Math 308

Final

Instructions. There are three parts to the exam. Part A consists of questions that require a short answer. There is no need to show your work. In Parts A and B you get 1 point per question or, for a multi-part question, 1 point for each part. Part C consists of true/false questions. Use the scantron/bubble sheet with the convention that A =True and B =False. You will get

- $\bullet~+1$ for each correct answer,
- -1 for each incorrect answer, and
- 0 for no answer at all.

If I have any difficulty reading your writing I will deduct points.

Part A.

Short answer questions

(1) Let S denote the set of solutions to the equation $A\underline{x} = \underline{0}$ and T the set of solutions to the equation $A\underline{x} = \underline{b}$. Describe the relation between S and T: If $A\underline{u} = \underline{b}$, then $T = \{\ldots, \ldots\}$. Your answer should involve \underline{u} and S and the symbol \in and some more.

Answer: $T = \{ \underline{u} + \underline{v} \mid \underline{v} \in S \}.$

Comments:

(2) Let A be an $m \times n$ matrix with columns $\underline{A}_1, \ldots, \underline{A}_n$. Express $A\underline{x}$ as a linear combination of the columns of A.

Answer: $A\underline{x} = x_1\underline{A}_1 + \ldots + x_n\underline{A}_n$

Comments:

(3) Write down a 4 × 3 matrix A such that
$$A\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 2z\\ y-z\\ x-y+z\\ x-z \end{pmatrix}$$
.

Answer:

$$\begin{array}{cccc} 0 & 0 & 2 \\ 0 & 1 & -1 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{array}$$

Comments:

(4) Let $\underline{A}_1, \underline{A}_2, \underline{A}_3, \underline{A}_4$ be the columns of a 4×4 matrix A and suppose that $2\underline{A}_1 + 2\underline{A}_4 = \underline{A}_3 - 3\underline{A}_2$. Write down a solution to the equation $A\underline{x} = \underline{0}$ of

the form

$$\underline{x} = \begin{pmatrix} 6\\ ?\\ ?\\ ?\\ ? \end{pmatrix}$$

Answer:

Comments:

(5) $(3,1,1,3)^T$ and $(1,2,2,1)^T$ are solutions to the two (different!) homogeneous equations _____ and _____

Answer:

Comments:

- (6) $(3,1,1,3)^T$ and $(1,2,2,1)^T$ belong to the 2-dimensional subspace of \mathbb{R}^4 that is the set of all solutions to the equations _____(7) Find a basis for the line $x_1 + x_2 = x_2 + x_3 = 3x_1 - 2x_4 = 0$ in \mathbb{R}^4 .

Answer:

Comments:

(8) Find two linearly independent vectors that lie on the plane in \mathbb{R}^4 given by the equations

$$2x_1 - x_2 + x_3 - x_4 = 0$$

$$3x_1 - x_2 + x_3 - x_4 = 0$$

Answer:

Comments:

(9) If $A^T A \underline{x} = A^T \underline{b}$, then \underline{x} is a ______.

Answer:

Comments:

(10) The matrix representing the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that rotates a vector by θ radians in the counter-clockwise direction is _____.

Answer:

Part B.

Complete the definitions and Theorems.

There is a difference between theorems and definitions. Don't write the part of the question I have already written. Just fill in the blank.

(1) **Definition:** A vector \underline{x} is a <u>linear combination</u> of $\underline{v}_1, \ldots, \underline{v}_n$ if _____

Answer: $\underline{x} = a_1 \underline{v}_1 + \dots + a_n \underline{v}_n$ for some $a_1, \dots, a_n \in \mathbb{R}$.

Comments: Don't say "where" where I have written "for some".

(2) **Definition:** The linear span of $\underline{v}_1, \ldots, \underline{v}_n$ is the set of all _____

Answer: linear combinations of $\underline{v}_1, \ldots, \underline{v}_n$.

Comments: Don't say "all possible". That means the same as "all". Keep your answer as simple as possible. In that spirit, there is no need to insert the word "vectors" before $\underline{v}_1, \ldots, \underline{v}_n$. It is implicit in the question that the \underline{v}_i 's are vectors.

(3) **Definition:** A set of vectors $\{\underline{v}_1, \ldots, \underline{v}_n\}$ is <u>linearly independent</u> if the only solution to the equation ______

Answer: $a_1\underline{v}_1 + \cdots + a_n\underline{v}_n = \underline{0}$ is $a_1 = \cdots = a_n = 0$.

Comments: Don't say " $a_1\underline{v}_1 + \cdots + a_n\underline{v}_n = \underline{0}$ is the trivial solution". Better you should make specific what you mean by the trivial solution.

One "answer" was " $A\underline{v}=\underline{0}$ is the trivial solution $\underline{v}=\underline{0}$ ". This person is confused. What is A here?

(4) **Definition:** $\{\underline{v}_1, \ldots, \underline{v}_n\}$ is linearly dependent if _____ = 0 for some

Answer: $a_1\underline{v}_1 + \cdots + a_n\underline{v}_n = \underline{0}$ for some numbers a_1, \ldots, a_n that are not all zero.

Comments: It is essential that you include the phrase "not all zero".

(5) **Definition:** Let V be a subspace of \mathbb{R}^n and W a subspace of \mathbb{R}^m . A function $T: V \to W$ is a <u>linear transformation</u> if $T(a_1\underline{x}_1 + \cdots + a_k\underline{x}_k) =$ ______ for all _____.

Answer: $a_1T(\underline{x}_1) + \cdots + a_kT(\underline{x}_k)$ for all $a_1, \ldots, a_k \in \mathbb{R}$ and all $\underline{x}_1, \ldots, \underline{x}_k \in V$.

Comments: Some wrote $a_1T(\underline{x}_1) + \cdots + a_kT(\underline{x}_k)$ for all $a \in \mathbb{R}$ and $\underline{x} \in V$. That leaves the reader to figure out what you really meant because there is no a and no \underline{x} mentioned in the question. There are numbers labelled a_1, \ldots, a_k and vectors labelled $\underline{x}_1, \ldots, \underline{x}_k$.

(6) **Definition:** The <u>norm</u> or length of a vector \underline{v} is _____.

Answer:

Comments:

(7) **Definition:** A set of vectors $\{\underline{v}_1, \ldots, \underline{v}_n\}$ is orthogonal if _____.

Answer:

Comments:

(8) **Definition:** A set of vectors $\{\underline{v}_1, \ldots, \underline{v}_n\}$ is <u>orthonormal</u> if _____.

Answer:

Comments:

- (9) **Definition:** The <u>null space</u> or <u>kernel</u> and <u>range</u> of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ are
 - (a) $\ker(T) = \{\cdots \mid \cdots\}$ and
 - (b) $\mathcal{R}(T) = \{\cdots \mid \cdots \}.$

Answer:

Comments:

(10) Definition: A subset W of Rⁿ is a <u>subspace</u> if it is non-empty and
(a) _________
(b) ________

Answer:

Comments:

(11) **Definition:** A set of vectors $\{\underline{v}_1, \ldots, \underline{v}_d\}$ is a <u>basis</u> for a subspace V of \mathbb{R}^n if ______

Answer:

Comments:

(12) **Definition:** The <u>dimension</u> of a subspace V of \mathbb{R}^n is _____.

Answer:

Comments:

(13) **Definition:** A function $f: X \to Y$ is <u>one-to-one</u> if _____.

Answer: f(x) = f(x') if and only if x = x'.

Comments: Some people wrote \underline{x} . This *not* a question about vectors. It is a question about arbitrary functions. For example X might be the set of leaves and Y the set of trees and f the function that sends a leaf to the tree it grew on. Or, X might be a set of people and Y might be \mathbb{R}^3 and f(x) might be (the age of x, the height of x, the weight of x).

(14) **Definition:** The <u>range</u> of a function $f: X \to Y$ is _____.

Answer:

Comments:

(15) **Definition:** A function $f: X \to Y$ is <u>onto</u> if _____.

Answer:

Comments:

(16) **Definition:** Functions $f : X \to Y$ and $g : Y \to X$ are each other's <u>inverse</u> if ______.

Answer:

Comments:

(17) **Theorem:** A function $f: X \to Y$ has an inverse if and only if _____.

Answer: f is one-to-one and onto.

Comments:

(18) **Theorem:** If $T : \mathbb{R}^p \to \mathbb{R}^q$ is a linear transformation the dimensions of $\mathcal{R}(T)$ and ker(T) are related by the formula _____.

Answer: dim ker(T) + dim $\mathcal{R}(T) = p$.

Comments: Many people wrote $\ker(T) + \mathcal{R}(T) = p$ but this is nonsense: $\ker(T)$ is not a number; $\mathcal{R}(T)$ is not a number; we can add subspaces *but only if they are contained in a common* \mathbb{R}^n ; here $\ker(T) \subset \mathbb{R}^p$ and $\mathcal{R}(T) \subset \mathbb{R}^p$. We can't add a subspace of (or vector in) \mathbb{R}^p to a subspace of (or vector in) \mathbb{R}^q .

- (19) **Theorem:** The following conditions on an $n \times n$ matrix A are equivalent:
 - (a) A is invertible
 - (b) the equation $A\underline{x} = \underline{b}$ has _____
 - (c) the columns of A are _____
 - (d) the rows of A are _____
 - (e) $\mathcal{R}(A) =$ _____

(f) $\mathcal{N}(A) =$ _____ (g) rank(A) = _____ (h) A^T is _____ (i) det(A) is _____

Answer:

Comments:

(20) **Theorem:** A set of vectors is linearly dependent if and only if one of the vectors is ______ of the others.

Answer:

Comments:

(21) **Definition:** Let A be an $n \times n$ matrix. We call $\lambda \in \mathbb{R}$ an <u>eigenvalue</u> of A if ______

Answer:

Comments:

(22) **Definition:** Let A be an $n \times n$ matrix. A non-zero vector $\underline{x} \in \mathbb{R}^n$ is an <u>eigenvector</u> for A if _____

Answer:

Comments:

(23) **Definition:** Let λ be an eigenvalue for the $n \times n$ matrix A. The $\underline{\lambda}$ -eigenspace for A is the set

 $E_{\lambda} := \{ _ | _ \}.$

Answer:

Comments:

(24) **Theorem:** Let λ be an eigenvalue for A. The λ -eigenspace of A is a subspace of \mathbb{R}^n because it is equal to the null space of _____.

Answer:

Comments:

(25) **Theorem:** The λ -eigenspace of A is non-zero if and only of the determinant of _____.

Answer:

Comments:

(26) **Theorem:** The eigenvalues of a matrix A are the roots of _____

Answer:

Comments:

(27) **Theorem:** Let $\lambda_1, \ldots, \lambda_r$ be different eigenvalues for a matrix A. If $\underline{v}_1, \ldots, \underline{v}_r$ are non-zero vectors such that \underline{v}_i is an eigenvector for A with eigenvalue λ_i , then $\{\underline{v}_1, \ldots, \underline{v}_r\}$ is _____.

Answer:

Comments:

(28) **Theorem:** Let $T : \mathbb{R}^p \to \mathbb{R}^q$ be a linear transformation. Then there is a unique ______ matrix A such that ______ for all ______. We call A the matrix that <u>represents</u> T.

Answer:

Comments:

(29) **Theorem:** The j^{th} column of the matrix representing T is _____.

Answer:

Comments:

(30) **Theorem:** Let W be a subspace of \mathbb{R}^n and W^{\perp} its orthogonal. Every $\underline{v} \in \mathbb{R}^n$ can be written in a unique way as a sum of _____ and ____.

Answer:

Comments:

(31) Let W be a subspace of \mathbb{R}^n and $P : \mathbb{R}^n \to \mathbb{R}^n$ the orthogonal projection onto W. Let $\underline{v} \in \mathbb{R}^n$. How is $P(\underline{v})$ related to your answer to the previous question?

Answer:

Comments:

(32) **Definition:** Let A be an $m \times n$ matrix. A vector \underline{x}^* in \mathbb{R}^n is a least-squares solution to $A\underline{x} = \underline{b}$ if _____.

Answer:

Comments:

(33) **Theorem:** A vector \underline{x}^* in \mathbb{R}^n is a <u>least-squares</u> solution to $A\underline{x} = \underline{b}$ if and only if it is a solution to the equation _____.

Answer:

Comments:

(34) **Definition:** An $n \times n$ matrix Q is orthogonal if _____.

Answer:

Comments:

- (35) **Theorem:** The following 3 conditions on an $n \times n$ matrix Q are equivalent:
 - (a) Q is orthogonal;

 - (b) _____ for all $\underline{x} \in \mathbb{R}^n$; (c) _____ for all $\underline{u}, \underline{v} \in \mathbb{R}^n$.

Answer:

Part C.

True or False

- Remember +1, 0, or -1.
- (1) The range of a non-zero linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^4$ is a subspace of \mathbb{R}^4 whose dimension is either 1 or 2.

True. []

Comments:

(2) The kernel of a non-zero linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^4$ is a subspace of \mathbb{R}^2 whose dimension is either 0 or 1.

True. []

Comments:

(3) Let V be a 4-dimensional subspace of \mathbb{R}^5 . Every set of four vectors in V spans V.

False. []

Comments:

(4) Let V be a 4-dimensional subspace of \mathbb{R}^5 . Every set of five vectors in V is linearly dependent.

True. []

Comments:

(5) Let V be a 4-dimensional subspace of \mathbb{R}^5 . If W is a 2-dimensional subspace of \mathbb{R}^5 , then $V \cap W \neq \{\underline{0}\}$.

True. []

Comments:

(6) Let V be a 4-dimensional subspace of \mathbb{R}^5 . There is a basis for \mathbb{R}^5 consisting of 4 vectors in V and one vector not in V.

True. []

Comments:

(7) If V is a subspace of \mathbb{R}^n , then $V + V^{\perp} = \mathbb{R}^n$.

True. []

(8) A 3-dimensional subspace of \mathbb{R}^5 contains infinitely many different subspaces of $\mathbb{R}^5.$

True. []

Comments:

(9) A 3-dimensional subspace of \mathbb{R}^5 has infinitely many different bases.

True. []

Comments:

(10) If A and B are $m \times n$ matrices such that B can be obtained from A by elementary row operations, then A can also be obtained from B by elementary row operations.

True. []

Comments:

(11) If \underline{u} , \underline{v} , and \underline{w} , are any vectors in \mathbb{R}^4 , then $\{3\underline{u} - 2\underline{v}, 2\underline{v} - 4\underline{w}, 4\underline{w} - 3\underline{u}\}$ is linearly dependent.

True. []

Comments:

(12) Every set of orthogonal vectors in \mathbb{R}^n is linearly independent.

True. []

Comments:

(13) Let A be an $m \times n$ matrix. If $A^T A = I$, then the columns of A form an orthonormal set.

True. []

Comments:

(14) If A = BC, then every solution to $C\underline{x} = \underline{0}$ is a solution to $A\underline{x} = \underline{0}$.

True. []

Comments:

(15) Let A be an $m \times n$ matrix and B an $n \times p$ matrix. If C = AB, then $\{C\underline{x} \mid \underline{x} \in \mathbb{R}^p\} \subset \{A\underline{w} \mid \underline{w} \in \mathbb{R}^n\}.$

Comments:

(16) The linear span of the vectors (4, 0, 0, 1), (0, 3, 2, 0) and (4, 3, 2, 1) is the 3-plane $x_1 - 2x_2 + 3x_3 - 4x_4 = 0$ in \mathbb{R}^4 .

False. []

Comments:

(17) The linear span of the vectors (4, 0, 0, 1), (0, 2, 0, -1) and (4, 3, 2, 1) is the 3-plane $x_1 - 2x_2 + 3x_3 - 4x_4 = 0$ in \mathbb{R}^4 .

True. []

Comments:

(18) Let $\underline{u}, \underline{v}$, and \underline{w} be vectors in \mathbb{R}^n . Then $\operatorname{span}\{\underline{u}, \underline{v}, \underline{w}\} = \operatorname{span}\{\underline{u} + 2\underline{v}, \underline{u} + 3\underline{v}, \underline{u} + \underline{v} + \underline{w}\}.$

True. []

Comments:

(19) The set $\{x_1, x_2, x_3, x_4\} \mid x_1 + x_3 = x_2 - x_4 = 0\}$ is a subspace of \mathbb{R}^4 .

True. []

Comments:

(20) The set $\{x_1, x_2, x_3, x_4\} \mid x_1 + x_3 - x_2 + x_4 = 1\}$ is a subspace of \mathbb{R}^4 .

False. []

Comments:

(21) Every subspace of \mathbb{R}^n has an orthogonal basis.

True. []

Comments:

(22) Every subspace of \mathbb{R}^n has an orthonormal basis.

True. []

(23)
$$\operatorname{span}\left\{ \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 5\\6\\7\\8 \end{pmatrix}, \begin{pmatrix} 9\\10\\11\\12 \end{pmatrix} \right\} = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\2\\3 \end{pmatrix} \right\}$$

Comments:

(24) Every subset of a linearly independent set is linearly independent.

True. []

Comments:

(25) The dimension of a subspace is the number of elements in it.

False. []

Comments:

(26) Let X and Y be subsets of \mathbb{R}^n . If $X \subset Y$ and X is linearly dependent, then Y is linearly dependent.

True. []

Comments:

(27) The row reduced echelon form of a square matrix is the identity if and only if the matrix is invertible.

True. []

Comments:

(28) The row and column spaces of a matrix always have the same dimension.

True. []

Comments:

(29) If A and B are $m \times n$ matrices such that B can be obtained from A by elementary row operations, then A can also be obtained from B by elementary row operations.

True. []

Comments:

(30) For all matrices A and B, $\mathcal{R}(AB) \subset \mathcal{R}(A)$

Comments:

(31) Every 5×5 matrix has an eigenvector. (Hint: think of the graph of its characteristic polynomial.)

True. []

Comments:

(32) Every 6×6 matrix has an eigenvector.

False. []

Comments:

(33) The vectors (2, 2, -4, 3, 0) and (0, 0, 0, 0, 1) are a basis for the subspace $x_1 - x_2 = 2x_2 + x_3 = 3x_1 - 2x_4 = 0$ of \mathbb{R}^5 .

True. []

Comments:

(34) The vectors (1,1), (1,-2), (2,-3) are a basis for the subspace of \mathbb{R}^4 that is the set of solutions to the equations $x_1 - x_2 = 2x_2 + x_3 = 3x_1 - 2x_4 = 0$.

False. []

Comments:

(35) $\{\underline{x} \in \mathbb{R}^4 \mid x_1 - x_2 = x_3 + x_4\}$ is a subspace of \mathbb{R}^4 .

True. []

Comments:

(36) $\{\underline{x} \in \mathbb{R}^5 \mid x_1 - x_2 = x_3 + x_4 = 1\}$ is a subspace of \mathbb{R}^5 .

False. []

Comments:

(37) The set $\{\underline{x} \in \mathbb{R}^4 \mid x_1 = x_2\} \cup \{\underline{x} \in \mathbb{R}^4 \mid x_3 = x_4\}$ is a subspace of \mathbb{R}^4 .

False. []

Comments:

(38) The set $\{\underline{x} \in \mathbb{R}^4 \mid x_1 = x_2\} \cap \{\underline{x} \in \mathbb{R}^4 \mid x_3 = x_4\}$ is a subspace of \mathbb{R}^4 .

Comments:

(39) The equation $A\underline{x} = \underline{b}$ has a solution if and only if \underline{b} is linear combination of the columns of A.

True. []

Comments:

(40) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation $T\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} y-z\\ z-x\\ x-y \end{pmatrix}$. The kernel (null space) of T is $\left\{ \begin{pmatrix} t\\ t\\ t \end{pmatrix} \mid t \in \mathbb{R} \right\}$.

True. []

Comments:

(41) Let
$$T : \mathbb{R}^3 \to \mathbb{R}^4$$
 be the linear transformation $T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ 0 \\ x_2 \\ x_2 \end{pmatrix}$. The $\begin{pmatrix} -2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

vectors
$$\begin{pmatrix} 2\\0\\0\\0 \end{pmatrix}$$
 and $\begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$ are a basis for the range of T .

True. []

Comments:

(42) There is a linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^6$ such that $\mathcal{R}(T) = \mathcal{N}(T)$.

False. []

Comments:

(43) There is a linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^6$ such that $\dim \mathcal{R}(T) = \dim \mathcal{N}(T)$.

True. []

Comments:

(44) Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation $T(x_1, x_2, x_3, x_4) = (0, x_1, x_2, x_3)$. The null space of T is $\{(a, 0, 0, 0) \mid a \in \mathbb{R}\}$. False. []

Comments:

(45) Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation $T(x_1, x_2, x_3, x_4) = (0, x_1, x_2, x_3)$. The null space of T is $\{(x_4, 0, 0, 0) \mid x_4 \text{ is a real number}\}$.

False. []

Comments:

(46) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation $T(x_1, x_2) = (x_2, 0)$. The null space of T is $\{(x_3, 0) \mid x_3 \in \mathbb{R}\}$.

False. []

Comments:

(47) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation $T(x_1, x_2) = (x_2, 0)$. Then $\{(5, 0)\}$ is a basis for the null space of T.

True. []

Comments:

(48) The set the set $\{(-2,0,0,0), (0,0,1,1)\}$ is a basis for the kernel of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ defined by $T(x_1, x_2, x_3) = (x_1, 0, x_2, x_2)$.

False. []

Comments:

(49) The set $\{(2,0,0,0), (0,0,3,3)\}$ is a basis for the range of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ given by $T(x_1, x_2, x_3) = (x_1, 0, x_2, x_2)$.

True. []

Comments:

(50) If V and W are subspaces of \mathbb{R}^n so is $\{\underline{v} + \underline{w} \mid \underline{v} \in V \text{ and } \underline{w} \in W\}.$

True. []

Comments:

(51) If V and W are subspaces of \mathbb{R}^n so is $\{2\underline{v} - 3\underline{w} \mid \underline{v} \in V \text{ and } \underline{w} \in W\}$.

True. []

(52) Every non-zero linear transformation $T : \mathbb{R}^5 \to \mathbb{R}^1$ is onto.

True. []

Comments:

(53) There is a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ that is onto.

True. []

Comments:

(54) There is a linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^3$ that is one-to-one.

False. []

Comments:

(55) Let \underline{u} and \underline{v} be linearly independent vectors that belong to the subspace of \mathbb{R}^4 consisting of solutions to the homogeneous system of equations

$$4x_1 - 3x_2 + 2x_3 - x_4 = 0$$

$$x_1 + 2x_2 + 3x_3 + 4x_4 = 0$$

The vector (1, 2, 3, 4) is a linear combination of \underline{u} and \underline{v} .

False. []

Comments:

(56) Let \underline{u} and \underline{v} be linearly independent vectors that belong to the subspace of \mathbb{R}^4 consisting of solutions to the homogeneous system of equations

$$4x_1 - 3x_2 + 2x_3 - x_4 = 0$$

$$2x_1 + 3x_2 - 4x_3 + x_4 = 0$$

The vector (1, 2, 3, 4) is a linear combination of \underline{u} and \underline{v} .

True. []

Comments:

(57) If A and B are $n \times n$ matrices, then $\det(AB) = \det(A) \det(B)$.

True. []

Comments:

(58) If A and B are $n \times n$ matrices, then $\det(A + B) = \det(A) + \det(B)$.

False. []

Comments:

In the next 4 questions, A is a 4×4 matrix whose columns $\underline{A}_1, \underline{A}_2, \underline{A}_3, \underline{A}_4$ have the property that $\underline{A}_1 + \underline{A}_2 = \underline{A}_3 + \underline{A}_4$. (59) The rows of A are linearly dependent.

True. []

Comments:

(60) The rank of A must be 3.

False. []

Comments:

(61)
$$A\begin{pmatrix}2\\3\\1\\4\end{pmatrix} = \underline{0}.$$

True. []

Comments:

(62)
$$A \begin{pmatrix} 1\\ 1\\ -1\\ -1 \end{pmatrix} = \underline{0}.$$

True. []