injective resolutions. That is,
if G — £°* is an injective resolution in Tails(A), then

Ext?(F,G) := h?(Hommas(F, E*)),
the ¢'" homology group of the complex. We also define
Ext!(F,G) := @Extq(}—,g[d]).

dEZ

These Ext groups are k-vector spaces. We will show that they can be com-
puted in terms of Ext groups in GrMod(A) by using w.

Proposition 4.3 Let N € grmod(A) and M € GrMod(A). Let E*M be a
minimal injective resolution of M, and write E*M = I°M & Q*M, where
I*M is the torsion part of E*M (it is a subcomplex) and Q*M is a torsion-
free complement. Write N =7N and M = xM. Then

1. ExtY (N, M) = h%(Homg, (N, Q*M))
2. Ext(NV, M) = lim Ext’ (N»,, M)

Proof. (1) Although @*M is not usually a subcomplex of E*M, we may
identify it with the complex E*M/I*M. The exactness of 7 implies that
M — wE®* ~ xQ* is an injective resolution of M in Tails(A). But

Hom(N, 7Q*) = Homg,(N,wrQ* = Q°),

so the result follows.

(2) First observe that lgllh_mA(NZn,]') = 0: if f: N5, — I°, then
N>, /ker f is finite dimensional because [® is torsion and N is noetherian,
whence N5, C ker f for r > 0, which implies that in the direct limit f
becomes zero. Therefore

l_ig}hil(NZmM) = 1£nhq(}b—mA(N2n7].@Q.))
= h(limHom 4 (N, Q%))
h?(Hom(N, 7Q*))
mq('j\/v -’M)a

12

as required. [ |
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Definition 4.4 For F € Tails(A) we define the cohomology groups
H(F) = Ext?(A, F)

and the cohomology modules
H'(F) := Ext’(A, F),

which are graded by
H(F)q := Ext’(A, F[d]).

We have already observed that Hom(A, —) ~ w, so the H?(—) are the
right derived functors of w. In particular, if 0 - F" — F — F”" — 0 is
exact, there is a long exact cohomology sequence

0— HO(F) = H(F) = HF") = H'(F) = H'(F) = -

The Cech cohomology groups H 19X, —), defined for Ox-modules, are
the derived functors of the global section functor I'(X,—). But I'(X,F) =
Homo, (Ox, F), so HI(X, —) are the derived functors of Hom(Ox, —). Hence
by Serre’s equivalence of categories (Theorem 3.1), this definition of coho-
mology reduces to the classical one for projective schemes.

The following result is mostly a specialization of earlier results.

Proposition 4.5 Let M € GrMod(A), and write M = xM. Then
1. HO (M) 2 wrM;
2. H'(M) = lim Ext’y(As,, M);
3. H'(M) = lim Ext} (A/A5,, M) for ¢ > 1;

4. HY (M) = Wt (I°M) for ¢ > 1, where I*M is the lorsion part of the

injective resolution of M.

Proof. (1) and (2) follow from the previous result and Proposition 3.8.
(3) For ¢ > 1, the long exact sequence for Ext 4(—, M) gives

Mi(Azm M) = M?II(A/AZM M)

16



since A is projective, so (3) follows from (2).
(4) Consider the exact sequence of complexes

0—-1I'M — E°M — Q*M — 0.

Since Q*M is torsion free, and A/As, is torsion, there is an isomorphism of
complexes

Hom,(A/A>,, [*M) = Hom,(A/A>,, E*M).
Taking direct limits and homology yields

hq""l(limHomA(A/AZn, I°M)) = HI(M).
But I°M is torsion, so the sum of its finite dimensional submodules, whence

lim Hom 4 (A/Ay,, I*M) = I*M. .

Each H?(M) has a natural left A-module structure arising from the right
action of A on Ay, (in Proposition 4.5(2) say). In fact, H?(M) becomes a
graded left A-module with degree d component being H?(M][d]).

Although liglm;(A/Azn,M) does not appear in the statement of the

previous Proposition, it is an important object as the next, and later, results
show.

Proposition 4.6 For each M € GrMod(A), there is an exacl sequence

0—=7M - M — wrM — IEHML(A/AETA,M) — 0.

Proof. Over directed sets lim is an exact functor, so taking direct limits of

the exact sequences
0 — Hom,(A/As,, M) — Hom,(A, M) — Hom,(A>,, M) — MZ(A/AZmM) — 0

yields the result, because lim Hom,(A/A>,, M) = 7M. [

After defining sheaf cohomology, one of the first exercises is to compute
the cohomology groups of line bundles on P", i.e. H?(P", O(d)). We will now
carry out a slight generalization of this. The non-commutative algebras in
the next definition are good analogues of polynomial rings.

17



Definition 4.7 A locally finite connected k-algebra, A say, s Artin-Schelter
reqular of dimension n 4+ 1 of

e gl.dim(A) =n+1< oo,
e GKdim(A) < oo, and

* EXtA(Ak’/U:{ k i}[iin—l-l :

t.e. A s Gorenstein.

Polynomial rings, and more generally iterated Ore extensions
k[XO][Xlﬂ 01, 51] e [XTM Ons 5n]

where each o; is an automorphism and deg(X;) = 1 for all ¢, are Artin-
Schelter regular; so too are the Sklyanin algebras.

Example 4.8 Let A be Artin-Schelter regular of dimension n+1. We com-
pute H'(A[d]) for d € Z.. For simplicity suppose that n +1 > 2.

First we show that H°(A) = wr A. The Gorenstein property ensures that
Hom 4 (A/As1, M) = 0, whence TA = 0. Also, Ext}(A/As1, M) = 0 by the
Gorenstein properly, whence Exty(A/As,, M) =0 for all n (by induction).
Hence by Proposition 4.6, A = wrA. That s,

H(A)=A and  H°(A[]) = A

Now suppose that ¢ > 1. Since Ext' (k, A) = k[l], the trivial right A-
module shifted by some integer [, il follows that for any finite dimensional
A-module T, Ext;™ (T, A) = T*[l]; one argues by induction on the length of
T, the case of a shift of k being obviously true. Hence

H(A) = lmExt(4/A,, A)

= lim{ 0 ¢ n,
— | (A/As)"[l] g =n.

B 0 qg#n

N A*[l] ¢ =n.

Thus Hn(.A[d]) = (A*)H-d = (A—l—d)*-
When A is a polynomial ring on n+1 generators the Koszul complex gives

a linear resolution of the trivial module 4k, so l = n + 1, whence we recover

the usual result for H'(P", O(d)).

18



Before proving Serre’s Finiteness Theorem, we need some technical re-
sults.

Lemma 4.9 Write [[,r] = {T € GrMod(A) | T; = T%, = 0}.
If Ext)y(A/As, M) € [I',r'] for all j <i, and T € [I, 7], then

Ext’, (T, M) € [I' = r,r' — ]
for all 7 <.

Proof. By induction on r — [, we reduce to r — [ = 1, in which case T is a
direct sum of shifts of A/Asq; the lemma is easy for such 7' [ |

Proposition 4.10 Let M € grmod(A) and fix ¢ > 0. The following are
equivalent:

1. for all j <1, MQ(A/AE,M) is finile dimensional;
2. for all j <, MQ(A/AETA,M) is finite dimensional for all n;

3. for all 3 < ¢ and all N € grmod(A), MQ(N/NZTL,M) has a right
bound independent of n;

4. for all 3 < ¢ and all N € grmod(A), limMQ(N/Nzn,M) is right
bounded.

Proof. First, by Proposition 1.7, if T" € grmod(A), Ext’ (T, M) is a sub-
quotient of a finite direct sum of shifts of M, so is left bounded and locally
finite.

We will prove the result by induction on ¢. For ¢ = 0, (1)—(4) all hold
because dim; T < oo implies that Hom (7, M) C Hom,(7T,7M) which
is finite dimensional since dimy(7M) < oo; notice that (4) holds because
lim Hom 4 (A/A»,, M) = 7M. So suppose the Proposition is true for ¢ — 1;
i.e’., the four conditions are equivalent. '

(1) & (2) If(1) holds, the previous lemmaimplies that Ext)(A/A>,, M)
is bounded, and hence finite dimensional by the first paragraph; thus (2)
holds. The converse is a tautology.
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(1) = (3) The exact sequence 0 — 17" — N/N5,41 — N/N5, — 0 yields

an exact sequence.
Exty (T, M) — Ext’y(N/Nsy, M) — Ext}y (N/N>p1, M) — Exty (T, M).

But 7' € [n,n], so by Lemma 4.9, the first and last terms are bounded, and
their right bounds approaches —oc as n — oo. Hence, given d € Z, there is
a natural isomorphism

Ext’y (N/Nsn, M)sa = Ext/y (N/Nps1, M) s (1)

for n > 0. By Lemma 4.9, these are right bounded, so have a right bound
which is independent of n.

(3) = (4) This is immediate.

(4) = (1) Consider the exact sequence

Ext " (As1/Asn, M) — Extiy (A/As1, M) — Exty(A/As,, M).

By hypothesis the direct limit of the last term is right bounded. Since (4)
holds for z, and hence for : — 1, the direct limit of the first term is right
bounded. Hence so is the direct limit of the middle term. But that is simply
@;(A/Azl, M), which we already know is left bounded and locally finite,

whence it is finite dimensional. Thus (1) is true. ]

Definition 4.11 Let M € grmod(A). We say that
e \;(M) holds if the equivalent conditions of Proposition 4.10 hold;
e x(M) holds if xi(M) holds for all i;
o A satisfies x if x(M) holds for all M € grmod(A).
Proposition 4.12 If M € grmod(A), the following are equivalent:
1. x1(M) holds;
2. coker(M — wr M) is right bounded;

3. (wrM)sq is finitely generated for all d € Z.
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Proof. We will use the exact sequence
0—7M — M — wrM — limExty(A/As,, M) — 0.

The equivalence of (1) and (2) is a restatement of the equivalence of (1)
and (4) in Proposition 4.10, noting that the proof of (4) implies (1) only used
the truth of (4) for N = A.

(1) = (3). Fix d € Z, and consider

Mg — (wrM)sq — limExty (A/As,, M)5q — 0. (2)

By hypothesis the first term is finitely generated. Since y1(M) holds, part
(3) of Proposition 4.10 ensures that the last term of (2) is right bounded and
hence finite dimensional. It follows that (wm M), is finitely generated too.
(3) = (1). The hypothesis ensures that the last term of (2) is finitely
generated, but it is also torsion, hence finite dimensional. Therefore part (4)
of Proposition 4.10 holds for ¢ = 1 (with N = A) and, as noted, this ensures
that part (1) of Proposition 4.10 holds too; i.e., x1(M) holds. [

Rephrasing part (2) of Proposition 4.12, if A satisfies xi, then wrM
is finitely generated up to torsion whenever M € grmod(A) (Example 3.9
showed that wr M is not generally finitely generated). Part (3) of Proposition
4.12 says that if wr M is considered as a rather nice module with respect to
torsion, then M is not too far from being nice—at least M4 = (wrM)>q for
d>0.

The condition y is a non-commutative phenomenon. The next two results
show that quotients of polynomial rings satisfy it, and the example which
follows these positive results shows a rather nice non-commutative algebra
which does not satisfy yi.

Theorem 4.13 Noetherian Artin-Schelter reqular algebras satisfy x.

Proof. Let A be such an algebra, and M € grmod(A). We proceed by
induction on pdim(M). If pdim(M) = 0, then A is a finite direct sum of shifts
of A; but MQ(A/AE, A) is finite dimensional by the Gorenstein hypothesis,
so x1(M) holds. If pdim(M) > 0, write 0 - K — P — M — 0 with P
projective, and pdim(K') = pdim(M) — 1. By the induction hypothesis, the
last term of the exact sequence

Extly (k, P) — Ext)y(k, M) — Ext/" (k, K)

is finite dimensional, as is the first term, whence so is the middle term. ®
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Proposition 4.14 [f A is noetherian and salisfies x;, so does A/l for all
ideals 1.

Proof. Write B = A/l and let M € grmod(B). We will proceed by induc-
tion on 7; since B satisfies yo, we will assume the result is true for 2 —1. Thus
B satisfies y;_1, and we must show B satisfies ;.

Consider the spectral sequence

B}’ = Extfy(Tor} (B, A/Az,), M) = Ext{¥"(A[ Az, M).

Since A is noetherian, each term in the minimal projective resolution of By4
is a finite direct sum of shifts of A, whence each Torf(B,A/Azn) is finite
dimensional. In particular, it is right bounded. Since A is projective,

Torf(B, A/As,) = Torf_1 (B, As,)

for ¢ > 2, and
Tor (B, AJ/As,) C B®@a As,.

By taking a minimal resolution of A5, it is easy to see that
Torf_l(B,AZn) € [n,00)

for all ¢ > 1, whence
Torf(B,A/AZn) € [n,00)

for all ¢ > 1. Since B satisfies y;_1, Lemma 4.9 with T = Torf(B,A/AZn)
implies that, for all p < 7—1, the right bound of F%? tends to —oo as n — oc.
Thus, given d € Z,p <1 —1, and ¢ > 1,

(£2%)24 =0
for n > 0. Hence, for all p <7,
(E5°)>4 2 Ext}y (A Az, M)>4
for all » > 0. That is, for all p <z, and all n > 0,
Extg(B/Byn, M)ya = Ext}y(A/Asn, M)>a.

But A satisfies x;, so the condition in part (3) of Proposition 4.10 implies
that B satisfies y; too. [ |
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Example 4.15 Fiz 0 # q € k, and suppose that q is not a root of unity. Let
B = klz,y], with defining relation xy — qyz = y*. (It is easy lo show that
B = Ek[u,v] with relation vu = quv.) Define A=k + xB.

It is standard that B is (right and left) noetherian, and not too difficult
to deduce from that that A is also noetherian. As a right A-module, B 1is
finitely generated, namely B = A+ yA. In contrast, as a left A-module, B
is not finitely generated: indeed, as a left A-module,

B/AZ k-1 ®k[-2]&---

is an infinite direct sum of shifts of the trivial A-module 4k = AJ/A>1. To see
this, simply observe that BJA has a basis given by the images of {y'li > 1},
and that Asy = xBy C A. Since A is a domain, TA =0, whence A C wr A.
Since Fract(A) = Fract(B), B is an essential extension of A; since 4(B/A)
is torsion, it follows from the definition of w that A C B C wrA. Thus
coker(A — wr A) is not right bounded, so x1(A) does not hold. Alternatively,
one can see from the description of B/A that Ext}(A/As1, A) is not finile
dimensional.

Theorem 4.16 (Serre’s Finiteness Theorem). Let F € tails(A). If A sal-
isfies x, then

1. dimy HY(F) < oo for all q, and
2. if g > 1, then HY(F[n]) =0 for n > 0.

Conversely, if A satisfies x1, and (2) holds for all F € tails(A), then A
satisfies x.

Proof. Write 7 = 7 M where M € grmod(A).
Suppose that ¢ = 0. Since x;(M) holds, (wrM )¢ is finitely generated,
hence locally finite. In particular, (wr M)y = H°(F) is finite dimensional.
Suppose that ¢ > 1. Since A satisfies 441,

lim Ext (A/As,. M)

is right bounded; but this equals H?(F), so (2) follows because H*(F), =
H(F[n]). The proof of Proposition 4.10 showed that, given d € 7,

lim Ext}™ (A/Asn, M)sq = Exti™ (A/As,, M)sq
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for r > 0; in particular, this is locally finite, which proves (1) for ¢ > 1.
Conversely, (2) implies that H*~'(F) is right bounded for 7 > 2, but this

is isomorphic to liglm;(A/AZn, M); thus, since x1(M) holds, condition (4)

in Proposition 4.10 is satisfied for all z. Thus A satisfies . [ |

5 Non-commutative Schemes

Let A be a left noetherian, locally finite, N-graded k-algebra. We already de-
fined the projective scheme associated to A as the pair proj(A) = (tails(A), A).
Such pairs are the objects in the category Pairs: the objects are pairs (C, O)
consisting of a k-linear abelian category C, together with a distinguished
object O; the morphisms are pairs

(fa(g) : (Cl,Ol) - (C2702)

consisting of a covariant k-linear functor f : C; — Cy and a morphism 6 :

f@l — 02.

Definition 5.1 A map F' : proj(B) — proj(A) of schemes is a natural equiv-
alence class of morphisms

(f,0): (tails(A), A) — (tails(B), B)

such that f is right exact, and 0 : fA — B is an isomorphism.
There is a similar notion of map between general projective schemes

Proj(A) = (Tails(A), A).

Warning: The map F goes in the opposite direction to the functor f.
We have deliberately not defined a category of schemes—possibly the notion
of map is too restrictive, and other morphisms should be permitted; in any
case, whatever the appropriate definition should be, the maps above should

be allowed.

Given a homomorphism f : A — B of graded algebras, we have the
induction and restriction functors

f*: GrMod(A) — GrMod(B),
f«: GrMod(B) — GrMod(A),
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defined by
M = BQsM, and
fxN = 4N.

These are an adjoint pair:
Hom(f*M, N) = Hom(M, f.N).

Proposition 5.2 If [ : A — B is a homomorphism of graded algebras, there
are induced functors

1. f*:tails(A) — tails(B) which is exact;

2. fo : tails(B) — tails(A) if 4B is finitely generated up to torsion (i.e.,
7B € tails(A));

3. f*: Tails(A) — Tails(B) and f* : tails(A) — tails(B) if either By is
finitely generated, or coker(f) is right bounded; in this case, we obtain
a map proj(B) — proj(A).

Proof. The existence of f* or f, at the level of Tails or tails is proved by
checking that induction or restriction of a torsion module is again torsion.
The details are straightforward. [

If f: A — A/I is the natural map to a quotient of A, then f, :
Tails(A/I) — Tails(A) is fully faithful, and we think of the induced map
proj(A/I) — proj(A) as being a closed embedding. We usually identify
proj(A/I) with its image in proj(A).

If v is a homogeneous regular normalizing element of A and g : A —
A[u™] is the natural map, then g, : Tails(A[u"']) — Tails(A) is fully faith-
ful, and we should think of proj(A[u~']y) as being the (open) complement
to proj(A/(u)) in proj(A). Suppose that u is not in Ag. Then A[u~!] can-
not have any torsion modules (because there is a unit of positive degree),
so tails(A[u~"']) ~ grmod(A[u~']). If u is of degree one, or if A is generated
by Ao and A;, then A[u~'] is a strongly graded algebra, meaning that the
product of the degree ¢ and j components equals the degree ¢ + 5 compo-
nent, and therefore has the property that grmod(A[u~']) ~ mod(A[u~']y),
the equivalence being given by M +— My. Thus the open complement to
proj(A/(u)) is the ‘affine scheme’ mod(A[u~']y).
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Although we have restricted our attention to N-graded algebras in these
talks, the main ideas extend to Z-graded algebras. In particular, there is a Z-
graded version of Proposition 5.2. In particular, we have the next Proposition
which establishes an equivalence of categories Tails(Asq) o~ Tails(A). Thus,
as far as projective schemes are concerned, we can replace A by the N-graded
algebra Asg; it is for this reason that our restriction to N-graded algebras is
reasonable.

Proposition 5.3 If [ : A — B is a homomorphism of graded algebras such
that ker(f) is torsion and coker(f) is right bounded, then f* and f. induce
equivalences Tails(A) ~ Tails(B) and tails(A) ~ tails(B). In particular,
proj(A) ~ proj(B).

We omit the proof of the next two results, which may be found in [2] and
[5] respectively.

Proposition 5.4 If A is left noetherian, and generated over Ag by Ay, then
proj(A) = proj(AD), where A = @©,c;A,4 is the d Veronese subalgebra
of A, with grading defined by AW = A, ,.

Proposition 5.5 Let A and B be N-graded k-algebras, generated over Ag by
Ai. Define their Segre product

Ao B = @ An (0S0) 2 Bn
neL
with grading (Ao B), = A, ® B,, and multiplication inherited from that on
A®y B. Then there are maps

proj(A o B) — proj(A) and proj(A o B) — proj(B).

The maps in the previous proposition are not induced by algebra homo-
morphisms since the natural map A — A®; B does not have image in Ao B.

Twisting. We now describe an important construction which gives rise
to a map of schemes which does not arise from an algebra homomorphism.
In particular, it shows that there may be a wide range of algebras having the
same scheme associated to them—for example, a non-commutative algebra
may determine the same scheme as a commutative algebra.
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If o is a graded algebra automorphism, o € Auti(A), then the twisted
algebra °A is °A = A as a graded vector space, but with multiplication

a®b=a""b
ifae A,,be A,.
Proposition 5.6 There is an isomorphism
proj(4) 2 proj(“A).
Proof. In fact there is an equivalence of categories
¢ : GrMod(A) — GrMod(“A)

sending A to “A which is defined as follows. if M € GrMod(A), then ®M is
the “A-module defined by ®M = M as a graded vector space, and

a®m =a’ m
if a € “A;, m € M,,. The details are easy to check (see [7]). [

Notation We usually write °M for the A-module ® M defined in the proof
of Proposition 5.6.

Example 5.7 Let A = k[z,y] be the commutative polynomial ring , and o
the automorphism defined by x° = x and y° = qy where q is some fired
non-zero scalar. Then °A = k[u,v] with defining relation vu = quv. Here
proj(°A) = Coh(p').

Continuing with this idea, if A = k[z,y,z| with defining relations zy =
ayz, vz = fBzx, yr = yay then proj(A) contains three copies of P, namely

the three coordinatle axes proj(A/(x)), proj(A/(y)) and proj(A/(z)).

In the proof of Proposition 5.6, we usually have

("M)[1] 2 “(M[1]);
the [1] on the left is the shift functor for “A, whereas the [1] on the right
is the shift functor for A. To see this let a € 7A; and m € M. If we
consider m € (“M)[1];, then a®@m = a” " m; on the other hand, if we consider

m € 9(M[1]);, then a@m = a”’m. The relation between the shift functors
for A and A is described by the next lemma.
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Lemma 5.8 Let ® : GrMod(A) — GrMod(?A) be the functor in Proposition
5.6. Let 0. : GrMod(A) — GrMod(A) be the restriction functor arising from

the algebra homomorphism o : A — A. There is a natural equivalence
boo,o[l] ~[1]od.

Proof. (Probably this should be done behind closed doors.) Let M €
GrMod(A); then o.M = M as a graded vector space, and the A-action on
o.M is given by

a-m=a’m.

fora € Aand m € o.M. As vector spaces, both (®oo.o[1])M and ([1]od)M
equal M; let
p:(Poo.o[l)M — ([1]o®)M

be the identity map. We will show that p is an isomorphism of “A-modules.
First the degree j component of (® oo, 0 [1])M equals o (M[1]); = M;41, as
does the degree j component of ([1]o ®)M. Thus p is a graded vector space
map. If m € (0. M[1]);, then

o JIES]
aOm=a" -m=a m;

on the other hand, p(m) € ("M)[1]; = ("M);41, so

oI+l

a@p(m) =a
That is, p(a®@m) = a®p(m), as required. [

Remark 5.9 The twist (A, ®) defined prior to Proposition 5.6 should really
be called the left twist of A. We may also define the right twist (A7, *); as a
graded vector space A = A, and it is endowed with multiplication

a*b=ab’"

fora € A, be A,. It is an easy exercise to show that the map 0 : °A — A"
defined by 0(a) = 0='(a) for a € A; is a graded algebra isomorphism.

Definition 5.10 Given a graded algebra A, we call
(tails(A), A, [1]) or (Tails(A), A, [1])

the polarized projective scheme associated to A.
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These are objects of the following category.

Definition 5.11 The category of triples, Trip, has as its objects triples (C, O, s)
where

o C is a k-linear abelian category,
o O s a distinguished object of C, and
o 5s:C — C is an auto-equivalence,

and morphisms

(f797,u) . (61,01,81) — (02702752)7

where
o f:Cy — Cy is a k-linear covariant functor,
o 0: fO; — Oy s a morphism, and
o 1: fosy — syo f is anatural transformation.

Definition 5.12 A map F : (Proj(B), s2) — (Proj(A), s1) of polarized schemes

is a natural equivalence class of morphisms
(f,0,p) : (Tails(A), A, s1) — (Tails(B), B, s2)
such that [ is right exact, 0 is an isomorphism, and p s a natural equivalence.
For example, there are isomorphisms of polarized schemes
(Tails(“A), %A, [1]) = (Tails(A), A, 0. 0 [1])

and

(Proj(A), [d]) = (Proj(A®), [1])
by Lemma 5.8 and Proposition 5.4 respectively.

A graded algebra associated to (C,0,s). We may associate to a
triple (C, O, s) a Z-graded algebra

B(C,0,s) = P B.

neZ
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where

B, = Hom¢ (O, s"(0)),

and the product rule B,, x B, — B,,4, is given by composition:

(f,9) = (s"f)og.

It is easy to see this is associative.

Proposition 5.13 The rule above gives a covariant functor
B : Trip — GrAlg

to the category of graded k-algebras.

Proof. This is straightforward, although the notation can get a little un-
wieldy. [ |

Example 5.14 If R is a k-algebra and o € Auti(R), then
B(Mod(R*), Ry o") = Rla. 2" o],
the skew Laurent polynomial ring, in which deg(R) = 0 and deg(z) = 1.

Example 5.15 Let X be a projective scheme, and L a coherent Ox-module.
Let s = L @p, —. Since Hom(Ox, F) = HY(X,F) for any Ox-module F,
we have

B(Coh(Ox),0x,s) = P H(X,LE™)

neZ

with its natural commutative multiplication.

Example 5.16 We now combine the ideas in the previous two evamples.
Let X be a projective scheme, L a coherent Ox-module, and o € Auty X.
For an Ox-module F, we wrile F° = o*F; we have c*F = o1 F, and also
0% = Ox. Now define s = (L ®o —)o0*, and consider B(Coh(Ox), Ox,s).
Then

—1

STO=LRL @ - L,

S0

B,=HYX,LQL @---®L"),
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and the product rule B,, ® B, — B4, s given by
(fr9) = s"(fl@g.

Thus B is a twisted homogeneous coordinate ring in the sense of Artin-van
den Bergh [1]; to be consistent with their notation, we have

B(Coh(Ox),0x,s) = B(X,07', L)

(this isomorphism is analogous to the isomorphism “A = A" remarked on
earlier). Equivalently,

B(Coh(0Ox),0x, (L ®p —)o0.) = B(X,0,L).

The next result is an important special case of the functoriality of B in
Proposition 5.13.

Proposition 5.17 Let A be left noetherian, locally finite and N-graded.
1. B(GrMod(A®P), A4, [1]) = A.

2. B(Tails(A), A, [1]) Z wr A as a graded vector space; thus wr A has a
graded algebra structure.

3. Let f = B(w), where 7 : GrMod(A°®) — Tails(AP) is the quotient

functor. Then f: A — wrA is a graded algebra homomorphism.
4. If A satisfies x1, then f* induces isomorphisms of polarized schemes
(Proj(A), [1]) = (Proj(wr A), [1])

and

(proj(A), [1]) = (proj(wr A), [1]).

Proof. (1) Just use the definition of B.
(2) We have

B(Tails(A°P), A, [1])

@ Hommais( A, Aln))

nek

Hom(7 A, wA)
HO—mGr(Av WWA)
wrA.
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(3) The map, f say, arising from the functoriality of B is

A, = Homg, (A, A[n]) — Hommus(mA, 7A[n])
= Homg.(A,wr A[n])
= (wrA),

which coincides with the map A — wn A in the definition of w.

(4) If A satisfies x4, then coker(f) is right bounded by Proposition 4.12.
On the other hand ker(f) = 7A is torsion, so the result follows from Propo-
sition 5.3. [ |

Part (4) of this proposition says that as far as the projective scheme
proj(A) is concerned, one may replace A by wr A (at least if A satisfies x1),
which is generally a better algebra than A (as in (as in (as in (as in (as in
(as in (as in (as in (as in Example 4.15).

Notation Given a triple (C,0,s), we write
o F(n) =s"F for objects F in C, and
e H°(F)= Hom¢(O,F).

Definition 5.18 Let (C,0,s) be a triple. We say that s is ample if

1. for each F in C, there exisl posilive integers nq, ..., n, and an epimor-
phism
P
P Oo(—n;) — F,
=1
and

2.4f [+ F — G is an epimorphism in C, then the induced map
H°(F(n)) — H°(G(n))
is surjective for n > 0.

Condition (1) says that O (with the help of the shift s) is something like
a generator in C, and that the objects are in a sort of finitely generated, and

condition (2) says that O (with the help of s) is something like a projective
object.
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Proposition 5.19 If A satisfies x1, then [1] is ample for (tails(A), A, [1]).
Proof. Let M € grmod(A), and define F = 7M. Then F = 7(M>»;). Since

A is left noetherian, M»; € grmod(A) too, whence there is a surjection

i=1

for some positive integers ny,...,n,. Applying «, this gives an epimorphism

P
P A-n]— F
i=1
so condition (1) of Definition 5.18 is satisfied.
Let f:F — G be an epimorphism in tails(A), and write G = 7N where
N € grmod(A). Now

?Z H°(Fln]) = GEBZ Hommais(A, Fln])
= @ Homms(rA, 7M[n])

ne%

= @ Home, (A, wrMn])
ne

= wrM.

Hence we must show that the map wrM — wrx N induced by f is surjective
in high degree. By Proposition 3.3, f is of the form =g for some A-module
map ¢ : M>, — N>,, for n > 0. Hence we must show that g induces a
surjection wr(Ms,) — wr(N>,). Since f = 7g is an epimorphism, ker(g)
and coker(g) are torsion, hence finite dimensional as M>,, N>, € grmod(A).
Thus, for n > 0, g : M5, — N, is surjective. But A satisfies xy, so for
n >0 (wrM)s, = M5, and (wrN)>, = N>,, whence the result. [ |

Example 5.20 Let A and B be the algebras in Example 4.15, and define
R = Alt], the polynomial extension with deg(t) = 1. Then [1] is not ample for
(tails(R),R,[1]). Let N = R/(z). The point of Fxample 4.15 is that N has
an essential extension by a torsion module which is not right bounded; thus
coker(N — wn N) is not right bounded. Let M = R, let g : M — N be the
natural map, and let f: F =7M — G = ©N denote ng. Certainly [ is an
epimorphism because g is surjective, so if wr M — wr N is not surjective in
high degree, then [1] is not ample. However, Extp(k, R) = Hom,(k, A) = 0,
so x1(M) holds. Thus wr M /M is right bounded; since wr N/N is not right

bounded, the map wr M — wr N cannol be surjective in high degree.
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The next Theorem is one of the main results in [2]; it gives some idea of
which categories can arise as non-commutative schemes.

Theorem 5.21 Let (C,O,s) be a triple such that

1. s is ample,

2. O is a noetherian object in C, and

3. Home(O, F) is a finite dimensional for all F in C.
Then A= B(C,0,s)s is

e right noetherian,

o locally finite,

e satisfies x1, and

o (C.0, )= (tails(A%P), A, [1]).

The only comment we will make concerning the proof of Theorem 5.21 is
to describe the functor implementing the equivalence of categories between
C and tails(A°P). Let B = B(C,0,s); a graded B-module is of course an

A-module. The equivalence is given by
F—alF
where 7 : GrMod(A°P) — Tails(A°P) is the quotient functor and
I': C — GrMod(BP)
is the functor defined by

I'F = @(F]—")n = @Homc((’),snf)

n€eZ nen

with right B-module structure

for f € (T'F)m, b € B,.
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Perhaps the simplest illustration of Theorem 5.21 is the following: if
(C,0,s) = (Mod(R°?), Rg,1d), then B = R[z,z7'] the Laurent polynomial
extension, and 'M = M|z, z7']; since B is strongly graded Mod(R°P) is
equivalent to GrMod(B) which is equivalent to Tails(B). Since R[x] — B has
right bounded cokernel Tails( R[z]) is equivalent to Tails(B). Thus Mod(R°P)
is equivalent to Tails(R[z]), and R[z] is the ring A in the statement of the
Theorem. Thus the theorem confirms what we already know.

Although Proposition 5.17, which says that tails(A) is equivalent to tails(wm A)so
when y; holds, has a simple proof, it can also be deduced by applying The-
orem 5.21 to (tails(A), A, [1]).

Another important consequence of Theorem 5.21 is Theorem 5.24 below
on twisted homogeneous coordinate rings.

Definition 5.22 Let X be a noetherian scheme and o € Aut X. An invertible
Ox-module L is o-ample if, for every F € Coh(Ox)

HI(X,LRL @ QL @F)=0
for all g >0 and all n > 0.

The point is that o-ampleness ensures that a certain shift functor is
ample—the key to proving this is the next Lemma.

Lemma 5.23 [/, Lemma 3.2] Let L be a o-ample line bundle on a scheme
X. If F € Coh(Ox), then s"F is generated by its global sections for n > 0.

Theorem 5.24 Let £ be a o-ample line bundle on a scheme X. Then B =
B(X,0,L)>0 is noetherian and

tails(B) ~ Coh(Ox).
Proof. Apply the Theorem to the triple
(COh(OX)a Ox, S)

where s = (L ®p, —) 0 0¥, as in Example 5.16. By standard commutative
theory, Ox is a noetherian object in Coh(Ox) and H°(F) = Hom(Ox, F) =
H°(X,F) is finite dimensional for all F € Coh(Ox).
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Next we show that s is ample. By applying s™" to the result in Lemma
5.23, it follows that there is an epimorphism (s™"0)? — F for some large
p. Hence condition (1) in Definition 5.18 holds. Now let f : F — G be an
epimorphism in Coh(Ox). Write K = ker(f); since s is an exact functor,
there 1s a long exact sequence in cohomology

0— HO(Sn/C) — Ho(sn}—) — Ho(sng) — Hl(snlC).
Since L is o-ample, H'(s"K) = 0 for n > 0, whence
HO(s"F) — H°(s"G)

is surjective; thus condition (2) in Definition 5.18 holds.
Hence the hypotheses of Theorem 5.21 hold. By its conclusion B is right
noetherian and tails(B°?) = Coh(Ox). [ ]

References

[1] M. Artin and M. van den Bergh, Twisted Homogeneous Coordinate
Rings, J. Algebra 133 (1990) 249-271.

[2] M. Artin and J. Zhang, Non-commutative Projective Schemes, Adv.
in Math., to appear.

[3] P. Gabriel, Des Catégories Abéliennes, Bull. Soc. Math. France, 90
(1962) 323 448.

[4] J. P. Serre, Faisceaux Algébriques Cohérents, Ann. of Math., 61 (1955)
197-278.

[5] K. van Rompay, Segre product of Artin-Schelter regular algebras of di-
mension 2 and embeddings in quantum spaces of dimension 4, preprint

(1994).

[6] J. T. Stafford and J. Zhang, Examples in Non-commutative Projective
Geometry, Proc. Camb. Phil. Soc., to appear.

[7] J. Zhang, Twisted Graded Algebras and Equivalences of Graded Cat-

egories, submitted.

36



