Instructions. No need to show your work. In Parts A and B you get 1 point per question or 1 point for each part of a multi-part question. Part C: use the scantron/bubble sheet with $A=$ True and $B=$ False: for Part C you will get $\bullet+1$ for each correct answer, •-1 for each incorrect answer, and $\bullet 0$ for no answer at all.

Part A.

(1) If you know a single solution, \underline{w} say, to the equation $A \underline{x}=\underline{b}$ and all solutions to the equation $A \underline{x}=\underline{0}$, then the set of all solutions to $A \underline{x}=\underline{b}$ is $\{\ldots \mid \ldots$.$\} .$
(2) [2 points] If $A\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$ and the null space of A is spanned by $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ find two more solutions to the equation $A \underline{x}=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$.
(3) Write $B\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ as a linear combination of the columns $\underline{B}_{1}, \ldots, \underline{B}_{n}$ of B.
(4) If $A\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)=\left(\begin{array}{l}4 \\ 3 \\ 2 \\ 1\end{array}\right)$, then $2 \underline{A}_{1}+4 \underline{A}_{2}+6 \underline{A}_{3}+8 \underline{A}_{4}=$.
(5) What matrix represents the linear transformation $T\left(\begin{array}{c}w \\ x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}w+x \\ x+y \\ y+z \\ z+w\end{array}\right)$.
(6) Give a basis for the kernel of the linear transformation in Question 5.
(7) Give a basis for the range of the linear transformation in Question 5.
(8) If $A\left(\begin{array}{c}4 \\ 3 \\ 2 \\ -1\end{array}\right)=\underline{0}$, the columns $\underline{A}_{1}, \ldots, \underline{A}_{4}$ of A are linearly dependent because $\quad \underline{A}_{4}=$ \qquad
(9) The vectors $\left(1,1, \overline{1,3)^{T}}\right.$ and $(3,1,1,1)^{T}$ are a basis for the set of solutions to the homogeneous equations \qquad and \qquad
(10) The vectors $(1,1,1,3)^{T}$ and $\left(\overline{3,1,1,1)^{T}}\right.$ are a basis for the range of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ given by $T\binom{x}{y}=\left(\begin{array}{l}? \\ ? \\ ? \\ ?\end{array}\right)$.
(11) The vectors $(1,1,1,3)^{T}$ and $(3,1,1,1)^{T}$ are a basis for the kernel (null space) of the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ given by $T\left(\begin{array}{c}w \\ x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}? \\ ? \\ ?\end{array}\right)$.
(12) Find a basis for the 2-plane $x_{1}+x_{2}-x_{3}=x_{2}+x_{3}-x_{4}=0$ in \mathbb{R}^{4}.
(13) Give the equation of a 3 -plane in \mathbb{R}^{4} that contains the 2-plane in question 12.
(14) The matrix representing the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that rotates a vector by θ radians in the counter-clockwise direction is \qquad _.
(15) What is the characteristic polynomial of the matrix $\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$?
(16) [2 points] What are the eigenvalues of the matrix in question 15 ?
(17) [2 points] Find linearly independent eigenvectors for the matrix in question 15.
(18) [2 points] Give a precise description of the set of all solutions (a, b, c, d, e) to the system of linear equations $a+2 c+e=b+3 c+d+e=0$.

Part B.

Complete the definitions and Theorems.
There is a difference between theorems and definitions.
Don't write the part of the question I have already written. Just fill in the blank.
(1) Definition: (Do not use the phrase "linear combinations" in your answer.) The linear span of $\underline{v}_{1}, \ldots, \underline{v}_{n}$ is the set of all vectors of the form \qquad
(2) To show that $\{\underline{u}, \underline{v}, \underline{w}\}$ is linearly independent I must show that the only solution to the equation
(3) To show that $\{\underline{u}, \underline{v}, \underline{w}\}$ is linearly dependent I must show that \qquad $=\underline{0}$ for some
(4) Let V be a subspace of \mathbb{R}^{n} and W a subspace of \mathbb{R}^{m}. To show that a function $T: V \rightarrow W$ is a linear transformation, I must show that \qquad .
(5) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. To show that \underline{x} is in the kernel of T I must show that \qquad .
(6) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. To show that \underline{v} is in the range of T I must show that \qquad -.
(7) Definition: The dimension of a subspace V of \mathbb{R}^{n} is \qquad .
(8) Theorem: A linear transformation $T: V \rightarrow W$ has an inverse if and only if \qquad _.
(9) Theorem: The following conditions on an $n \times n$ matrix A are equivalent:
(a) A is invertible
(b) the rows of A are \qquad
(c) $\mathcal{R}(A)=$ \qquad
(d) $\mathcal{N}(A)=$ \qquad
(e) $\operatorname{rank}(A)=$ \qquad
(f) $\operatorname{det}(A)$ is \qquad
(10) Definition: Let λ be an eigenvalue for the $n \times n$ matrix A. The $\underline{\lambda \text {-eigenspace }}$ for A is

$$
E_{\lambda}:=\left\{_\mid \beth\right.
$$

(11) Theorem: The λ-eigenspace of A is non-zero if and only if $\operatorname{det}(A-\lambda I)=0$ because $E_{\lambda}=$ \qquad -.
(12) Theorem: The roots of the \qquad of a square matrix A are its \qquad .
(13) Theorem: Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ be a linear transformation. Then there is a unique \qquad matrix A such that \qquad for all \qquad . We call A the matrix that represents T.
(14) Theorem: The $j^{\text {th }}$ column of the matrix representing T is \qquad .
(15) Definition: A set of non-zero vectors $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ is orthogonal if \qquad .
(16) Theorem: Let $\left\{\underline{u}_{1}, \ldots, \underline{u}_{k}\right\}$ be an orthonormal basis for a subspace V of \mathbb{R}^{n}. The orthogonal projection of \mathbb{R}^{n} onto V is the linear transformation $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by the formula $P(\underline{x})=$ \qquad . Furthermore,
(a) $P(\underline{v})=\underline{v}$ for all \qquad
(b) $\mathcal{R}(P)=$ \qquad
(c) $\operatorname{ker}(P)=$ \qquad
(d) $\operatorname{ker}(P) \cap \mathcal{R}(P)=$ \qquad
(e) $\operatorname{ker}(P)+\mathcal{R}(P)=$ \qquad
(17) Definition: Let A be an $m \times n$ matrix. A vector \underline{x}^{*} in \mathbb{R}^{n} is a least-squares solution to $A \underline{x}=\underline{b}$ if \qquad is as close as possible to \qquad .
(18) Theorem: If $A^{T} A \underline{x}^{*}=A^{T} \underline{b}$, then \underline{x}^{*} is \qquad .
(19) Definition: An $n \times n$ matrix Q is orthogonal if \qquad .
(20) Theorem: The following 4 conditions on an $n \times n$ matrix Q are equivalent:
(a) Q is orthogonal;
(b) \qquad for all $\underline{x} \in \mathbb{R}^{n}$;
(c) \qquad for all $\underline{u}, \underline{v} \in \mathbb{R}^{n}$.
(d) the \qquad an orthonormal basis \qquad

Part C.

True or False

$$
\text { Remember }+1,0 \text {, or }-1
$$

(1) Let A and B be matrices having the same row-reduced echelon form, namely

$$
\left(\begin{array}{ccccc}
1 & 0 & 2 & 0 & -3 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The equations $A \underline{x}=\underline{b}$ and $B \underline{x}=\underline{b}$ have the same solutions.
(2) Let A and B be as in question 1 . Every solution to the equation $A \underline{x}=\underline{b}$ is a solution to the equation $(2 A+3 B) \underline{x}=5 \underline{b}$.
(3) Let A be as in question 1. The set of solutions to the equation $A \underline{x}=\underline{b}$ is a subspace of \mathbb{R}^{4}.
(4) Let A be as in question 1 . The set of solutions to the equation $A \underline{x}=\underline{0}$ is a subspace having dimension 1.
(5) Let A be as in question 1. The function $T(\underline{x})=A \underline{x}$ is a linear transformation having rank 3 and nullity 1.
(6) The range of a non-zero linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ is a subspace of \mathbb{R}^{4} whose dimension is either 1 or 2.
(7) Every non-zero linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{1}$ is onto.
(8) There is a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ that is not onto.
(9) There is a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ that is one-to-one.
(10) Every non-zero linear transformation $T: \mathbb{R}^{1} \rightarrow \mathbb{R}^{6}$ has rank one.
(11) Every non-zero linear transformation $T: \mathbb{R}^{1} \rightarrow \mathbb{R}^{6}$ is one-to-one.
(12) If $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}z-x \\ z-y \\ x+y\end{array}\right)$, then $\operatorname{ker}(T)=\mathbb{R}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
(13) There is a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ such that $\mathcal{R}(T)=\mathcal{N}(T)$.
(14) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{1}, x_{2}, x_{3}\right)$. The null space of T is $\{(t, 0,0,0) \mid t \in \mathbb{R}\}$.
(15) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T(x, y)=(0, x)$. The null space of T is $\{(0, z) \mid z \in \mathbb{R}\}$.
(16) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T(x, y)=(0, x)$. Then $\{(0,5)\}$ is a basis for the null space of T.
(17) The set $\{(-2,0,0,0),(0,0,1,1)\}$ is a basis for the range of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined by $T(x, y, z)=(x, 0, y+z, y+z)$.
(18) The vector $(0,0,1)$ spans the kernel of the linear transformation $T: \mathbb{R}^{3} \rightarrow$ \mathbb{R}^{4} given by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, 0, x_{2}, x_{2}\right)$.
(19) The function from \mathbb{R}^{3} to itself that interchanges the first and third coordinates is a linear transformation.
(20) There is a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose range is the set of solutions to the equation $x y=z$.
(21) There is a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ whose range is the set of solutions to the equation $x+y=z$.
(22) The linear transformation $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}z \\ x \\ y\end{array}\right)$ is one-to-one.
(23) The linear transformation in question 22 is onto.
(24) If T is the linear transformation in question 22 , then $T^{2}=T^{-1}$.
(25) 1 is an eigenvalue of the linear transformation in question 22.
(26) $\operatorname{dim}\left(E_{1}\right)=1$ for the linear transformation in question 22.
(27) The linear transformation $T\binom{x}{y}=\left(\begin{array}{l}x \\ y \\ x\end{array}\right)$ is one-to-one.
(28) The rank of the linear transformation in question 27 is 2 .
(29) If $T\left(\underline{e}_{1}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $T\left(\underline{e}_{2}\right)=\left(\begin{array}{c}0 \\ -1 \\ -2\end{array}\right)$, then $T\binom{2}{2}=\left(\begin{array}{l}2 \\ 2 \\ 2\end{array}\right)$.
(30) Let S and T be the linear transformations $T(x, y)=(x+3 y, 3 x+y)$ and $S(x, y)=(-x+3 y, 3 x-y)$. Then $S \circ T=T \circ S$.
(31) Let A be any square matrix. Then A^{2} commutes with $I-A$.
(32) If an $n \times n$ matrix has n distinct eigenvalues, then its columns form a basis for \mathbb{R}^{n}.
(33) Let V be a 4 -dimensional subspace of \mathbb{R}^{5}. Every set of five vectors in V is linearly dependent.
(34) Let V be a 4-dimensional subspace of \mathbb{R}^{5}. Every set of four vectors in V spans V.
(35) There is a 3 -plane and a 2-plane in \mathbb{R}^{5} whose intersection is a line.
(36) Let V be a 3 -dimensional subspace of \mathbb{R}^{5}. There is a basis for \mathbb{R}^{5} consisting of 3 vectors in V and 2 vectors not in V.
(37) If V is a subspace of \mathbb{R}^{n}, then $\left(V^{\perp}\right)^{\perp}=V$.
(38) $\{3 \underline{u}-2 \underline{v}, 2 \underline{v}-4 \underline{w}, 4 \underline{w}-3 \underline{u}\}$ is linearly dependent for all choices of \underline{u}, \underline{v}, and \underline{w}.
(39) Every set of orthogonal vectors in \mathbb{R}^{n} is linearly independent.
(40) If $A=B C$, then every solution to $C \underline{x}=\underline{0}$ is a solution to $A \underline{x}=\underline{0}$.
(41) If $A=B C$, then $\mathcal{R}(A) \subset \mathcal{R}(B)$.
(42) Let A be an $m \times n$ matrix and B an $n \times p$ matrix. If $C=A B$, then $\left\{C \underline{x} \mid \underline{x} \in \mathbb{R}^{p}\right\} \subset\left\{A \underline{w} \mid \underline{w} \in \mathbb{R}^{n}\right\}$.
(43) The linear span of the vectors $(4,0,0,1),(0,2,0,-1)$ and $(4,3,2,1)$ is the 3 -plane $x_{1}-2 x_{2}+3 x_{3}-4 x_{4}=0$ in \mathbb{R}^{4}.
(44) The linear span of the vectors $(4,0,0,1),(0,3,2,0)$ and $(4,3,2,1)$ is the 3 -plane $x_{1}-2 x_{2}+3 x_{3}-4 x_{4}=0$ in \mathbb{R}^{4}.
(45) Let $\underline{u}, \underline{v}$, and \underline{w} be vectors in \mathbb{R}^{n}. Then $\operatorname{span}\{\underline{u}, \underline{v}, \underline{w}\}=\operatorname{span}\{\underline{u}+2 \underline{v}, \underline{u}+$ $3 \underline{v}, \underline{u}+\underline{v}+\underline{w}\}$.
(46) The set $\left.\left\{x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}+x_{3}=x_{2}-x_{4}=0\right\}$ is a subspace of \mathbb{R}^{4}.
(47) The set $\left.\left\{x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}+x_{3}-x_{2}+x_{4}=1\right\}$ is a subspace of \mathbb{R}^{4}.
(48) Every subspace of \mathbb{R}^{n} has an orthogonal basis.
(49) Every subspace of \mathbb{R}^{n} has an orthonormal basis.
(50) $\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{l}5 \\ 6 \\ 7 \\ 8\end{array}\right),\left(\begin{array}{c}9 \\ 10 \\ 11 \\ 12\end{array}\right)\right\}=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right)\right\}$.
(51) Every subset of a linearly independent set is linearly independent.
(52) Let X and Y be subsets of \mathbb{R}^{n}. If $X \subset Y$ and X is linearly dependent, then Y is linearly dependent.
(53) The row reduced echelon form of a square matrix is the identity if and only if the matrix is invertible.
(54) The vectors $(2,2,-4,3,0)$ and $(0,0,0,0,1)$ are a basis for the subspace $x_{1}-x_{2}=2 x_{2}+x_{3}=3 x_{1}-2 x_{4}=0$ of \mathbb{R}^{5}.
(55) The vectors $(1,1),(1,-2),(2,-3)$ are a basis for the subspace of \mathbb{R}^{4} that is the set of solutions to the equations $x_{1}-x_{2}=2 x_{2}+x_{3}=3 x_{1}-2 x_{4}=0$.
(56) $\left\{\underline{x} \in \mathbb{R}^{5} \mid x_{1}-x_{2}=x_{3}+x_{4}=x_{1}+2 x_{4}=1\right\}$ is a subspace of \mathbb{R}^{5}.

The set $\left\{\underline{x} \in \mathbb{R}^{4} \mid x_{1}=x_{2}\right\} \cup\left\{\underline{x} \in \mathbb{R}^{4} \mid x_{3}=x_{4}\right\}$ is a subspace of \mathbb{R}^{4}.
(57) The set $\left\{\underline{x} \in \mathbb{R}^{4} \mid x_{1}=x_{2}\right\} \cap\left\{\underline{x} \in \mathbb{R}^{4} \mid x_{3}=x_{4}\right\}$ is a subspace of \mathbb{R}^{4}.
(58) The equation $A \underline{x}=\underline{b}$ has a solution if and only if \underline{b} is linear combination of the columns of A.
(59) The dimension of the column space of a matrix is equal to the dimension of its row space.
(60) If U, V, and W are subspaces of \mathbb{R}^{n} so is $\{\underline{u}+2 \underline{v}+3 \underline{w} \mid \underline{u} \in U, \underline{v} \in$ V and $\underline{w} \in W\}$.
(61) $\{(1,1,1),(1,0,1),(3,2,3)\}$ is a basis for \mathbb{R}^{3}.
(62) If $\{\underline{u}, \underline{v}, \underline{w}\}$ is an orthonormal set of vectors, then $\underline{u}+\underline{v}+\underline{w}$ and $\underline{u}+2 \underline{v}-3 \underline{w}$ are orthogonal.
(63) The length of the vector $(1,2,2,4)$ is 9 .
(64) There is a 2×3 matrix A and a 3×2 matrix B such that $A B$ is the identity matrix.
(65) If A is a 2×3 matrix and B is a 3×2 matrix, then $B A$ can not be the identity matrix because $\mathcal{N}(A) \neq\{\underline{0}\}$.
(66) If A is a 2×3 matrix and B is a 3×2 matrix, then $B A$ can not be the identity matrix because $\mathcal{R}(B) \neq \mathbb{R}^{3}$.
(67) Let \underline{u} and \underline{v} be linearly independent vectors that belong to the subspace of \mathbb{R}^{4} consisting of solutions to the homogeneous system of equations

$$
\begin{aligned}
& 4 x_{1}-3 x_{2}+2 x_{3}-x_{4}=0 \\
& x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0
\end{aligned}
$$

The vector $(1,2,3,4)$ is a linear combination of \underline{u} and \underline{v}.
(68) Let \underline{u} and \underline{v} be linearly independent vectors that belong to the subspace of \mathbb{R}^{4} consisting of solutions to the homogeneous system of equations

$$
\begin{aligned}
& 4 x_{1}-3 x_{2}+2 x_{3}-x_{4}=0 \\
& 2 x_{1}+3 x_{2}-4 x_{3}+x_{4}=0
\end{aligned}
$$

The vector $(1,2,3,4)$ is a linear combination of \underline{u} and \underline{v}.
(69) If A and B are $n \times n$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
(70) If A and B are $n \times n$ matrices, then $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.
(71) If A is the matrix representing the linear transformation T, then A and T have the same range.
(72) If A is the matrix representing the linear transformation T, then the null space of A is equal to the kernel of T.
(73) The determinant of $\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right)$ is zero.
(74) If \underline{x} is an eigenvector for A with eigenvalue 5 , then $4 \underline{x}$ is an eigenvector for A with eigenvalue 20.
(75) If \underline{x} is an eigenvector for A with eigenvalue 5 , and an eigenvector for B with eigenvalue 4 , then its is an eigenvector for $A B$ with eigenvalue 20 .
(76) The vectors $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 4 \\ 6\end{array}\right)$ are a basis for the subspace of \mathbb{R}^{3} that they span.
(77) The matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ is orthogonal.
(78) For every value of θ, the rows of the matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ form an orthonormal basis for \mathbb{R}^{2}.
(79) The characteristic polynomial of $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$ is $(1+t)^{2}(1-t)^{2}$.
(80) The matrix in the previous question has exactly two eigenspaces, each of dimension 2.

