Instructions. There are three parts to the exam. Part A consists of questions that require a short answer. There is no need to show your work. In Parts A and B you get 1 point per question or, for a multi-part question, 1 point for each part. Part C consists of true/false questions. Use the scantron/bubble sheet with the convention that $A=$ True and $B=$ False. You will get

- +1 for each correct answer,
- -1 for each incorrect answer, and
- 0 for no answer at all.

If I have any difficulty reading your writing I will deduct points.

Part A.

Short answer questions
(1) Let S denote the set of solutions to the equation $A \underline{x}=\underline{0}$ and T the set of solutions to the equation $A \underline{x}=\underline{b}$. Describe the relation between S and T : If $A \underline{u}=\underline{b}$, then $T=\{\ldots \mid \ldots\}$. Your answer should involve \underline{u} and S and the symbol \in and some more.

Answer: $T=\{\underline{u}+\underline{v} \mid \underline{v} \in S\}$.

Comments:

(2) Let A be an $m \times n$ matrix with columns $\underline{A}_{1}, \ldots, \underline{A}_{n}$. Express $A \underline{x}$ as a linear combination of the columns of A.

Answer: $A \underline{x}=x_{1} \underline{A}_{1}+\ldots+x_{n} \underline{A}_{n}$

Comments:

(3) Write down a 4×3 matrix A such that $A\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2 z \\ y-z \\ x-y+z \\ x-z\end{array}\right)$.

Answer: | 0 | 0 | 2 |
| :---: | :---: | :---: |
| 0 | 1 | -1 |
| 1 | -1 | 1 |
| 1 | 0 | -1 |

Comments:

(4) Let $\underline{A}_{1}, \underline{A}_{2}, \underline{A}_{3}, \underline{A}_{4}$ be the columns of a 4×4 matrix A and suppose that $2 \underline{A}_{1}+2 \underline{A}_{4}=\underline{A}_{3}-3 \underline{A}_{2}$. Write down a solution to the equation $A \underline{x}=\underline{0}$ of
the form

$$
\underline{x}=\left(\begin{array}{c}
6 \\
? \\
? \\
?
\end{array}\right)
$$

Answer:

Comments:

(5) $(3,1,1,3)^{T}$ and $(1,2,2,1)^{T}$ are solutions to the two (different!) homogeneous equations \qquad and \qquad
Answer:

Comments:

(6) $(3,1,1,3)^{T}$ and $(1,2,2,1)^{T}$ belong to the 2-dimensional subspace of \mathbb{R}^{4} that is the set of all solutions to the equations \qquad

Answer:

Comments:

(8) Find two linearly independent vectors that lie on the plane in \mathbb{R}^{4} given by the equations

$$
\begin{aligned}
& 2 x_{1}-x_{2}+x_{3}-x_{4}=0 \\
& 3 x_{1}-x_{2}+x_{3}-x_{4}=0
\end{aligned}
$$

Answer:

Comments:
(9) If $A^{T} A \underline{x}=A^{T} \underline{b}$, then \underline{x} is a \qquad .

Answer:

Comments:

(10) The matrix representing the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that rotates a vector by θ radians in the counter-clockwise direction is \qquad .

Answer:

Comments:

Part B.

Complete the definitions and Theorems.
There is a difference between theorems and definitions.
Don't write the part of the question I have already written. Just fill in the blank.
(1) Definition: A vector \underline{x} is a linear combination of $\underline{v}_{1}, \ldots, \underline{v}_{n}$ if \qquad
Answer: $\underline{x}=a_{1} \underline{v}_{1}+\cdots+a_{n} \underline{v}_{n}$ for some $a_{1}, \ldots, a_{n} \in \mathbb{R}$.
Comments: Don't say "where" where I have written "for some".
(2) Definition: The linear span of $\underline{v}_{1}, \ldots, \underline{v}_{n}$ is the set of all \qquad
Answer: linear combinations of $\underline{v}_{1}, \ldots, \underline{v}_{n}$.
Comments: Don't say "all possible". That means the same as "all". Keep your answer as simple as possible. In that spirit, there is no need to insert the word "vectors" before $\underline{v}_{1}, \ldots, \underline{v}_{n}$. It is implicit in the question that the \underline{v}_{i} 's are vectors.
(3) Definition: A set of vectors $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ is linearly independent if the only solution to the equation \qquad
Answer: $a_{1} \underline{v}_{1}+\cdots+a_{n} \underline{v}_{n}=\underline{0}$ is $a_{1}=\cdots=a_{n}=0$.
Comments: Don't say " $a_{1} \underline{v}_{1}+\cdots+a_{n} \underline{v}_{n}=\underline{0}$ is the trivial solution". Better you should make specific what you mean by the trivial solution.

One "answer" was " $A \underline{v}=\underline{0}$ is the trivial solution $\underline{v}=\underline{0}$ ". This person is confused. What is A here?
(4)

Definition: $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ is linearly dependent if \qquad $=\underline{0}$ for some

Answer: $a_{1} \underline{v}_{1}+\cdots+a_{n} \underline{v}_{n}=\underline{0}$ for some numbers a_{1}, \ldots, a_{n} that are not all zero.

Comments: It is essential that you include the phrase "not all zero".
(5) Definition: Let V be a subspace of \mathbb{R}^{n} and W a subspace of \mathbb{R}^{m}. A function $T: V \rightarrow W$ is a linear transformation if $T\left(a_{1} \underline{x}_{1}+\cdots+a_{k} \underline{x}_{k}\right)=$
\qquad for all \qquad .

[^0]Comments: Some wrote $a_{1} T\left(\underline{x}_{1}\right)+\cdots+a_{k} T\left(\underline{x}_{k}\right)$ for all $a \in \mathbb{R}$ and $\underline{x} \in V$. That leaves the reader to figure out what you really meant because there is no a and no \underline{x} mentioned in the question. There are numbers labelled a_{1}, \ldots, a_{k} and vectors labelled $\underline{x}_{1}, \ldots, \underline{x}_{k}$.
(6) Definition: The norm or length of a vector \underline{v} is \qquad .

Answer:
Comments:
(7) Definition: A set of vectors $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ is orthogonal if \qquad .

Answer:
Comments:
(8) Definition: A set of vectors $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ is orthonormal if \qquad .

Answer:

Comments:

(9) Definition: The null space or kernel and range of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are
(a) $\operatorname{ker}(T)=\{\cdots \mid \cdots\}$ and
(b) $\mathcal{R}(T)=\{\cdots \mid \cdots\}$.

Answer:
Comments:
(10) Definition: A subset W of \mathbb{R}^{n} is a subspace if it is non-empty and
(a) \qquad
(b)

Answer:
Comments:
(11) Definition: A set of vectors $\left\{\underline{v}_{1}, \ldots, \underline{v}_{d}\right\}$ is a basis for a subspace V of \mathbb{R}^{n} if \qquad
Answer:
Comments:
(12) Definition: The dimension of a subspace V of \mathbb{R}^{n} is \qquad .

Answer:

Comments:

(13) Definition: A function $f: X \rightarrow Y$ is one-to-one if \qquad .

Answer: $f(x)=f\left(x^{\prime}\right)$ if and only if $x=x^{\prime}$.
Comments: Some people wrote \underline{x}. This not a question about vectors. It is a question about arbitrary functions. For example X might be the set of leaves and Y the set of trees and f the function that sends a leaf to the tree it grew on. Or, X might be a set of people and Y might be \mathbb{R}^{3} and $f(x)$ might be (the age of x, the height of x, the weight of x).
(14) Definition: The range of a function $f: X \rightarrow Y$ is \qquad .

Answer:

Comments:

(15) Definition: A function $f: X \rightarrow Y$ is onto if \qquad .

Answer:

Comments:

(16) Definition: Functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are each other's inverse if \qquad -.

Answer:

Comments:

(17) Theorem: A function $f: X \rightarrow Y$ has an inverse if and only if \qquad .

Answer: f is one-to-one and onto.

Comments:

(18) Theorem: If $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ is a linear transformation the dimensions of $\mathcal{R}(T)$ and $\operatorname{ker}(T)$ are related by the formula \qquad -.

Answer: $\operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} \mathcal{R}(T)=p$.
Comments: Many people wrote $\operatorname{ker}(T)+\mathcal{R}(T)=p$ but this is nonsense: $\operatorname{ker}(T)$ is not a number; $\mathcal{R}(T)$ is not a number; we can add subspaces but only if they are contained in a common \mathbb{R}^{n}; here $\operatorname{ker}(T) \subset \mathbb{R}^{p}$ and $\mathcal{R}(T) \subset \mathbb{R}^{p}$. We can't add a subspace of (or vector in) \mathbb{R}^{p} to a subspace of (or vector in) \mathbb{R}^{q}.
(19) Theorem: The following conditions on an $n \times n$ matrix A are equivalent:
(a) A is invertible
(b) the equation $A \underline{x}=\underline{b}$ has \qquad
(c) the columns of A are \qquad
(d) the rows of A are \qquad
(e) $\mathcal{R}(A)=$ \qquad
(f) $\mathcal{N}(A)=$ \qquad
(g) $\operatorname{rank}(A)=$ \qquad
(h) A^{T} is
(i) $\operatorname{det}(A)$ is \qquad

Answer:

Comments:

(20) Theorem: A set of vectors is linearly dependent if and only if one of the vectors is \qquad of the others.

Answer:

Comments:

(21) Definition: Let A be an $n \times n$ matrix. We call $\lambda \in \mathbb{R}$ an eigenvalue of A if \qquad
Answer:
Comments:
(22) Definition: Let A be an $n \times n$ matrix. A non-zero vector $\underline{x} \in \mathbb{R}^{n}$ is an eigenvector for A if \qquad
Answer:

Comments:

(23) Definition: Let λ be an eigenvalue for the $n \times n$ matrix A. The λ-eigenspace for A is the set

$$
E_{\lambda}:=\left\{_\mid _\right\} .
$$

Answer:

Comments:

(24) Theorem: Let λ be an eigenvalue for A. The λ-eigenspace of A is a subspace of \mathbb{R}^{n} because it is equal to the null space of \qquad .

Answer:

Comments:

(25) Theorem: The λ-eigenspace of A is non-zero if and only of the determinant of \qquad _.

Answer:

Comments:

(26) Theorem: The eigenvalues of a matrix A are the roots of \qquad .

Answer:

Comments:

(27) Theorem: Let $\lambda_{1}, \ldots, \lambda_{r}$ be different eigenvalues for a matrix A. If $\underline{v}_{1}, \ldots, \underline{v}_{r}$ are non-zero vectors such that \underline{v}_{i} is an eigenvector for A with eigenvalue λ_{i}, then $\left\{\underline{v}_{1}, \ldots, \underline{v}_{r}\right\}$ is \qquad .

Answer:

Comments:

(28) Theorem: Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ be a linear transformation. Then there is a unique \qquad matrix A such that \qquad for all \qquad . We call A the matrix that represents T.

Answer:

Comments:

(29) Theorem: The $j^{\text {th }}$ column of the matrix representing T is \qquad .

Answer:

Comments:

(30) Theorem: Let W be a subspace of \mathbb{R}^{n} and W^{\perp} its orthogonal. Every $\underline{v} \in \mathbb{R}^{n}$ can be written in a unique way as a sum of \qquad and \qquad .

Answer:

Comments:

(31) Let W be a subspace of \mathbb{R}^{n} and $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ the orthogonal projection onto W. Let $\underline{v} \in \mathbb{R}^{n}$. How is $P(\underline{v})$ related to your answer to the previous question?

Answer:

Comments:

(32) Definition: Let A be an $m \times n$ matrix. A vector \underline{x}^{*} in \mathbb{R}^{n} is a least-squares solution to $A \underline{x}=\underline{b}$ if \qquad .

Answer:

Comments:

(33) Theorem: A vector \underline{x}^{*} in \mathbb{R}^{n} is a least-squares solution to $A \underline{x}=\underline{b}$ if and only if it is a solution to the equation \qquad _.

Answer:

Comments:

(34) Definition: An $n \times n$ matrix Q is orthogonal if \qquad .

Answer:

Comments:

(35) Theorem: The following 3 conditions on an $n \times n$ matrix Q are equivalent:
(a) Q is orthogonal;
(b) \qquad for all $\underline{x} \in \mathbb{R}^{n}$;
(c) \qquad for all $\underline{u}, \underline{v} \in \mathbb{R}^{n}$.

Answer:

Comments:

Part C.
 True or False
 Remember $+1,0$, or -1 .

(1) The range of a non-zero linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ is a subspace of \mathbb{R}^{4} whose dimension is either 1 or 2 .

True. []

Comments:

(2) The kernel of a non-zero linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ is a subspace of \mathbb{R}^{2} whose dimension is either 0 or 1 .

True. []
Comments:
(3) Let V be a 4 -dimensional subspace of \mathbb{R}^{5}. Every set of four vectors in V spans V.

False. []

Comments:

(4) Let V be a 4-dimensional subspace of \mathbb{R}^{5}. Every set of five vectors in V is linearly dependent.

True. []

Comments:

(5) Let V be a 4-dimensional subspace of \mathbb{R}^{5}. If W is a 2-dimensional subspace of \mathbb{R}^{5}, then $V \cap W \neq\{\underline{0}\}$.

True. []

Comments:

(6) Let V be a 4 -dimensional subspace of \mathbb{R}^{5}. There is a basis for \mathbb{R}^{5} consisting of 4 vectors in V and one vector not in V.

True. []
Comments:
(7) If V is a subspace of \mathbb{R}^{n}, then $V+V^{\perp}=\mathbb{R}^{n}$.

True. []

Comments:

(8) A 3-dimensional subspace of \mathbb{R}^{5} contains infinitely many different subspaces of \mathbb{R}^{5}.

True. []
Comments:
(9) A 3-dimensional subspace of \mathbb{R}^{5} has infinitely many different bases.

True. []

Comments:

(10) If A and B are $m \times n$ matrices such that B can be obtained from A by elementary row operations, then A can also be obtained from B by elementary row operations.

True. []

Comments:

(11) If $\underline{u}, \underline{v}$, and \underline{w}, are any vectors in \mathbb{R}^{4}, then $\{3 \underline{u}-2 \underline{v}, 2 \underline{v}-4 \underline{w}, 4 \underline{w}-3 \underline{u}\}$ is linearly dependent.

True. []
Comments:
(12) Every set of orthogonal vectors in \mathbb{R}^{n} is linearly independent.

True. []

Comments:

(13) Let A be an $m \times n$ matrix. If $A^{T} A=I$, then the columns of A form an orthonormal set.

True. []
Comments:
(14) If $A=B C$, then every solution to $C \underline{x}=\underline{0}$ is a solution to $A \underline{x}=\underline{0}$.

True. []

Comments:

(15) Let A be an $m \times n$ matrix and B an $n \times p$ matrix. If $C=A B$, then $\left\{C \underline{x} \mid \underline{x} \in \mathbb{R}^{p}\right\} \subset\left\{A \underline{w} \mid \underline{w} \in \mathbb{R}^{n}\right\}$.

True. []

Comments:

(16) The linear span of the vectors $(4,0,0,1),(0,3,2,0)$ and $(4,3,2,1)$ is the 3 -plane $x_{1}-2 x_{2}+3 x_{3}-4 x_{4}=0$ in \mathbb{R}^{4}.

False. []

Comments:

(17) The linear span of the vectors $(4,0,0,1),(0,2,0,-1)$ and $(4,3,2,1)$ is the 3 -plane $x_{1}-2 x_{2}+3 x_{3}-4 x_{4}=0$ in \mathbb{R}^{4}.

True. []

Comments:

(18) Let $\underline{u}, \underline{v}$, and \underline{w} be vectors in \mathbb{R}^{n}. Then $\operatorname{span}\{\underline{u}, \underline{v}, \underline{w}\}=\operatorname{span}\{\underline{u}+2 \underline{v}, \underline{u}+$ $3 \underline{v}, \underline{u}+\underline{v}+\underline{w}\}$.

True. []

Comments:

(19) The set $\left.\left\{x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}+x_{3}=x_{2}-x_{4}=0\right\}$ is a subspace of \mathbb{R}^{4}.

True. []
Comments:
(20) The set $\left.\left\{x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}+x_{3}-x_{2}+x_{4}=1\right\}$ is a subspace of \mathbb{R}^{4}.

False. []

Comments:

(21) Every subspace of \mathbb{R}^{n} has an orthogonal basis.

True. []

Comments:

(22) Every subspace of \mathbb{R}^{n} has an orthonormal basis.

True. []
Comments:
(23) $\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{l}5 \\ 6 \\ 7 \\ 8\end{array}\right),\left(\begin{array}{c}9 \\ 10 \\ 11 \\ 12\end{array}\right)\right\}=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right)\right\}$.

True. []

Comments:

(24) Every subset of a linearly independent set is linearly independent.

True. []
Comments:
(25) The dimension of a subspace is the number of elements in it.

False. []

Comments:

(26) Let X and Y be subsets of \mathbb{R}^{n}. If $X \subset Y$ and X is linearly dependent, then Y is linearly dependent.

True. []

Comments:

(27) The row reduced echelon form of a square matrix is the identity if and only if the matrix is invertible.

True. []
Comments:
(28) The row and column spaces of a matrix always have the same dimension.

True. []

Comments:

(29) If A and B are $m \times n$ matrices such that B can be obtained from A by elementary row operations, then A can also be obtained from B by elementary row operations.

True. []

Comments:

(30) For all matrices A and $B, \mathcal{R}(A B) \subset \mathcal{R}(A)$

True. []

Comments:

(31) Every 5×5 matrix has an eigenvector. (Hint: think of the graph of its characteristic polynomial.)

True. []

Comments:

(32) Every 6×6 matrix has an eigenvector.

False. []

Comments:

(33) The vectors $(2,2,-4,3,0)$ and $(0,0,0,0,1)$ are a basis for the subspace $x_{1}-x_{2}=2 x_{2}+x_{3}=3 x_{1}-2 x_{4}=0$ of \mathbb{R}^{5}.

True. []

Comments:

(34) The vectors $(1,1),(1,-2),(2,-3)$ are a basis for the subspace of \mathbb{R}^{4} that is the set of solutions to the equations $x_{1}-x_{2}=2 x_{2}+x_{3}=3 x_{1}-2 x_{4}=0$.

False. []

Comments:

(35) $\left\{\underline{x} \in \mathbb{R}^{4} \mid x_{1}-x_{2}=x_{3}+x_{4}\right\}$ is a subspace of \mathbb{R}^{4}.

True. []

Comments:

(36) $\left\{\underline{x} \in \mathbb{R}^{5} \mid x_{1}-x_{2}=x_{3}+x_{4}=1\right\}$ is a subspace of \mathbb{R}^{5}.

False. []

Comments:

(37) The set $\left\{\underline{x} \in \mathbb{R}^{4} \mid x_{1}=x_{2}\right\} \cup\left\{\underline{x} \in \mathbb{R}^{4} \mid x_{3}=x_{4}\right\}$ is a subspace of \mathbb{R}^{4}.

False. []

Comments:

(38) The set $\left\{\underline{x} \in \mathbb{R}^{4} \mid x_{1}=x_{2}\right\} \cap\left\{\underline{x} \in \mathbb{R}^{4} \mid x_{3}=x_{4}\right\}$ is a subspace of \mathbb{R}^{4}.

True. []

Comments:

(39) The equation $A \underline{x}=\underline{b}$ has a solution if and only if \underline{b} is linear combination of the columns of \bar{A}.

True. []

Comments:

(40) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}y-z \\ z-x \\ x-y\end{array}\right)$. The kernel (null space) of T is $\left\{\left.\left(\begin{array}{c}t \\ t \\ t\end{array}\right) \right\rvert\, t \in \mathbb{R}\right\}$.

True. []

Comments:

(41) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be the linear transformation $T\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}x_{1} \\ 0 \\ x_{2} \\ x_{2}\end{array}\right)$. The vectors $\left(\begin{array}{c}-2 \\ 0 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$ are a basis for the range of T.

True. []

Comments:

(42) There is a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{6}$ such that $\mathcal{R}(T)=\mathcal{N}(T)$.

False. []

Comments:

(43) There is a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{6}$ such that $\operatorname{dim} \mathcal{R}(T)=$ $\operatorname{dim} \mathcal{N}(T)$.

True. []

Comments:

(44) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{1}, x_{2}, x_{3}\right)$. The null space of T is $\{(a, 0,0,0) \mid a \in \mathbb{R}\}$.

False. []

Comments:

(45) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{1}, x_{2}, x_{3}\right)$. The null space of T is $\left\{\left(x_{4}, 0,0,0\right) \mid x_{4}\right.$ is a real number $\}$.

False. []

Comments:

(46) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T\left(x_{1}, x_{2}\right)=\left(x_{2}, 0\right)$. The null space of T is $\left\{\left(x_{3}, 0\right) \mid x_{3} \in \mathbb{R}\right\}$.

False. []

Comments:

(47) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T\left(x_{1}, x_{2}\right)=\left(x_{2}, 0\right)$. Then $\{(5,0)\}$ is a basis for the null space of T.

True. []

Comments:

(48) The set the set $\{(-2,0,0,0),(0,0,1,1)\}$ is a basis for the kernel of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, 0, x_{2}, x_{2}\right)$.

False. []

Comments:

(49) The set $\{(2,0,0,0),(0,0,3,3)\}$ is a basis for the range of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ given by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, 0, x_{2}, x_{2}\right)$.

True. []

Comments:

(50) If V and W are subspaces of \mathbb{R}^{n} so is $\{\underline{v}+\underline{w} \mid \underline{v} \in V$ and $\underline{w} \in W\}$.

True. []

Comments:

(51) If V and W are subspaces of \mathbb{R}^{n} so is $\{2 \underline{v}-3 \underline{w} \mid \underline{v} \in V$ and $\underline{w} \in W\}$.

True. []

Comments:

(52) Every non-zero linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{1}$ is onto.

True. []

Comments:

(53) There is a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ that is onto.

True. []

Comments:

(54) There is a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ that is one-to-one.

False. []

Comments:

(55) Let \underline{u} and \underline{v} be linearly independent vectors that belong to the subspace of \mathbb{R}^{4} consisting of solutions to the homogeneous system of equations

$$
\begin{aligned}
& 4 x_{1}-3 x_{2}+2 x_{3}-x_{4}=0 \\
& x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0
\end{aligned}
$$

The vector $(1,2,3,4)$ is a linear combination of \underline{u} and \underline{v}.
False. []

Comments:

(56) Let \underline{u} and \underline{v} be linearly independent vectors that belong to the subspace of \mathbb{R}^{4} consisting of solutions to the homogeneous system of equations

$$
\begin{aligned}
& 4 x_{1}-3 x_{2}+2 x_{3}-x_{4}=0 \\
& 2 x_{1}+3 x_{2}-4 x_{3}+x_{4}=0
\end{aligned}
$$

The vector $(1,2,3,4)$ is a linear combination of \underline{u} and \underline{v}.
True. []

Comments:

(57) If A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

True. []

Comments:

(58) If A and B are $n \times n$ matrices, then $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.

False. []

Comments:

In the next 4 questions, A is a 4×4 matrix whose columns $\underline{A}_{1}, \underline{A}_{2}, \underline{A}_{3}, \underline{A}_{4}$ have the property that $\underline{A}_{1}+\underline{A}_{2}=\underline{A}_{3}+\underline{A}_{4}$.
(59) The rows of A are linearly dependent.

True. []

Comments:

(60) The rank of A must be 3 .

False. []

Comments:

(61) $A\left(\begin{array}{l}2 \\ 3 \\ 1 \\ 4\end{array}\right)=\underline{0}$.

True. []
Comments:
(62) $A\left(\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right)=\underline{0}$.

True. []
Comments:

[^0]: Answer: $a_{1} T\left(\underline{x}_{1}\right)+\cdots+a_{k} T\left(\underline{x}_{k}\right)$ for all $a_{1}, \ldots, a_{k} \in \mathbb{R}$ and all $\underline{x}_{1}, \ldots, \underline{x}_{k} \in$ V.

