Math 308

Final

December 2011

- We will write $\underline{A}_1, \ldots, \underline{A}_n$ for the columns of an $m \times n$ matrix A.
- Several questions involve an unknown vector $\underline{x} \in \mathbb{R}^n$. We will write x_1, \ldots, x_n for the entries of \underline{x} ; thus $\underline{x} = (x_1, \ldots, x_n)^T$.
- The null space and range of a matrix A are denoted by $\mathcal{N}(A)$ and $\mathcal{R}(A)$, respectively.
- The linear span of a set of vectors is denoted by $\operatorname{Sp}(\underline{v}_1, \ldots, \underline{v}_n)$.
- We will write $\underline{e}_1, \ldots, \underline{e}_n$ for the standard basis for \mathbb{R}^n . Thus \underline{e}_i has a 1 in the i^{th} position and zeroes elsewhere.
- In order to save space I will often write elements of \mathbb{R}^n as row vectors, particularly in questions about linear transformations. For example, I will write T(x, y) = (x + y, x y) rather than

$$T\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x+y\\x-y\end{pmatrix}$$

Part A.

True or False.

Scoring. You get +1 for each correct answer, -1 for each incorrect answer and 0 if you choose not to answer the question. Use your BUBBLES: A=True. B=False. Fill in bubble A if you think it is True, bubble B if you think it is False, and fill in nothing if you do not want to answer it.

- (1) If a is a non-zero real number, the matrix $\begin{pmatrix} a & a \\ -a & 0 \end{pmatrix}$ has no real eigenvalues.
- (2) Every set of five vectors in \mathbb{R}^4 is linearly dependent.
- (3) Every set of four vectors in \mathbb{R}^4 is linearly dependent.
- (4) Every set of five vectors in \mathbb{R}^4 spans \mathbb{R}^4 .
- (5) Every set of four vectors in \mathbb{R}^4 spans \mathbb{R}^4 .
- (6) A square matrix is non-singular if all its entries are non-zero.
- (7) A square matrix having a row of zeroes is always singular.
- (8) For any vectors \underline{u} , \underline{v} , and \underline{w} , $\{\underline{u}, \underline{v}, \underline{w}\}$ and $\{\underline{u} + \underline{v}, \underline{v}, \underline{w} + \underline{u}\}$ have the same linear span.
- (9) If A is singular and B is non-singular then AB is always singular.
- (10) If A and B are non-singular so is AB.

(11)
$$\begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
 and $\begin{pmatrix} 6\\4\\2 \end{pmatrix}$ have the same the linear span as $\begin{pmatrix} 3\\2\\1 \end{pmatrix}$ and $\begin{pmatrix} 2\\4\\6 \end{pmatrix}$.

(12) There is a matrix whose inverse is $\begin{pmatrix} 2 & 5 & 7 \\ 5 & 9 & 12 \end{pmatrix}$.

(13) If $A^{-1} = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix}$ and $E = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 0 & 2 \end{pmatrix}$ there is a matrix *B* such that BA = E.

(14) If A is row-equivalent to the matrix $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$, then the equation $A\underline{x} = \underline{b}$

has a unique solution.

- (15) The matrix representing the linear transformation T(x, y) = (x + y, x 2y)is $\begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$. (16) Let S and T be the linear transformation T(x,y) = (2x + y, x - y) and
- S(x, y) = (y, 2y). Then ST(x, y) = (x y, 2x 2y).
- (17) There exists a 3×4 matrix A and a 4×3 matrix B such that AB is the 3×3 identity matrix.
- (18) There exists a 4×3 matrix A and a 3×4 matrix B such that AB is the 4×4 identity matrix.
- (19) The dimension of a subspace is the number of elements in it.
- (20) Every subset of a linearly dependent set is linearly dependent.
- (21) Every subset of a linearly independent set is linearly independent.
- (22) If $\{\underline{v}_1, \underline{v}_2, \underline{v}_3\}$ are any vectors in \mathbb{R}^n , then $\{\underline{v}_1 + 3\underline{v}_2, 3\underline{v}_2 + \underline{v}_3, \underline{v}_3 \underline{v}_1\}$ is linearly dependent.
- (23) Let A and B be $n \times n$ matrices. Suppose 2 is an eigenvalue of A and 3 is an eigenvalue of B. Then 6 is an eigenvalue of AB.
- (24) Let A and B be $n \times n$ matrices. Suppose 2 is an eigenvalue of A and 3 is an eigenvalue of B. Then 5 is an eigenvalue of A + B.
- (25) Let A and B be $n \times n$ matrices. If <u>x</u> is an eigenvector for both A and B it is also an eigenvector for AB.
- (26) Let A and B be $n \times n$ matrices. If \underline{x} is an eigenvector for both A and B it is also an eigenvector for 3A - 2B.
- (27) If A is an invertible matrix, then $A^{-1}\underline{b}$ is a solution to the equation $A\underline{x} = \underline{b}$.
- (28) The linear span $\operatorname{Sp}\{\underline{u}_1,\ldots,\underline{u}_r\}$ is the same as the linear span $\operatorname{Sp}(\underline{v}_1,\ldots,\underline{v}_s)$ if and only if every \underline{u}_i is a linear combination of the \underline{v}_i s and every \underline{v}_i is a linear combination of the \underline{u}_i s.
- (29) If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and V is a subspace of \mathbb{R}^n , then T(V) is a subspace of \mathbb{R}^m .
- (30) The row reduced echelon form of a square matrix is the identity if and only if the matrix is invertible.
- (31) Let A be an $n \times n$ matrix. If the columns of A are linearly dependent, then A is singular.
- (32) If A and B are $m \times n$ matrices such that B can be obtained from A by elementary row operations, then A can also be obtained from B by elementary row operations.

(33) There is a matrix whose inverse is
$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
(34) The column space of the matrix
$$\begin{pmatrix} 3 & 0 & 0 \\ 1 & 2 & 0 \\ 2 & 0 & 3 \end{pmatrix}$$
 is a basis for \mathbb{R}^3 .

- (35) Two systems of m linear equations in n unknowns have the same row reduced echelon form if and only if they have the same solutions.
- (36) If \underline{u} and \underline{v} are $n \times 1$ column vectors then $\underline{u}^T \underline{v} = \underline{v}^T \underline{u}$.

- (37) If $A^3 = B^3 = C^3 = I$, then $(ABAC)^{-1} = C^2 A^2 B^2 A^2$.
- (38) Let A be a non-singular 5×5 matrix and $\{\underline{u}_1, \underline{u}_2, \underline{u}_3\}$ a subset of \mathbb{R}^5 . Then $\{A\underline{u}_1, A\underline{u}_2, A\underline{u}_3\}$ is linearly independent if and only if $\{\underline{u}_1, \underline{u}_2, \underline{u}_3\}$ is.
- (39) If W is a subspace of \mathbb{R}^n that contains $\underline{u} + \underline{v}$, then W contains \underline{u} and \underline{v} .
- (40) There is a 5×5 matrix having eigenvalues 1 and 2 and no others.
- (41) There is a 5×5 matrix having eigenvalues 1, 2, 3, 4, 5 and no others.
- (42) There is a 5×5 matrix having eigenvalues 1, 2, 3, 4, 5, 6, 7 and no others.
- (43) A 5×5 matrix can't have more than 5 eigenvectors.
- (44) A 5×5 matrix has exactly 5 eigenvalues.
- (45) The vector $\begin{pmatrix} 2\\3 \end{pmatrix}$ is an eigenvector for the matrix $\begin{pmatrix} 1&3\\3&2 \end{pmatrix}$. (46) The vector $\begin{pmatrix} 3\\2 \end{pmatrix}$ is an eigenvector for the matrix $\begin{pmatrix} 1&3\\3&2 \end{pmatrix}$. (47) If $\begin{pmatrix} 1\\2 \end{pmatrix}$ is an eigenvector for a matrix so is $\begin{pmatrix} 10\\20 \end{pmatrix}$.
- (48) If \underline{u} and \underline{v} are eigenvectors for A is is $\underline{u} + 2\underline{v}$
- (49) One way to compute the λ -eigenspace of a square matrix A is to compute the null space of $A - \lambda I$.
- (50) If u and v are linearly independent vectors on the plane in \mathbb{R}^4 given by the equations $x_1 - x_2 + x_3 - 4x_4 = 0$ and $x_1 - x_2 + x_3 - 2x_4 = 0$, then (1, 2, 1, 0)a linear combination of \underline{u} and \underline{v} .
- (51) The vector $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ is an eigenvector for the matrix $\begin{pmatrix} 1 & 0 & 0\\2 & 0 & 0\\3 & 0 & 0 \end{pmatrix}$. (52) The vector $\begin{pmatrix} 0\\2\\3 \end{pmatrix}$ is an eigenvector for the matrix $\begin{pmatrix} 1 & 0 & 0\\2 & 0 & 0\\3 & 0 & 0 \end{pmatrix}$.
- (53) The number 0 is an eigenvalue for the matrix $\begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix}$
- (54) The range of a matrix is its columns.
- (55) The formula T(a, b, c) = 0 defines a linear transformation $\mathbb{R}^3 \to \mathbb{R}$.
- (56) The formula T(a, b, c) = 1 defines a linear transformation $\mathbb{R}^3 \to \mathbb{R}$.
- (57) Let |a| denote the absolute value. The formula T(a, b, c) = |a| + |b| + |c|defines a linear transformation $\mathbb{R}^3 \to \mathbb{R}$.
- (58) The formula T(a, b, c) = (a, b, 1) defines a linear transformation $\mathbb{R}^3 \to \mathbb{R}^3$.
- (59) The vectors (2, 2, -4, 3, 0) and (0, 0, 0, 0, 1) are a basis for the subspace $x_1 - x_2 = 2x_2 + x_3 = 3x_1 - 2x_4 = 0$ of \mathbb{R}^5 .
- (60) The vectors (1,1), (1,-2), (2,-3) are a basis for the subspace of \mathbb{R}^4 give by the solutions to the equations $x_1 - x_2 = 2x_2 + x_3 = 3x_1 - 2x_4 = 0$.
- (61) $\{\underline{x} \in \mathbb{R}^4 \mid x_1 x_2 = x_3 + x_4\}$ is a subspace of \mathbb{R}^4 . (62) $\{\underline{x} \in \mathbb{R}^5 \mid x_1 x_2 = x_3 + x_4 = 1\}$ is a subspace of \mathbb{R}^5 .
- (63) The solutions to a system of homogeneous linear equations form a subspace.
- (64) The solutions to a system of linear equations form a subspace.
- (65) The set $W = \{\underline{x} = (x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4 \mid x_1^2 = x_2^2\}$ is a subspace.
- (66) The null space of a square matrix A is equal to its 0-eigenspace.
- (67) The linear span of a matrix is its set of columns.
- (68) $U \cup V$ is a subspace if U and V are.

- (69) U^{-1} is a subspace if U is.
- (70) Similar matrices have the same eigenvalues.
- (71) Similar matrices have the same eigenvectors.
- (72) The equation $A\underline{x} = \underline{b}$ has a solution if and only if \underline{b} is linear combination of the rows of A.
- (73) The equation Ax = b has a unique solution for all $b \in \mathbb{R}^n$ if A is an $n \times n$ matrix with rank n.
- (74) If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation, then T is invertible if and only if its nullity is zero.
- (75) A matrix is linearly independent if its columns are different.
- (76) If A is a 3×5 matrix, then the inverse of A is a 5×3 matrix.
- (77) The matrix $\begin{pmatrix} 18 & 6\\ 10 & 1 \end{pmatrix}$ is diagonalizable.
- (78) There is a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that $\mathcal{R}(T) = \mathcal{N}(T)$.
- (79) There is a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^4$ such that $\mathcal{R}(T) = \mathcal{N}(T)$.
- (80) If A is a 2 × 2 matrix it is possible for $\mathcal{R}(A)$ to be the parabola $y = x^2$.
- (81) Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation $T(x_1, x_2, x_3, x_4) = (0, x_1, x_2, x_3)$. The null space of T is $\{(0, 0, 0, a) \mid a \text{ is a real number}\}$.
- (82) Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation $T(x_1, x_2, x_3, x_4) = (0, x_1, x_2, x_3)$. The null space of T is $\{(x_4, 0, 0, 0) \mid x_4 \text{ is a real number}\}$.
- (83) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation $T(x_1, x_2) = (x_2, 0)$. The null space of T is $\{(t, 0) \mid t \text{ is a real number}\}$.
- (84) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation $T(x_1, x_2) = (x_2, 0)$. The null space of T is $\{(1,0)\}$.
- (85) Let $T : \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation $T(x_1, x_2, x_3) = (x_1, 0, x_2, x_2)$. The nullspace of T has many bases; one of them is the set $\{(-2, 0, 0, 0), (0, 0, 1, 1)\}$.
- (86) Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation $T(x_1, x_2, x_3) = (x_1, 0, x_2, x_2)$. The nullspace of T has many bases; one of them is the set $\{(0, 0, 4)\}$.
- (87) The set $\{(2,0,0,0), (0,0,3,3)\}$ is a basis for the range of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ given by $T(x_1, x_2, x_3) = (x_1, 0, x_2, x_2).$
- (88) The smallest subspace containing subspaces V and W is V + W.
- (89) No linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^5$ is onto. (90) No linear transformation $T : \mathbb{R}^5 \to \mathbb{R}^3$ is onto.
- (91) No linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^5$ is one-to-one.
- (92) No linear transformation $T : \mathbb{R}^5 \to \mathbb{R}^3$ is one-to-one.
- (93) A linear transformation is invertible if and only if its nullity is zero.
- (94) A linear transformation is one-to-one if and only if its nullity is zero. In the next 6 questions, A is a 4×4 matrix whose columns $\underline{A}_1, \underline{A}_2, \underline{A}_3, \underline{A}_4$ have the property that $\underline{A}_1 + \underline{A}_2 + \underline{A}_3 = \underline{A}_4$.
- (95) The columns of A span \mathbb{R}^4 .
- (96) A is singular.
- (97) The columns of A are linearly dependent.
- (98) The rows of A are linearly dependent.
- (99) The equation $A\underline{x} = 0$ has a non-trivial solution.

(100)
$$A\begin{pmatrix} -2\\ -2\\ -2\\ 2 \end{pmatrix} = 0.$$

4

Part B.

Complete the definitions and theorems by completing the sentences. Scoring: 2 points per question. No partial credit.

Systems of linear equations

- (1) **Definition:** Two systems of linear equations are <u>equivalent</u> if
- (2) **Theorem:** Two systems of linear equations are equivalent if their row reduced echelon forms are _____.
- (3) **Definition:** Let A be an $m \times n$ matrix and let E be the row-reduced echelon matrix that is row equivalent to it. If x_1, \ldots, x_n are the unknowns in the system of equations $A\underline{x} = \underline{b}$, then x_j is a dependent variable if and only if _____.
- (4) **Theorem:** A homogeneous system of linear equations always has a non-zero solution if the number of unknowns is _____.
- (5) **Theorem:** The equation $A\underline{x} = \underline{b}$ has a solution if and only if \underline{b} is in the linear span of _____
- (6) **Theorem:** Let A be an $n \times n$ matrix and $\underline{b} \in \mathbb{R}^n$. The equation $A\underline{x} = \underline{b}$ has a unique solution if and only if A is _____.
- (7) **Theorem:** If $A\underline{u} = \underline{b}$, then the set of all solutions to the equation $A\underline{x} = \underline{b}$ consists of the vectors u + v as v ranges over all _____
- (8) **Theorem:** Let A be an $m \times n$ matrix and let E be the row-reduced echelon matrix that is row equivalent to it. Then the non-zero rows of E are a basis for _____.

Linear combinations and Linear spans

- (1) **Definition:** A vector \underline{w} is a linear combination of $\{\underline{v}_1, \ldots, \underline{v}_n\}$ if ______
- (2) **Theorem:** A vector \underline{w} is a linear combination of $\{\underline{v}_1, \ldots, \underline{v}_n\}$ if $\operatorname{Sp}(\underline{w}, \underline{v}_1, \ldots, \underline{v}_n) = _$
- (3) **Definition:** The <u>linear span</u> of $\{\underline{v}_1, \ldots, \underline{v}_n\}$ consists of _____
- (4) **Definition:** A set of vectors $\{\underline{v}_1, \ldots, \underline{v}_n\}$ is <u>linearly independent</u> if the only solution to the equation ______ is _____.
- solution to the equation ______ is ____. (5) **Theorem:** A set of vectors $\{\underline{v}_1, \ldots, \underline{v}_n\}$ is linearly independent if the dimension of $\operatorname{Sp}(\underline{v}_1, \ldots, \underline{v}_n)$ _____
- (6) **Theorem:** A set of vectors is linearly dependent if and only if one of the vectors is ______ of the others.

Subspaces

- (1) **Definition:** A subset W of \mathbb{R}^n is a <u>subspace</u> if it satisfies the following three conditions: _____.
- (2) **Theorem:** If V and W are subspaces of \mathbb{R}^n so are _____ and
- (3) **Definition:** A set of vectors $\{\underline{v}_1, \ldots, \underline{v}_d\}$ is a <u>basis</u> for a subspace V of \mathbb{R}^n if
- (4) **Definition:** The <u>dimension</u> of a subspace V of \mathbb{R}^n is _____

<u>Matrices</u>

(1) If A is an $m \times n$ matrix and B is a $p \times q$ matrix, then AB exists if and only if _____ and in that case AB is a _____ matrix.

- (2) If A is an $m \times n$ matrix and $\underline{x} \in \mathbb{R}^n$, then $A\underline{x}$ is a linear combination of the columns of A, namely Ax =
- (3) The columns of a product AB are _____
- (4) **Definition 1:** An $n \times n$ matrix A is <u>non-singular</u> if the only solution and is singular if it is not non-singular.
- (5) **Definition 2:** An $n \times n$ matrix A is singular if there exists in \mathbb{R}^n such that _____ and is non-singular otherwise.
- (6) **Theorem:** An $n \times n$ matrix A is non-singular if and only if it has _____
- (7) **Theorem:** An $n \times n$ matrix A is singular if its columns
- (8) **Theorem:** An $n \times n$ matrix A is singular if and only if its range
- (9) **Theorem:** An $n \times n$ matrix A is non-singular if and only if the equation Ax = b

Invertible matrices and determinants

- (1) **Definition:** An $n \times n$ matrix A is invertible if
- (2) **Theorem:** An $n \times n$ matrix is invertible if and only if it is _____.
- (3) **Theorem:** An $n \times n$ matrix is invertible if and only if its is non-zero.
- (4) **Theorem:** The matrix $\begin{pmatrix} w & x \\ y & z \end{pmatrix}$ is invertible if and only if $\underline{\qquad} \neq 0$. (5) **Theorem:** If the matrix $\begin{pmatrix} w & x \\ y & z \end{pmatrix}$ is invertible its inverse is $\underline{\qquad}$.
- (6) **Definition:** Let A be an $n \times n$ matrix. The characteristic polynomial of A is
- (7) **Theorem:** Let A be an $n \times n$ matrix. If B is obtained from A by
 - (a) replacing row i by row i + row k with $k \neq i$, then det B = ?
 - (b) swapping two rows of A, then $\det B = ?$
 - (c) multiplying a row in A by $c \in \mathbb{R}$, then det B = ?

Rank and Nullity

- (1) **Definition:** The <u>rank</u> of a matrix A is the number of non-zero
- (2) **Theorem:** The rank of a matrix is equal to the dimension of _____
- (3) **Definition:** The rank of a linear transformation T is equal to

Eigenvalues and eigenvectors

- (1) **Definition:** Let A be an $n \times n$ matrix. We call $\lambda \in \mathbb{R}$ an <u>eigenvalue</u> of A if
- (2) **Definition:** Let A be an $n \times n$ matrix. A non-zero vector $\underline{x} \in \mathbb{R}^n$ is an <u>eigenvector</u> for A if _____
- (3) **Definition:** Let λ be an eigenvalue for the $n \times n$ matrix A. The λ -eigenspace for A is the set

 $E_{\lambda} := \{ _ | _ \}.$

- (4) **Theorem:** Let λ be an eigenvalue for A. The λ -eigenspace of A is a subspace of \mathbb{R}^n because it is equal to the null space of
- (5) **Theorem:** The λ -eigenspace of A is non-zero if and only if the matrix is singular.
- (6) **Theorem:** If $\{\underline{v}_1, \ldots, \underline{v}_n\}$ are eigenvectors for an $n \times n$ matrix A having n different eigenvalues, then
- (7) **Theorem:** The eigenvalues of a matrix A are the zeroes of _____

6

(8) **Theorem:** Let $\lambda_1, \ldots, \lambda_r$ be different eigenvalues for a matrix A. If $\underline{v}_1, \ldots, \underline{v}_r$ are non-zero vectors such that \underline{v}_i is an eigenvector for A with eigenvalue λ_i , then $\{\underline{v}_1, \ldots, \underline{v}_r\}$ is _____.

Linear transformations

- (1) **Definition:** Let V be a subspace of \mathbb{R}^n and W a subspace of \mathbb{R}^m . A function $T: V \to W$ is a linear transformation if _____
- (2) **Definition:** The <u>range</u> of a linear transformation $T: V \to W$ is

$$\mathcal{R}(T) := \{ _ | _ \}$$

(3) **Definition:** The <u>null space</u> of a linear transformation $T: V \to W$ is

$$\mathcal{N}(T) := \{ _ | _ \}.$$

- (4) **Theorem:** Let $T : \mathbb{R}^p \to \mathbb{R}^q$ be a linear transformation. Then there is a unique _____ matrix A such that _____ for all _____. We call A the matrix that <u>represents</u> T.
- (5) **Theorem:** The j^{th} column of the matrix representing T is _____.
- (6) **Theorem:** Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then dim $\mathcal{R}(T)$ + dim $\mathcal{N}(T) =$ _____.
- (7) **Theorem:** Let $T : \mathbb{R}^n \to \mathbb{R}^m$ and $S : \mathbb{R}^m \to \mathbb{R}^\ell$ be linear transformations. If A represents S and B represents T, then _____ represents the composition _____.
- (8) **Theorem:** Let $T : \mathbb{R}^n \to \mathbb{R}^m$ and $S : \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations. If A represents S and B represents T, then _____ represents S + T.

Similar Matrices

- (1) **Definition:** Two $n \times n$ matrices A and B are similar if _____
- (2) **[4 points]**

Theorem: If A and B are similar they have the same

- (a) _____
- (b) _____

- (d) ____
- (3) **Definition:** An $n \times n$ matrix A is <u>diagonalizable</u> if _____
- (4) **Theorem:** An $n \times n$ matrix is diagonalizable if and only if _____
- (5) **Theorem:** Let A be an $n \times n$ matrix. If A has ______ different it is diagonalizable.