
Math 308 The language of sets October 2, 2009

Every area of human enquiry develops its own technical language. Those lan-
guages are often impenetrable to outsiders. There are good reasons for this. We
want precise terminology. We want words that will distinguish things that are dif-
ferent. Those things may appear the same to an outsider but the experts in the
field need to distinguish them.

For example, there are wonderful words to distinguish colors with a precision that
most of us don’t need. Violet, lavender, indigo, lavender indigo, patriarch, purple,
lilac, mauve (named after the Dutch painter Anton Mauve), fandango, heliotrope,
plum, royal purple, and many more, are all variations on what you might simply
call purple or violet. You don’t need to make these fine distinctions but people in
the fashion industry, design, painting, etc., do.

Math is no exception in this regard. In Math 308 I want to use some of that lan-
guage, the language of sets, and this note is a brief guide to some of it. Set-theoretic
notation and language permeates mathematics from 300-level courses onwards so
if you want to do any math courses beyond this one you better get used to it.

1. Sets

A set is a collection of things. Not necessarily mathematical things: there is
the set of US presidents, past and present, the set of people who are alive, the set
of living women, the set of living men, the set of living mothers, the set of living
daughters, the set of living sons, and so on. Mathematical examples include the
set of whole numbers (called integers), the set of prime numbers, the set of even
numbers, the set of odd numbers, the set of squares, and so on.

Usually we use an upper case letter to denote a set and when specifying the set
we use curly parentheses. For example, we could write

A = {living mothers}
P = {prime numbers}
E = {even numbers}
O = {odd numbers}

Some sets have special names and we will use those names/symbols. For example,

N = {the natural numbers} = {0,1,2,3, . . . }
Z = {integers} = {whole numbers}
Q = {rational numbers} = {fractions}
R = {real numbers}
C = {complex numbers}

1.1. Elements. The things that belong to a set are called its elements. For exam-
ple, 3 is an element of the set P above because it is a prime number. We often use
lower case letters for the elements of a set. When x is an element of a set X, we
write x ∈ X, and read this as x is an element of X or x belongs to X or X contains
x or, simply, x is in X.

We use the symbol ∅ to denote the set having no elements at all and call it the
empty set. It might seem a little odd to talk about the empty set and to have a
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special symbol for it, but think of the parallel with the symbol we use for zero, 0.
It is quite interesting to read about the history of zero on Wikipedia. Check it out!

1.2. Containment. We say that a set X is contained in a set Y if every element
of X is an element of Y . More formally, we say X is a subset of Y if it is contained
in Y and write

X ⊂ Y

to denote this situation. Thus the symbol “⊂” is read as is a subset of or is contained
in. For example,

Z ⊂ Q ⊂ R ⊂ C.

Of course, we also have X ⊂ X for every set X. And ∅ ⊂ X for all sets X.
A set is completely determined by its elements. If two sets have the same ele-

ments they are equal. If they don’t have the same elements the sets are not the
same. Often in mathematics one wants to show two sets X and Y , often described
in different ways, are the same. It is quite common to prove the equality of two
sets X and Y by proving that X ⊂ Y and Y ⊂ X. In other words, X = Y if and
only if X ⊂ Y and Y ⊂ X

1.3. Intersection and union. There are two important operations on sets, inter-
section and union. They bear some resemblance to addition and multiplication of
numbers.

The intersection of sets X and Y is the set denoted X ∩ Y consisting of the
elements that are in both X and Y . Using our examples above, we have, for
example,

P ∩ E = {2}
because 2 is the only even prime number. You may know that there are infinitely
many primes, so P ∩ O is an infinite set, i.e., it has infinitely many elements.
Notice we wrote P ∩E = {2} not P ∩E = 2. There is an important difference—the
intersection of two sets is a set, and the number 2 is different from the set whose
only element is 2.

The union of sets X and Y is the set denoted X ∪ Y consisting of the elements
that are in either X or Y . For example, {1, 2, 3} ∪ {2, 3, 4} = {1, 2, 3, 4}. Likewise,

O ∪ E = Z

because every number is either even or odd. Notice that

O ∩ E = ∅

because there are no numbers that are both even and odd.
If X is a subset of Y it is clear that X ∩ Y = X and X ∪ Y = Y .

1.4. Some basic properties. You already know the basic properties of the arith-
metic operations + and ×. For example, there are the associative rules,

a + (b + c) = (a + b) + c and a× (b× c) = (a× b)× c

which implies that the expressions a + b + c and a × b × c are unambiguous. You
also know that

a + b = b + a and a× b = b× a.

Slightly more sophisticated is the distributive rule

a× (b + c) = a× b + a× c
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which involves both operations, addition and multiplication. And zero has two
special properties

0× a = 0 and 0 + a = a

for all numbers a.
There are analogous properties for the set operations ∪ and ∩. For any sets X,

Y , and Z,

X ∪ Y = Y ∪X

X ∩ Y = Y ∩X

X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z

X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z

X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z)

X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z)
∅ ∩X = ∅
∅ ∪X = X.

Mathematicians like it when there are similarities like this between the arithmetic
operations + and × and the set operations ∪ and ∩. Of course, there are some
significant differences too. For example, X∩X = X∪X = X. One other difference
is that there are two distributive laws for ∩ and ∪ but only one distributive law for
+ and × (+ does not distribute across ×).

All these properties are easy to check. The only ones that might require some
care are the distributive laws. You should try to prove them yourself. The strategy
to use is that I mentioned earlier for showing two sets are equal: show each is a
subset of the other.

There is also a similarity between ⊂ and ≤. It is a good exercise for you to write
down some of the similarities.

1.5. One more symbol, ”such that”. We already mentioned the set of rational
numbers Q. Of course, you already know what fractions are but let’s define them
using set notation:

Q =
{

a
b | a, b ∈ Z, b 6= 0

}
. (1)

The vertical symbol | should be read as “such that”. Thus, the mathematical
sentence (1) should be read as follows: Q is the set of all numbers a

b such that a
and b are integers and b is not zero.

Another common notation for “such that” is the colon. Using the colon the
above sentence would be

Q =
{

a
b : a, b ∈ Z, b 6= 0

}
. (2)

In Chapter 3 of the Linear Algebra book you will find lots of sets where the colon
notation is used in the definition of the set.

1.6. A self-test. How many elements in ∅? How many elements in {1}? How
many elements in {1, {1}}? How many elements in {1, 2, 3}? How many elements
in {1, 2, 3, 4, 4}? How many elements in {∅, {1}, {{1}}, 1, 0}? The answers are
0,1,2,3,4,5. Do you understand why?
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1.7. Potential confusion. Some people confuse the symbols ∈ and ⊂. For exam-
ple, 2 ∈ Z, but {2} ⊂ Z; the statement 2 ∈ Z is the same as the statement “2 is an
integer”; the statement {2} ⊂ Z is the same as the statement “the set whose only
element is 2 is a subset of the set of integers”. It is correct to write {2, 3} ⊂ Z but
not correct to write {2, 3} ∈ Z.

A more mundane example. Let F be the set of all fruits. On my desk I have an
apple and an orange. The apple is an element of F . The orange is an element of
F . The set consisting of the apple and orange on my desk is a subset of F .

Let A = {1, {1}}. Then 1 ∈ A and {1} ∈ A and {1} ⊂ A, but it is not true that
1 ⊂ A. Do you get it? If so, great!


