Math 308 Final June 10, 2013

Instructions. No need to show your work. In Parts A and B you get 1 point per question or 1 point for each part of a multi-part question. Part C: use the scantron/bubble sheet with A =True and B =False: for Part C you will get $\bullet +1$ for each correct answer, \bullet -1 for each incorrect answer, and \bullet 0 for no answer at all.

Part A.

(1) If you know a single solution, \underline{w} say, to the equation $A\underline{x} = \underline{b}$ and all solutions to the equation $A\underline{x} = \underline{0}$, then the set of all solutions to $A\underline{x} = \underline{b}$ is $\{...|...\}$.

(2) **[2 points]** If
$$A\begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 3\\2\\1 \end{pmatrix}$$
 and the null space of A is spanned by $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ find two more solutions to the equation $A\underline{x} = \begin{pmatrix} 3\\2 \end{pmatrix}$.

1/

(3) Write
$$B\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}$$
 as a linear combination of the columns $\underline{B}_1, \ldots, \underline{B}_n$ of B
(4) If $A\begin{pmatrix} 1\\ 2\\ 3\\ 4 \end{pmatrix} = \begin{pmatrix} 4\\ 3\\ 2\\ 1 \end{pmatrix}$, then $2\underline{A}_1 + 4\underline{A}_2 + 6\underline{A}_3 + 8\underline{A}_4 =$.

(5) What matrix represents the linear transformation
$$T\begin{pmatrix} w\\ x\\ y\\ z \end{pmatrix} = \begin{pmatrix} w+x\\ x+y\\ y+z\\ z+w \end{pmatrix}$$

- (6) Give a basis for the kernel of the linear transformation in Question 5.
- (7) Give a basis for the range of the linear transformation in Question 5.
- (8) If $A\begin{pmatrix} 3\\ 2\\ -1 \end{pmatrix} = \underline{0}$, the columns $\underline{A}_1, \dots, \underline{A}_4$ of A are linearly dependent because
- (9) The vectors $(1, 1, \overline{1, 3})^T$ and $(3, 1, 1, 1)^T$ are a basis for the set of solutions
- to the homogeneous equations ______ and _____ and _____ and _____ (10) The vectors $(1, 1, 1, 3)^T$ and $(3, 1, 1, 1)^T$ are a basis for the range of the

linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^4$ given by $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{pmatrix}$.

(11) The vectors $(1, 1, 1, 3)^T$ and $(3, 1, 1, 1)^T$ are a basis for the kernel (null space)

of the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ given by $T\begin{pmatrix} w\\ x\\ y\\ z \end{pmatrix} = \begin{pmatrix} ?\\ ?\\ ? \end{pmatrix}$.

(12) Find a basis for the 2-plane $x_1 + x_2 - x_3 = x_2 + x_3 - x_4 = 0$ in \mathbb{R}^4 .

- (13) Give the equation of a 3-plane in \mathbb{R}^4 that contains the 2-plane in question 12.
- (14) The matrix representing the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that rotates a vector by θ radians in the counter-clockwise direction is _____.
- (15) What is the characteristic polynomial of the matrix $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$?
- (16) [2 points] What are the eigenvalues of the matrix in question 15?
- (17) [2 points] Find linearly independent eigenvectors for the matrix in question 15.
- (18) [2 points] Give a precise description of the set of all solutions (a, b, c, d, e) to the system of linear equations a + 2c + e = b + 3c + d + e = 0.

Part B.

Complete the definitions and Theorems.

There is a difference between theorems and definitions.

Don't write the part of the question I have already written. Just fill in the blank.

- (1) **Definition:** (Do not use the phrase *"linear combinations"* in your answer.) The linear span of $\underline{v}_1, \ldots, \underline{v}_n$ is the set of all vectors of the form ______
- (2) To show that $\{\underline{u}, \underline{v}, \underline{w}\}$ is linearly independent I must show that the only solution to the equation _____
- (3) To show that $\{\underline{u}, \underline{v}, \underline{w}\}$ is linearly dependent I must show that ______ = $\underline{0}$ for some ______
- (4) Let V be a subspace of \mathbb{R}^n and W a subspace of \mathbb{R}^m . To show that a function $T: V \to W$ is a linear transformation, I must show that _____.
- (5) Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. To show that \underline{x} is in the kernel of T I must show that _____.
- (6) Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. To show that \underline{v} is in the range of T I must show that _____.
- (7) **Definition:** The <u>dimension</u> of a subspace V of \mathbb{R}^n is _____
- (8) **Theorem:** A linear transformation $T: V \to W$ has an inverse if and only if _____.
- (9) Theorem: The following conditions on an n × n matrix A are equivalent:(a) A is invertible
 - (b) the rows of A are
 - (c) $\mathcal{R}(A) =$
 - (d) $\mathcal{N}(A) =$
 - (e) $\operatorname{rank}(A) =$
 - (f) det(A) is _____
- (10) **Definition:** Let λ be an eigenvalue for the $n \times n$ matrix A. The $\underline{\lambda}$ -eigenspace for A is

 $E_{\lambda} := \{ __ | ___ \}$

- (11) **Theorem:** The λ -eigenspace of A is non-zero if and only if $\det(A \lambda I) = 0$ because $E_{\lambda} =$ _____.
- (12) **Theorem:** The roots of the _____ of a square matrix A are its
- (13) **Theorem:** Let $T : \mathbb{R}^p \to \mathbb{R}^q$ be a linear transformation. Then there is a unique ______ matrix A such that ______ for all ______. We call A the matrix that <u>represents</u> T.

 2

- (14) **Theorem:** The j^{th} column of the matrix representing T is _____
- (15) **Definition:** A set of non-zero vectors $\{\underline{v}_1, \ldots, \underline{v}_n\}$ is orthogonal if _____
- (16) **Theorem:** Let $\{\underline{u}_1, \ldots, \underline{u}_k\}$ be an orthonormal basis for a subspace V of $\mathbb{R}^n.$ The orthogonal projection of \mathbb{R}^n onto V is the linear transformation $P: \mathbb{R}^n \to \mathbb{R}^n$ given by the formula $P(\underline{x}) =$ _____. Furthermore, (a) P(v) = v for all _____ (b) $\mathcal{R}(P) = _$
 - (c) $\ker(P) =$
 - (d) $\ker(P) \cap \mathcal{R}(P) =$
 - (e) $\ker(P) + \mathcal{R}(P) = _$
- (17) **Definition:** Let A be an $m \times n$ matrix. A vector \underline{x}^* in \mathbb{R}^n is a least-squares solution to $A\underline{x} = \underline{b}$ if ______ is as close as possible to ______. (18) **Theorem:** If $A^T A\underline{x}^* = A^T \underline{b}$, then \underline{x}^* is _____.
- (19) **Definition:** An $n \times n$ matrix Q is orthogonal if _____
- (20) **Theorem:** The following 4 conditions on an $n \times n$ matrix Q are equivalent: (a) Q is orthogonal;
 - (b) _____ for all $\underline{x} \in \mathbb{R}^n$;
 - (c) for all $\underline{\underline{u}}, \underline{v} \in \mathbb{R}^n$.
 - (d) the _____ an orthonormal basis ___

Part C.

True or False

Remember +1, 0, or -1.

(1) Let A and B be matrices having the same row-reduced echelon form, namely

$$\begin{pmatrix} 1 & 0 & 2 & 0 & -3 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

The equations $A\underline{x} = \underline{b}$ and $B\underline{x} = \underline{b}$ have the same solutions.

- (2) Let A and B be as in question 1. Every solution to the equation Ax = b is a solution to the equation $(2A + 3B)\underline{x} = 5\underline{b}$.
- (3) Let A be as in question 1. The set of solutions to the equation $A\underline{x} = \underline{b}$ is a subspace of \mathbb{R}^4 .
- (4) Let A be as in question 1. The set of solutions to the equation Ax = 0 is a subspace having dimension 1.
- (5) Let A be as in question 1. The function $T(\underline{x}) = A\underline{x}$ is a linear transformation having rank 3 and nullity 1.
- (6) The range of a non-zero linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^4$ is a subspace of \mathbb{R}^4 whose dimension is either 1 or 2.
- (7) Every non-zero linear transformation $T : \mathbb{R}^5 \to \mathbb{R}^1$ is onto.
- (8) There is a linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^3$ that is not onto.
- (9) There is a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ that is one-to-one.
- (10) Every non-zero linear transformation $T: \mathbb{R}^1 \to \mathbb{R}^6$ has rank one.
- (11) Every non-zero linear transformation $T : \mathbb{R}^1 \to \mathbb{R}^6$ is one-to-one.

(12) If
$$T\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} z-x\\ z-y\\ x+y \end{pmatrix}$$
, then $\ker(T) = \mathbb{R}\begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$.

- (13) There is a linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^4$ such that $\mathcal{R}(T) = \mathcal{N}(T)$.
- (14) Let $T : \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation $T(x_1, x_2, x_3, x_4) = (0, x_1, x_2, x_3)$. The null space of T is $\{(t, 0, 0, 0) \mid t \in \mathbb{R}\}$.
- (15) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation T(x, y) = (0, x). The null space of T is $\{(0, z) \mid z \in \mathbb{R}\}$.
- (16) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation T(x,y) = (0,x). Then $\{(0,5)\}$ is a basis for the null space of T.
- (17) The set $\{(-2, 0, 0, 0), (0, 0, 1, 1)\}$ is a basis for the range of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ defined by T(x, y, z) = (x, 0, y + z, y + z).
- (18) The vector (0,0,1) spans the kernel of the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^4$ given by $T(x_1, x_2, x_3) = (x_1, 0, x_2, x_2)$.
- (19) The function from \mathbb{R}^3 to itself that interchanges the first and third coordinates is a linear transformation.
- (20) There is a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ whose range is the set of solutions to the equation xy = z.
- (21) There is a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ whose range is the set of solutions to the equation x + y = z.

(22) The linear transformation
$$T\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} z\\ x\\ y \end{pmatrix}$$
 is one-to-one.

- (23) The linear transformation in question 22 is onto.
- (24) If T is the linear transformation in question 22, then $T^2 = T^{-1}$.
- (25) 1 is an eigenvalue of the linear transformation in question 22.
- (26) $\dim(E_1) = 1$ for the linear transformation in question 22.

(27) The linear transformation
$$T\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x\\ y\\ x \end{pmatrix}$$
 is one-to-one.

(28) The rank of the linear transformation in question 27 is 2. (2)

(29) If
$$T(\underline{e}_1) = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
 and $T(\underline{e}_2) = \begin{pmatrix} 0\\-1\\-2 \end{pmatrix}$, then $T\begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} 2\\2\\2 \end{pmatrix}$.

- (30) Let S and T be the linear transformations T(x, y) = (x + 3y, 3x + y) and S(x, y) = (-x + 3y, 3x y). Then $S \circ T = T \circ S$.
- (31) Let A be any square matrix. Then A^2 commutes with I A.
- (32) If an $n \times n$ matrix has n distinct eigenvalues, then its columns form a basis for \mathbb{R}^n .
- (33) Let V be a 4-dimensional subspace of \mathbb{R}^5 . Every set of five vectors in V is linearly dependent.
- (34) Let V be a 4-dimensional subspace of \mathbb{R}^5 . Every set of four vectors in V spans V.
- (35) There is a 3-plane and a 2-plane in \mathbb{R}^5 whose intersection is a line.
- (36) Let V be a 3-dimensional subspace of \mathbb{R}^5 . There is a basis for \mathbb{R}^5 consisting of 3 vectors in V and 2 vectors not in V.
- (37) If V is a subspace of \mathbb{R}^n , then $(V^{\perp})^{\perp} = V$.

4

- (38) $\{3\underline{u} 2\underline{v}, 2\underline{v} 4\underline{w}, 4\underline{w} 3\underline{u}\}$ is linearly dependent for all choices of $\underline{u}, \underline{v}$, and \underline{w} .
- (39) Every set of orthogonal vectors in \mathbb{R}^n is linearly independent.
- (40) If A = BC, then every solution to $C\underline{x} = \underline{0}$ is a solution to $A\underline{x} = \underline{0}$.
- (41) If A = BC, then $\mathcal{R}(A) \subset \mathcal{R}(B)$.
- (42) Let A be an $m \times n$ matrix and B an $n \times p$ matrix. If C = AB, then $\{C\underline{x} \mid \underline{x} \in \mathbb{R}^p\} \subset \{A\underline{w} \mid \underline{w} \in \mathbb{R}^n\}.$
- (43) The linear span of the vectors (4, 0, 0, 1), (0, 2, 0, -1) and (4, 3, 2, 1) is the 3-plane $x_1 2x_2 + 3x_3 4x_4 = 0$ in \mathbb{R}^4 .
- (44) The linear span of the vectors (4, 0, 0, 1), (0, 3, 2, 0) and (4, 3, 2, 1) is the 3-plane $x_1 2x_2 + 3x_3 4x_4 = 0$ in \mathbb{R}^4 .
- (45) Let $\underline{u}, \underline{v}$, and \underline{w} be vectors in \mathbb{R}^n . Then $\operatorname{span}\{\underline{u}, \underline{v}, \underline{w}\} = \operatorname{span}\{\underline{u} + 2\underline{v}, \underline{u} + 3\underline{v}, \underline{u} + \underline{v} + \underline{w}\}.$
- (46) The set $\{x_1, x_2, x_3, x_4\} \mid x_1 + x_3 = x_2 x_4 = 0\}$ is a subspace of \mathbb{R}^4 .
- (47) The set $\{x_1, x_2, x_3, x_4\} \mid x_1 + x_3 x_2 + x_4 = 1\}$ is a subspace of \mathbb{R}^4 .
- (48) Every subspace of \mathbb{R}^n has an orthogonal basis.
- (49) Every subspace of \mathbb{R}^n has an orthonormal basis.

(50)
$$\operatorname{span}\left\{ \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}, \begin{pmatrix} 5\\6\\7\\8 \end{pmatrix}, \begin{pmatrix} 9\\10\\11\\12 \end{pmatrix} \right\} = \operatorname{span}\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\2\\3 \end{pmatrix} \right\}.$$

- (51) Every subset of a linearly independent set is linearly independent.
- (52) Let X and Y be subsets of \mathbb{R}^n . If $X \subset Y$ and X is linearly dependent, then Y is linearly dependent.
- (53) The row reduced echelon form of a square matrix is the identity if and only if the matrix is invertible.
- (54) The vectors (2, 2, -4, 3, 0) and (0, 0, 0, 0, 1) are a basis for the subspace $x_1 x_2 = 2x_2 + x_3 = 3x_1 2x_4 = 0$ of \mathbb{R}^5 .
- (55) The vectors (1,1), (1,-2), (2,-3) are a basis for the subspace of \mathbb{R}^4 that is the set of solutions to the equations $x_1 - x_2 = 2x_2 + x_3 = 3x_1 - 2x_4 = 0$.
- (56) $\{\underline{x} \in \mathbb{R}^5 \mid x_1 x_2 = x_3 + x_4 = x_1 + 2x_4 = 1\}$ is a subspace of \mathbb{R}^5 . The set $\{\underline{x} \in \mathbb{R}^4 \mid x_1 = x_2\} \cup \{\underline{x} \in \mathbb{R}^4 \mid x_3 = x_4\}$ is a subspace of \mathbb{R}^4 .
- (57) The set $\{\underline{x} \in \mathbb{R}^4 \mid x_1 = x_2\} \cap \{\underline{x} \in \mathbb{R}^4 \mid x_3 = x_4\}$ is a subspace of \mathbb{R}^4 .
- (58) The equation $A\underline{x} = \underline{b}$ has a solution if and only if \underline{b} is linear combination of the columns of A.
- (59) The dimension of the column space of a matrix is equal to the dimension of its row space.
- (60) If U, V, and W are subspaces of \mathbb{R}^n so is $\{\underline{u} + 2\underline{v} + 3\underline{w} \mid \underline{u} \in U, \underline{v} \in V \text{ and } \underline{w} \in W\}$.
- (61) $\{(1,1,1), (1,0,1), (3,2,3)\}$ is a basis for \mathbb{R}^3 .
- (62) If $\{\underline{u}, \underline{v}, \underline{w}\}$ is an orthonormal set of vectors, then $\underline{u} + \underline{v} + \underline{w}$ and $\underline{u} + 2\underline{v} 3\underline{w}$ are orthogonal.
- (63) The length of the vector (1, 2, 2, 4) is 9.
- (64) There is a 2×3 matrix A and a 3×2 matrix B such that AB is the identity matrix.
- (65) If A is a 2×3 matrix and B is a 3×2 matrix, then BA can not be the identity matrix because $\mathcal{N}(A) \neq \{\underline{0}\}$.

- (66) If A is a 2×3 matrix and B is a 3×2 matrix, then BA can not be the identity matrix because $\mathcal{R}(B) \neq \mathbb{R}^3$.
- (67) Let \underline{u} and \underline{v} be linearly independent vectors that belong to the subspace of \mathbb{R}^4 consisting of solutions to the homogeneous system of equations

$$4x_1 - 3x_2 + 2x_3 - x_4 = 0$$
$$x_1 + 2x_2 + 3x_3 + 4x_4 = 0$$

The vector (1, 2, 3, 4) is a linear combination of u and v.

(68) Let u and v be linearly independent vectors that belong to the subspace of \mathbb{R}^4 consisting of solutions to the homogeneous system of equations

$$4x_1 - 3x_2 + 2x_3 - x_4 = 0$$

$$2x_1 + 3x_2 - 4x_3 + x_4 = 0$$

The vector (1, 2, 3, 4) is a linear combination of \underline{u} and \underline{v} .

- (69) If A and B are $n \times n$ matrices, then $\det(AB) = \det(A) \det(B)$.
- (70) If A and B are $n \times n$ matrices, then $\det(A + B) = \det(A) + \det(B)$.
- (71) If A is the matrix representing the linear transformation T, then A and T have the same range.
- (72) If A is the matrix representing the linear transformation T, then the null space of A is equal to the kernel of T.

(73) The determinant of
$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$$
 is zero

- (74) If \underline{x} is an eigenvector for A with eigenvalue 5, then $4\underline{x}$ is an eigenvector for A with eigenvalue 20.
- (75) If \underline{x} is an eigenvector for A with eigenvalue 5, and an eigenvector for B with eigenvalue 4, then its is an eigenvector for AB with eigenvalue 20.
- (76) The vectors $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ and $\begin{pmatrix} 2\\4\\6 \end{pmatrix}$ are a basis for the subspace of \mathbb{R}^3 that they span. (77) The matrix $\begin{pmatrix} \cos\theta & -\sin\theta\\\sin\theta & \cos\theta \end{pmatrix}$ is orthogonal. (78) For every value of θ , the rows of the matrix $\begin{pmatrix} \cos\theta & -\sin\theta\\\sin\theta & \cos\theta \end{pmatrix}$ form an orthogonal basis for \mathbb{R}^2
- orthonormal basis for \mathbb{R}^2 .

(79) The characteristic polynomial of
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
 is $(1+t)^2(1-t)^2$.

(80) The matrix in the previous question has exactly two eigenspaces, each of dimension 2.

 $\mathbf{6}$