Week 3 Quiz 1

Math 308

Complete the sentence/definition:

- (1) If a system of linear equations has ≥ 2 solutions, then ______ solutions.
- (2) A system of linear equations can have either
 - (a) a ______ solution, or
 - (b) _____ solutions, or
 - (c) _____ solutions.
- (3) An $m \times n$ system of linear equations consists of
 - (a) ____ linear equations
 - (b) in _____ unknowns.
- (4) If an $m \times n$ system of linear equations is converted into a single matrix equation $A\underline{x} = \underline{b}$, then
 - (a) A is a $__\times __$ matrix
 - (b) \underline{x} is a $\underline{\qquad} \times \underline{\qquad}$ matrix
 - (c) \underline{b} is a $\underline{} \times \underline{}$ matrix
- (5) A system of linear equations is <u>consistent</u> if _____
- (6) A system of linear equations is <u>inconsistent</u> if _____
- (7) An $m \times n$ matrix has
 - (a) ____ columns and
 - (b) ____ rows.
- (8) The solutions to a system of m linear equations in n unknowns are points in
- (9) If p and q are different solutions to a system of linear equations so are
- (10) A vector \underline{w} is a linear combination of $\{\underline{v}_1, \ldots, \underline{v}_n\}$ if there are _____.
- (11) The equation $A\underline{x} = \underline{b}$ has a solution if and only if \underline{b} is a _____.
- (12) The linear span of $\{\underline{v}_1, \ldots, \underline{v}_n\}$ consists of _____
- (13) The rank of a matrix is the number _____.
- (14) The rank of an $m \times n$ matrix is \leq _____.
- (15) Let A be an $m \times n$ matrix having rank r. If r = n, then the equation $A\underline{x} = \underline{b}$ has _____.
- (17) A set of vectors $\{\underline{v}_1, \ldots, \underline{v}_n\}$ is <u>linearly independent</u> if the only solution to______
- (18) Write down 3 linearly independent vectors in \mathbb{R}^4 .
- (19) If

$$A\begin{pmatrix}1\\2\\3\\4\end{pmatrix} = \begin{pmatrix}7\\8\\9\end{pmatrix} \quad \text{and} \quad A\begin{pmatrix}2\\2\\2\\2\end{pmatrix} = \begin{pmatrix}0\\0\\0\end{pmatrix},$$

then

$$A\begin{pmatrix}4\\6\\8\\10\end{pmatrix} =?,$$

(20) The free, or independent, variables in the system of linear equations

$\begin{pmatrix} 1\\0\\0\\0\\0\\0\\0 \end{pmatrix}$	0	$2 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	1	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{array}$	${ \begin{array}{c} 3 \\ 4 \\ -2 \\ 1 \\ 0 \\ 0 \end{array} }$	$\begin{pmatrix} 4\\ 0\\ 1\\ -2\\ 0\\ 0 \end{pmatrix}$	$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix}$	=	$\begin{pmatrix} -2\\ -1\\ 0\\ 1\\ 2\\ 3 \end{pmatrix}$	
---	---	-----------------------------------	---	--	--	--	---	---	---	--

are ____

- (21) In the previous question, express one of the dependent variables in terms of the independent variables.
- (22) True or False: $\{(1,2), (2,3)\}$ is linearly dependent.
- (23) **True or False:** Every vector in \mathbb{R}^2 is a linear combination of $\{(1,2), (2,3)\}$.
- (24) True or False: A matrix is row equivalent to a unique row reduced echelon matrix.
- (25) True or False: An $m \times n$ system of homogeneous equations has a unique solution if m < n.
- (26) Is \mathbb{R}^4 equal to span{(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (1, 1, 1, 1)}? Why?
- (27) Are the vectors (1,1,0,0), (0,1,1,0), (0,0,1,1), and (1,1,1,1), linearly dependent? Why?
- (28) Is \mathbb{R}^4 equal to span{(1, 0, 0, 0), (0, 2, 0, 0), (0, 0, 3, 0), (0, 0, 0, 4)}? Why?
- (29) A matrix E is in <u>row echelon form</u> if
 - (a) _____
 - (b) _____
 - (c) _____
- (30) A matrix is in row reduced echelon form if it is _____ and ____. (31) In this question use R_i to denote the i^{th} row of a matrix. The three elementary row operations are

- (b) _____ (c) _____