- We will write $\underline{A}_{1}, \ldots, \underline{A}_{n}$ for the columns of an $m \times n$ matrix A.
- Several questions involve an unknown vector $\underline{x} \in \mathbb{R}^{n}$. We will write x_{1}, \ldots, x_{n} for the entries of \underline{x}; thus $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$.
- The null space and range of a matrix A are denoted by $\mathcal{N}(A)$ and $\mathcal{R}(A)$, respectively.
- The linear span of a set of vectors is denoted by $\operatorname{Sp}\left(\underline{v}_{1}, \ldots, \underline{v}_{n}\right)$.
- We will write $\underline{e}_{1}, \ldots, \underline{e}_{n}$ for the standard basis for \mathbb{R}^{n}. Thus \underline{e}_{i} has a 1 in the $i^{\text {th }}$ position and zeroes elsewhere.
- In order to save space I will often write elements of \mathbb{R}^{n} as row vectors, particularly in questions about linear transformations. For example, I will write $T(x, y)=(x+y, x-y)$ rather than

$$
T\binom{x}{y}=\binom{x+y}{x-y} .
$$

Part A.

True or False.

Scoring. You get +1 for each correct answer, -1 for each incorrect answer and 0 if you choose not to answer the question. Use your BUBBLES: $\mathrm{A}=$ True. $\mathrm{B}=$ False. Fill in bubble A if you think it is True, bubble B if you think it is False, and fill in nothing if you do not want to answer it.
(1) If a system of equations has fewer equations than unknowns it always has a solution.
(2) Every set of five vectors in \mathbb{R}^{4} spans \mathbb{R}^{4}.
(3) Every set of five vectors in \mathbb{R}^{4} is linearly dependent.
(4) Every set of four vectors in \mathbb{R}^{4} is linearly dependent.
(5) Every set of four vectors in \mathbb{R}^{4} spans \mathbb{R}^{4}.
(6) A square matrix having a row of zeroes is always singular.
(7) If a square matrix does not have a column of zeroes it is non-singular.
(8) For any vectors $\underline{u}, \underline{v}$, and $\underline{w}, S p(\underline{u}, \underline{v}, \underline{w})$ contains $S p(\underline{v}, \underline{w})$.
(9) If A is singular and B is non-singular then $A B$ is always singular.
(10) If A and B are non-singular so is $A B$.
(11) $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}6 \\ 4 \\ 2\end{array}\right)$ have the same the linear span as $\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 4 \\ 6\end{array}\right)$.
(12) There is a matrix whose inverse is $\left(\begin{array}{lll}1 & 4 & 5 \\ 2 & 5 & 7 \\ 3 & 6 & 9\end{array}\right)$.
(13) If $A^{-1}=\left(\begin{array}{lll}3 & 1 & 1 \\ 0 & 0 & 2 \\ 1 & 0 & 1\end{array}\right)$ and $E=\left(\begin{array}{lll}2 & 3 & 1 \\ 1 & 0 & 2\end{array}\right)$ there is a matrix B such that $B A=E$.
(14) If A is a non-singular matrix the equation $A \underline{x}=\underline{b}$ has a unique solution.
(15) If A is an invertible matrix the equation $A \underline{x}=\underline{b}$ has a unique solution.
(16) If A is row-equivalent to the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right),
$$

then the equation $A \underline{x}=\underline{b}$ has a unique solution.
(17) There exists a 3×2 matrix A and a 2×3 matrix B such that $A B$ is the 3×3 identity matrix.
(18) There exists a 2×3 matrix A and a 3×2 matrix B such that $A B$ is the 2×2 identity matrix.
(19) The dimension of a subspace is the number of elements in it.
(20) Every subset of a linearly dependent set is linearly dependent.
(21) Every subset of a linearly independent set is linearly independent.
(22) If $\left\{\underline{v}_{1}, \underline{v}_{2}, \underline{v}_{3}\right\}$ are any vectors in \mathbb{R}^{n}, then $\left\{\underline{v}_{1}+3 \underline{v}_{2}, 3 \underline{v}_{2}+\underline{v}_{3}, \underline{v}_{3}-\underline{v}_{1}\right\}$ is linearly dependent.
(23) Let A and B be $n \times n$ matrices. Suppose 2 is an eigenvalue of A and 3 is an eigenvalue of B. Then 6 is an eigenvalue of $A B$.
(24) Let A and B be $n \times n$ matrices. Suppose 2 is an eigenvalue of A and 3 is an eigenvalue of B. Then 5 is an eigenvalue of $A+B$.
(25) Let A and B be $n \times n$ matrices. If \underline{x} is an eigenvector for both A and B it is also an eigenvector for $A B$.
(26) Let A and B be $n \times n$ matrices. If \underline{x} is an eigenvector for both A and B it is also an eigenvector for $A+B$.
(27) If A is an invertible matrix, then $A^{-1} \underline{b}$ is a solution to the equation $A \underline{x}=\underline{b}$.
(28) The linear span $\operatorname{Sp}\left\{\underline{u}_{1}, \ldots, \underline{u}_{r}\right)$ is the same as the linear $\operatorname{span} \operatorname{Sp}\left(\underline{v}_{1}, \ldots, \underline{v}_{s}\right)$ if and only if every \underline{u}_{i} is a linear combination of the \underline{v}_{j} s and every \underline{v}_{j} is a linear combination of the $\underline{u}_{i} \mathrm{~s}$.
(29) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation and V is a subspace of \mathbb{R}^{n}, then $T(V)$ is a subspace of \mathbb{R}^{m}.
(30) The row reduced echelon form of a square matrix is the identity if and only if the matrix is invertible.
(31) Let A be an $n \times n$ matrix. If the columns of A are linearly dependent, then A is singular.
(32) If A and B are $m \times n$ matrices such that B can be obtained from A by elementary row operations, then A can also be obtained from B by elementary row operations.
(33) There is a matrix whose inverse is $\left(\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 4 \\ 3 & 1 & 5\end{array}\right)$.
(34) There is a matrix whose inverse is $\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$
(35) The column space of the matrix $\left(\begin{array}{lll}3 & 0 & 0 \\ 1 & 2 & 0 \\ 2 & 0 & 3\end{array}\right)$ is a basis for \mathbb{R}^{3}.
(36) The subspace of \mathbb{R}^{3} spanned by $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}4 \\ 6 \\ 2\end{array}\right)$ is the same as the subspace spanned by $\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}2 \\ 4 \\ 6\end{array}\right)$.
(37) Two systems of m linear equations in n unknowns have the same row reduced echelon form if and only if they have the same solutions.
(38) If \underline{u} and \underline{v} are $n \times 1$ column vectors then $\underline{u}^{T} \underline{v}=\underline{v}^{T} \underline{u}$.
(39) If $A^{2}=B^{2}=C^{2}=I$, then $(A B A C)^{-1}=C A B A$.
(40) Let A be a non-singular 5×5 matrix and $\left\{\underline{u}_{1}, \underline{u}_{2}, \underline{u}_{3}\right\}$ a subset of \mathbb{R}^{5}. Then $\left\{A \underline{u}_{1}, A \underline{u}_{2}, A \underline{u}_{3}\right\}$ is linearly independent if and only if $\left\{\underline{u}_{1}, \underline{u}_{2}, \underline{u}_{3}\right\}$ is.
(41) If \bar{W} is a subspace of \mathbb{R}^{n} that contains $\underline{u}+\underline{v}$, then W contains \underline{u} and \underline{v}.
(42) There is a 5×5 matrix having eigenvalues 1 and 2 and no others.
(43) There is a 5×5 matrix having eigenvalues $1,2,3,4,5$ and no others.
(44) There is a 5×5 matrix having eigenvalues $1,2,3,4,5,6,7$ and no others.
(45) A 5×5 matrix can't have more than 5 eigenvectors.
(46) A 5×5 matrix has exactly 5 eigenvalues.
(47) The vector $\binom{2}{3}$ is an eigenvector for the matrix $\left(\begin{array}{ll}1 & 3 \\ 3 & 2\end{array}\right)$.
(48) The vector $\binom{3}{2}$ is an eigenvector for the matrix $\left(\begin{array}{ll}1 & 3 \\ 3 & 2\end{array}\right)$.
(49) If $\binom{1}{2}$ is an eigenvector for a matrix so is $\binom{10}{20}$.
(50) If \underline{u} and \underline{v} are eigenvectors for A is is $\underline{u}+2 \underline{v}$.
(51) If \underline{u} is an eigenvector for A and B it is an eigenvector for $A+2 B$.
(52) The vector $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is an eigenvector for the matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 0 & 0\end{array}\right)$.
(53) The vector $\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right)$ is an eigenvector for the matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 0 & 0\end{array}\right)$.
(54) The number 0 is an eigenvalue for the matrix $\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 0 & 0 \\ 3 & 0 & 0\end{array}\right)$.
(55) The range of a matrix is its columns.
(56) The formula $T(a, b, c)=0$ defines a linear transformation $\mathbb{R}^{3} \rightarrow \mathbb{R}$.
(57) The formula $T(a, b, c)=1$ defines a linear transformation $\mathbb{R}^{3} \rightarrow \mathbb{R}$.
(58) The formula $T(a, b, c)=\sin (a)+\sin (b)+\sin (c)$ defines a linear transformation $\mathbb{R}^{3} \rightarrow \mathbb{R}$.
(59) The formula $T(a, b, c)=(a, b, 1)$ defines a linear transformation $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.
(60) The vectors $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}3 \\ 0 \\ -3\end{array}\right)$ form an orthogonal basis for \mathbb{R}^{3}.
(61) $\left\{\underline{x} \in \mathbb{R}^{4} \mid x_{1}-x_{2}=x_{3}+x_{4}\right\}$ is a subspace of \mathbb{R}^{4}.
(62) $\left\{\underline{x} \in \mathbb{R}^{5} \mid x_{1}-x_{2}=x_{3}+x_{4}=1\right\}$ is a subspace of \mathbb{R}^{5}.
(63) The solutions to a system of homogeneous linear equations is a subspace.
(64) The solutions to a system of linear equations is a subspace.
(65) The set $W=\left\{\underline{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T} \in \mathbb{R}^{4} \mid x_{1}^{2}=x_{2}^{2}\right\}$ is a subspace.
(66) The null space of A is equal to its 0 -eigenspace.
(67) The linear span of a matrix is its set of columns.
(68) $U \cup V$ is a subspace if U and V are.
(69) U^{-1} is a subspace if U is.
(70) Similar matrices have the same eigenvalues.
(71) Similar matrices have the same eigenvectors.
(72) If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation, then T is invertible if and only if its nullity is zero.
(73) If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is a linear transformation, then T is invertible if and only if its nullity is zero.
(74) A matrix is linearly independent if its columns are different.
(75) If A is a 3×5 matrix, then the inverse of A is a 5×3 matrix.
(76) If A is a 2×2 matrix it is possible for $\mathcal{R}(A)$ to equal $\mathcal{N}(A)$.
(77) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation it is possible for $\mathcal{R}(T)$ to equal $\mathcal{N}(T)$.
(78) If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation it is possible for $\mathcal{R}(T)$ to equal $\mathcal{N}(T)$.
(79) If $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is a linear transformation it is possible for $\mathcal{R}(T)$ to equal $\mathcal{N}(T)$.
(80) If A is a 2×2 matrix it is possible for $\mathcal{R}(A)$ to be the parabola $y=x^{2}$.
(81) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{1}, x_{2}, x_{3}\right)$. The null space of T is $\{(0,0,0, a) \mid$ where a is a real number $\}$.
(82) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be the linear transformation $T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(0, x_{1}, x_{2}, x_{3}\right)$. The null space of T is $\left\{\left(x_{4}, 0,0,0\right) \mid\right.$ where x_{4} is a real number $\}$.
(83) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T\left(x_{1}, x_{2}\right)=\left(x_{2}, 0\right)$. The null space of T is $\{(t, 0) \mid t$ is a real number $\}$.
(84) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T\left(x_{1}, x_{2}\right)=\left(x_{2}, 0\right)$. The null space of T is $\{(1,0)\}$.
(85) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be the linear transformation $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, 0, x_{2}, x_{2}\right)$. The nullspace of T has many bases; one of them is the set $\{(1,0,0,0),(0,0,1,1)\}$.
(86) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be the linear transformation $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, 0, x_{2}, x_{2}\right)$. The nullspace of T has many bases; one of them is the set $\{(0,0,1)\}$.
(87) The set $\{(1,0,0,0),(0,0,1,1)\}$ is a basis for the range of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ given by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, 0, x_{2}, x_{2}\right)$.
(88) The smallest subspace containing subspaces V and W is $V+W$.
(89) No linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ is onto.
(90) No linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ is onto.
(91) No linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ is one-to-one.
(92) No linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ is one-to-one.
(93) A linear transformation is invertible if and only if its nullity is zero.
(94) A linear transformation is one-to-one if and only if its nullity is zero.

In the next 6 questions, A is a 4×4 matrix whose columns $\underline{A}_{1}, \underline{A}_{2}, \underline{A}_{3}, \underline{A}_{4}$ have the property that $\underline{A}_{1}-\underline{A}_{2}=\underline{A}_{3}-\underline{A}_{4}$.
(95) The columns of A span \mathbb{R}^{4}.
(96) A is singular.
(97) The columns of A are linearly dependent.
(98) The rows of A are linearly dependent.
(99) The equation $A \underline{x}=0$ has a non-trivial solution.
(100) $A\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right)=0$.

Part B.

Complete the definitions and theorems by completing the sentences.
Scoring: 2 points per question. No partial credit.

Systems of linear equations

(1) Definition: Two systems of linear equations are equivalent if \qquad .
(2) Theorem: Two systems of linear equations are equivalent if their row reduced echelon forms are \qquad —.
(3) Definition: Let A be an $m \times n$ matrix and let E be the row-reduced echelon matrix that is row equivalent to it. If x_{1}, \ldots, x_{n} are the unknowns in the system of equations $A \underline{x}=\underline{b}$, then x_{j} is a dependent variable if and only if \qquad .
(4) Theorem: A homogeneous system of linear equations always has a nonzero solution if the number of unknowns is \qquad .
(5) Theorem: The equation $A \underline{x}=\underline{b}$ has a solution if and only if \underline{b} is in the linear span of \qquad
(6) Theorem: Let A be an $n \times n$ matrix and $\underline{b} \in \mathbb{R}^{n}$. The equation $A \underline{x}=\underline{b}$ has a unique solution if the rank of A is \qquad
(7) Theorem: Let A be an $n \times n$ matrix and $\underline{b} \in \mathbb{R}^{n}$. The equation $A \underline{x}=\underline{b}$ has a unique solution if and only if A is \qquad -.
(8) Theorem: If $A \underline{u}=\underline{b}$, then the set of all solutions to the equation $A \underline{x}=\underline{b}$ consists of the vectors $\underline{u}+\underline{v}$ as \underline{v} ranges over all
(9) Theorem: The equation $\overline{A x}=\underline{b}$ has a solution if and only if \underline{b} is a \qquad of the columns of A.
(10) Theorem: Let A be an $m \times n$ matrix and let E be the row-reduced echelon matrix that is row equivalent to it. Then the non-zero rows of E are a basis for \qquad .

Linear combinations and Linear spans

(1) Definition: A vector \underline{w} is a linear combination of $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ if \qquad
(2) Theorem: A vector \underline{w} is a linear combination of $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ if $\operatorname{Sp}\left(\underline{w}, \underline{v}_{1}, \ldots, \underline{v}_{n}\right)=$
(3) Definition: The linear span of $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ consists of \qquad
(4) Definition: A set of vectors $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ is linearly independent if the only solution to the equation \qquad is \qquad -.
(5) Theorem: A set of vectors $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ is linearly independent if the dimension of $\operatorname{Sp}\left(\underline{v}_{1}, \ldots, \underline{v}_{n}\right)$
(6) Theorem: A set of vectors is linearly dependent if and only if one of the vectors is \qquad of the others.

Subspaces

(1) Definition: A subset W of \mathbb{R}^{n} is a subspace if it satisfies the following three conditions: \qquad .
(2) Theorem: If V and W are subspaces of \mathbb{R}^{n} so are \qquad and
(3) Definition: A set of vectors $\left\{\underline{v}_{1}, \ldots, \underline{v}_{d}\right\}$ is a basis for a subspace V of \mathbb{R}^{n} if \qquad
(4) Definition: The dimension of a subspace V of \mathbb{R}^{n} is \qquad .
(5) Definition: A set of vectors $\left\{\underline{v}_{1}, \ldots, \underline{v}_{d}\right\}$ is orthogonal if \qquad .
(6) Definition: We call $\left\{\underline{v}_{1}, \ldots, \underline{v}_{d}\right\}$ an orthonormal basis for a subspace V if
\qquad -
(7) Theorem: If $\left\{\underline{v}_{1}, \ldots, \underline{v}_{d}\right\}$ is an orthogonal basis for W, then \{ \qquad $\}$ is an orthonormal basis for W.

Matrices

(1) If A is an $m \times n$ matrix and B is a $p \times q$ matrix, then $A B$ exists if and only if \qquad and in that case $A B$ is a \qquad matrix.
(2) If A is an $m \times n$ matrix and $\underline{x} \in \mathbb{R}^{n}$, then $A \underline{x}$ is a linear combination of the columns of A, namely $A \underline{x}=$ \qquad -.
(3) Definition 1: An $n \times n$ matrix A is non-singular if the only solution and is singular if it is not non-singular.
(4) Definition 2: An $n \times n$ matrix A is singular if there exists \qquad in \mathbb{R}^{n} such that \qquad and is non-singular otherwise.
(5) Theorem: An $n \times n$ matrix A is non-singular if its columns \qquad .
(6) Theorem: An $n \times n$ matrix A is non-singular if and only if it has \qquad -.
(7) Theorem: An $n \times n$ matrix A is singular if its columns \qquad .
(8) Theorem: An $n \times n$ matrix A is singular if its range \qquad .
(9) Theorem: An $n \times n$ matrix A is non-singular if the equation $A \underline{x}=\underline{b}$
\qquad .

Invertible matrices and determinants

(1) Definition: An $n \times n$ matrix A is invertible if \qquad .
(2) Theorem: An $n \times n$ matrix is invertible if and only if it is \qquad $-$
(3) Theorem: An $n \times n$ matrix is invertible if and only if its \qquad is non-zero.
(4) Theorem: An $n \times n$ matrix is invertible if and only if its row-reduced echelon form is \qquad -
(5) Theorem: The matrix $\left(\begin{array}{ll}w & x \\ y & z\end{array}\right)$ is invertible if and only if $\quad \neq 0$.
(6) Theorem: If the matrix $\left(\begin{array}{ll}w & x \\ y & z\end{array}\right)$ is invertible its inverse is \qquad .
(7) Definition: Let A be an $n \times n$ matrix. The characteristic polynomial of A is
(8) Theorem: Let A be an $n \times n$ matrix. If B is obtained from A by
(a) replacing row i by row $i+$ a multiple of row $k \neq i$, then $\operatorname{det} B=$?
(b) swapping two rows of A, then $\operatorname{det} B=$?
(c) multiplying a row in A by $c \in \mathbb{R}$, then $\operatorname{det} B=$?

Rank and Nullity

(1) Definition: The rank of a matrix A is the number of non-zero \qquad .
(2) Theorem: The rank of a matrix is equal to the dimension of \qquad .
(3) Definition: The rank of a linear transformation T is equal to \qquad .
$\underline{\text { Eigenvalues and eigenvectors }}$
(1) Definition: Let A be an $n \times n$ matrix. We call $\lambda \in \mathbb{R}$ an eigenvalue of A if
(2) Definition: Let A be an $n \times n$ matrix. A non-zero vector $\underline{x} \in \mathbb{R}^{n}$ is an eigenvector for A if \qquad
(3) Definition: Let λ be an eigenvalue for the $n \times n$ matrix A. The λ-eigenspace for A is the set

$$
E_{\lambda}:=\left\{_\mid _\right\} .
$$

(4) Theorem: Let λ be an eigenvalue for A. The λ-eigenspace of A is a subspace of \mathbb{R}^{n} because it is equal to the null space of \qquad .
(5) Theorem: Consequently, the λ-eigenspace of A is non-zero if and only if the matrix \qquad is singular.
(6) Theorem: If $\left\{\underline{v}_{1}, \ldots, \underline{v}_{n}\right\}$ are eigenvectors for an $n \times n$ matrix A having n different eigenvalues, then
(7) Theorem: The eigenvalues of a matrix A are the zeroes of \qquad .
(8) Theorem: Let $\lambda_{1}, \ldots, \lambda_{r}$ be different eigenvalues for a matrix A. If $\underline{v}_{1}, \ldots, \underline{v}_{r}$ are non-zero vectors such that \underline{v}_{i} is an eigenvector for A with eigenvalue λ_{i}, then $\left\{\underline{v}_{1}, \ldots, \underline{v}_{r}\right\}$ is \qquad .

Linear transformations

(1) Definition: Let V be a subspace of \mathbb{R}^{n} and W a subspace of \mathbb{R}^{m}. A function $T: V \rightarrow W$ is a linear transformation if \qquad
(2) Definition: The range of a linear transformation $T: V \rightarrow W$ is

$$
\mathcal{R}(T):=\left\{__{\square}\right\} .
$$

(3) Definition: The null space of a linear transformation $T: V \rightarrow W$ is

$$
\mathcal{N}(T):=\left\{__{1} \mid \ldots\right\} .
$$

(4) Theorem: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then there is a unique \qquad matrix A such that \qquad for all \qquad . We call A the matrix that represents T.
(5) Theorem: The $j^{\text {th }}$ column of the matrix representing T is \qquad .
(6) Theorem: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then $\operatorname{dim} \mathcal{R}(T)+\operatorname{dim} \mathcal{N}(T)=$ \qquad .
(7) Theorem: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\ell}$ be linear transformations. If A represents S and B represents T, then \qquad represents the composition \qquad .
(8) Theorem: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be linear transformations. If A represents S and B represents T, then \qquad represents $S+T$.

Other topics

(1) Definition: Two $n \times n$ matrices A and B are similar if \qquad
(2) [4 points]

Theorem: If A and B are similar they have the same
(a)
(b)
(c) \qquad
(d)
(3) Definition: An $n \times n$ matrix A is diagonalizable if \qquad
(4) Theorem: Let A be an $n \times n$ matrix. If \mathbb{R}^{n} has a basis consisting of , then A is diagonalizable.
(5) Theorem: Let A be an $n \times n$ matrix. If A has \qquad different
\qquad it is diagonalizable.

Part C.

Some of these questions involve a little calculation.
Scoring: Each question is worth 3 points.
(1) The matrix representing the linear transformation $T(x, y)=(-y, x-2 y)$ is
(2) Let S and T be the linear transformation $T(x, y)=(x+2 y, x-y)$ and $S(x, y)=(-x, 2 x)$. Then $S T(x, y)=$ \qquad _.
(3) The matrix $\left(\begin{array}{cc}1 & a \\ -a & 0\end{array}\right)$ has a real eigenvalue if and only if
\qquad $\leq a \leq$
(4) Let A and B be invertible $n \times n$ matrices. Simplify the following expression as much as possible:

$$
(A B A)^{T}\left((A B)^{T}\right)^{-1} A^{T}\left(B^{-1} A^{T}\right)^{-1} B
$$

(5) $(1,1,1,1)^{T}$ and $(1,2,1,2)^{T}$ are solutions to the two (different!) equations
\qquad and
(6) The vectors $\left(1, \overline{1,1,1)^{T}}\right.$ and $(1,2,1,2)^{T}$ belong to the 2-dimensional subspace of \mathbb{R}^{4} consisting of solutions to the two equations \qquad
(7) The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
f(x, y)= \begin{cases}(x+y, x-y) & \text { if } x \geq 0 \text { and } y \geq 0 \\ (x-y, x+y) & \text { otherwise }\end{cases}
$$

is not a linear transformation because \qquad
(8) Find two linearly independent vectors that lie on the plane in \mathbb{R}^{4} given by the equations

$$
\begin{array}{r}
x_{1}-x_{2}+x_{3}-4 x_{4}=0 \\
x_{1}-x_{2}+x_{3}-x_{4}=0
\end{array}
$$

(9) Is $(1,2,1,0)$ a linear combination of the vectors in your answer to the previous equation? Why?
(10) Find a basis for the line $x_{1}-2 x_{2}=2 x_{2}+x_{3}=3 x_{1}-x_{4}=0$ in \mathbb{R}^{4}.

