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Introduction
By means of a suitably graded sheaf theory we introduce a new class of curves, called

weighted projective lines, having an interpretation as lines in an appropriate weighted pro-
jective space Pn(pp), with respect to a weight sequence pp = (p0, . . . , pn) of integers. We
note that our approach to weighted projective spaces is similar to the treatment by
Delorme [8], Dolgachev [10] and Beltrametti-Robbiano [6] but differs sensibly in spirit
and content. Section 1 summarizes those results of joint investigation with D. Baer and P.
Dowbor which are needed to put weighted projective lines into proper perspective; a com-
plete account is under preparation. The main advantage of our approach is that Serre’s
theorem (1.7) holds true, which removes all the pathologies ( [6], Section 3) encountered
in the former treatment of these spaces.

As becomes clear from the results of Sections 2 and 5, a weighted projective line CC
behaves like a smooth projective curve with respect to coherent sheaves and vector bun-
dles on CC. This allows us to use all the methods familiar in this latter situation, see [24],
[32], [1]. So the category of coherent sheaves coh(CC) has Serre-duality (2.2), conse-
quently almost-split sequences (2.3). Each coherent sheaf splits into a direct sum of a vec-
tor bundle and a torsion sheaf (2.4). By means of a Riemann-Roch theorem (2.9) we
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attach a (virtual) genus to CC, which is characteristic for the complexity of the classifica-
tion problem for coh(CC) (5.4).

Our motivation to investigate weighted projective lines originates from the represen-
tation theory of finite dimensional algebras in an attempt to give a geometric treatment
similar to [26] for the so-called canonical algebras, introduced and studied by C. M.
Ringel [30]. Actually there is a bijective correspondence between (isomorphism classes
of) weighted projective lines and canonical algebras, respectively.

The reader will observe that our present treatment differs sensibly from the previous
approach, using a variant of Beilinson’s theorem [5] as the basis for the comparison
between coh(CC) and mod(Λ): By means of a tilting sheaf (3.1) with endomorphism algebra
Λ, we establish an equivalence Db(coh(CC)) = Db(mod(Λop)) of the derived categories of
coh(CC) and the category mod(Λop) of finite dimensional Λ-modules, respectively. A com-
parison theorem (3.3) deduces the consequences of Db(coh(CC)) = Db(mod(Λop)) in the
spirit of tilting theory [20], [7], [21]. As a result, the classification problems for coh(CC)
and mod(Λ), if Λ denotes the canonical algebra attached to CC, are basically equivalent.
We note that the subdivision of indecomposable coherent sheaves on CC into the two
classes of indecomposable vector bundles and torsion sheaves translates by means of tilt-
ing into a subdivision of indecomposable Λ-modules into now three classes (cf. (4.3) and
[30]).

In Section 5 we give a brief account on the classification of indecomposable bundles
on CC if CC has (virtual) genus one. Not unexpectedly, Atiyah’s approach to classify vector
bundles on smooth elliptic projective curves [1] also works in this context. Our exposi-
tion also relies on the work of Narasimhan and Seshadri (see [32]). Thus the comparison
Db(coh(CC)) = Db(mod(Λop)) establishes a link between Atiyah’s classification of vector
bundles on elliptic curves and Ringel’s classification for modules over canonical algebras
of tubular type [30]. From a geometric point of view this interrelation is explained by
Example 5.8.

Theorem 5.1 relates the classification of vector bundles on CC to the study of graded
Cohen-Macaulay modules; a detailed account will be given elsewhere.

The authors acknowledge the support of the Deutsche Forschungsgemeinschaft (SPP
Darstellungstheorie). The second-named author wishes to thank C. S. Seshadri for help-
ful discussions pointing out the interrelations of weighted projective lines to the concept
of curves with parabolic structure [32].
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1. Weighted projective spaces and weighted projective lines
Throughout k denotes an algebraically closed field of arbitrary characteristic.

1.1. Let pp = (p0, . . . , pn) be an (n + 1)-tuple of integers pi ≥ 1, called the weight
sequence. The affine algebraic group

G( pp) = {(t0 , t1, . . . , tn) ∈ (k*)n+1 | t p0
0 = t p1

1 = . . . = t pn
n } (1.1.1)

acts on affine (n + 1)-space An+1 = kn+1 by multiplication

(t0 , t1, . . . , tn) (x0 , x1, . . . , xn) = (t0 x0, . . . , tn xn).

If L(pp) denotes the rank one abelian group on generators →x0 , →x1, . . . , →xn with rela-
tions p0

→x0 = p1
→x1 = . . . = pn

→xn, clearly the group Hopf algebra k[L(pp)] of L(pp) repre-
sents the affine algebraic group G(pp). Hence the above G(pp)-action on An+1 corresponds
to a graduation of the polynomial algebra S = k[X0 , X1, . . . , Xn] with grading group L(pp);
the graduation being specified by defining Xi to be homogeneous of degree →xi. (Notation:
deg(Xi) = →xi). Thus S carries a decomposition S =

→

l ∈L(pp)
+ S→

l into k-subspaces satisfying

S→

l S →m ⊂ S→

l + →m for all
→

l , →m ∈L(pp); moreover Xi ∈ S →xi
for i = 0, . . . , n. We use the notation

S(pp) for the L(pp)-graded algebra thus defined.
To each sequence λλ = (λ0, . . . , λ n) of pairwise distinct elements of P1(k), normalized

such that λ0 = ∞ , λ1 = 0 , λ2 = 1, we attach the two-dimensional subvariety FF(pp , λλ)
of An+1, giv en by the equations

X pi
i = X p1

1 − λ i X
p0
0 , i = 2, . . . , n. (1.1.2)

FF(pp , λλ) is stable under the G(pp)-action just described. Accordingly, the elements
fi = X pi

i − X p1
1 + λ i X p0

0 , (i = 2, . . . , n) generate a homogeneous ideal I (pp , λλ) of S(pp).
Hence

S( pp , λλ) = k[X0 , X1, . . . , Xn]/I (pp , λλ) = k[x0 , x1, . . . , xn] (1.1.3)

is again L(pp)-graded with deg(xi) = →xi.
We are now going to endow the (set-theoretic) quotients Pn(pp) = kn+1 − {0}/G(pp) and

CC( pp , λλ) = FF(pp , λλ)/G(pp) with an L(pp)-graded sheaf theory, defining on Pn(pp) and
CC( pp , λλ) the geometric structure of a weighted projective space, a weighted projective
line, respectively.
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1.2. Call →c =  p0
→x0 = . . . = pn

→xn the canonical element of L(pp). For reasons, which will
become clear later, →ω = (n − 1)→c −

n

i=0
Σ →xi is called the dualizing element. L(pp) is an

ordered group with L+ =
n

i=0
Σ N →xi as its set of positive elements. Since

L(pp)/Z →c =̃
n

i=0
ΠZ/piZ canonically, each

→

l ∈L(pp) can be uniquely written in normal form

→

l =
n

i=0
Σ li

→xi + l→c with 0 ≤ li < pi and l ∈Z. (1.2.1)

If
→

l , →m are both in normal form,
→

l ≤ →m if and only if li ≤ mi for i = 0, . . . , n and l ≤ m.

Since →c + →ω =
n

i=0
Σ(pi − 1)→xi −

→c is in normal form, we see that each
→

l ∈L(pp) satisfies

exactly one of the two possibilities: 0 ≤
→

l or
→

l ≤ →c + →ω .
Let p = l.c.m. ( p0, . . . , pn). We define the degree map δ : L(pp) −→ Z on generators by

δ (→xi) =
p
pi

. δ is an epimorphism of ordered groups, its kernel being the torsion group of

L(pp). Note that δ (
→

l ) = 0 implies p
→

l = 0.
For an L(pp)-graded algebra ModL(pp)(S), modL(pp)(S) and mod0

L(pp)(S) denote the cate-
gories of all (all finitely generated, all finite length) L(pp)-graded S-modules, respectively,
with morphisms the S-linear homogeneous maps of degree 0. L(pp) acts on each of this
categories by twist (M , →x) −→ M(→x), where M(→x)→y = M →x+→y . Similar notations are used
for ungraded, also for L+-graded modules.

1.3. For the applications we have in mind, the following proposition serves as the basic
tool:

Proposition. S(pp) and S( pp , λλ) are L(pp)-graded factorial domains, i. e. up to scalars
each homogeneous element is a product of homogeneous prime elements. Up to scalars a
complete system of homogeneous prime elements for S(pp) or S(pp , λλ) is given by

(i) the elements X0 , X1, . . . , Xn ∈ S(pp) , (x0 , x1, . . . , xn ∈ S(pp , λλ)), called the excep-
tional prime elements of S( pp) , S( pp , λλ), respectively.

(ii) the elements f (X p0
0 , . . . , X pn

n ) , ( f (x p0
0 , x p1

1 )), called the ordinary prime elements,
where f is an irreducible homogeneous element of the polynomial algebra
k[T0 , T1, . . . , Tn] , (k[T0 , T1]), not associated to any T0 , T1, . . . , Tn, (T0 , T1), respec-
tively. Here, as usual, both polynomial algebras are Z-graded by total degree.
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Moreover, x0 , x1, . . . , xn, (x0 , x1) is an L(pp)-homogeneous regular sequence for S(pp)
or S(pp , λλ), respectively. In particular, S(pp) , S(pp , λλ) has graded and ungraded Krull
dimension n+1 or 2, respectively. Also x0 , x1 , f2, . . . , fn is a regular sequence for S(pp).

Since we assume that k is algebraically closed, the elements

x p1
1 − λ x p0

0 , λ ∈ k − {λ0, . . . , λ n} (1.3.1)

constitute a complete set of ordinary primes for S(pp , λλ).

Proof. Let first S denote the algebra S(pp). We may view the restriction

R(pp) =
∞

l=0
+ Rl , Rl = Sl→c

of S to the subgroup Z →c of L( pp) as a Z-graded algebra, called the core of S. Clearly,
R( pp) = k[X p0

0 , . . . , X pn
n ] is the Z-graded polynomial algebra over k in the indeterminates

X p0
0 , . . . , X pn

n , and Rl consists of all homogeneous polynomials of total degree l in
X p0

0 , . . . , X pn
n . Moreover if

→

l ∈L(pp) is written in normal form (1.2.1) we have

S( pp)→

l = Xl0
0

. . . Xln
n R(pp)l , where 0 ≤ li < pi , l ∈Z. (1.3.2)

Similarly, the core of S( pp , λλ) is the polynomial algebra R(pp , λλ) = k[x p0
0 , x p1

1 ] and

S(pp , λλ)→

l = xl0
0

. . . xln
n R(pp , λλ)l , where 0 ≤ li < pi , l ∈Z. (1.3.3)

The assertions now follow from (1.3.2) and (1.3.3).
As is clear from (1.3.2) and (1.3.3) we have S→

l ≠ 0 if and only if
→

l ≥ 0.
The role of the algebras S(pp , λλ), with p0, . . . , pn pairwise coprime, is explained by a

theorem of Mori [27], stating that for an algebraically closed base field k these are just the
Z-graded affine k-algebras S with S0 = k, which are graded factorial of Krull dimension
two.

1.4. Let S be either S(pp) or S( pp , λλ) and R be the core of S. If T is a multiplicative subset
of R, consisting of homogeneous elements, the quotient ring T −1S is again L(pp)-graded:
(T −1S)→

l consists of all homogeneous quotients s
t
, where s ∈ S, t ∈ T both are homoge-

neous and deg(s) - deg(t) =
→

l . Replacing T by T p = {t p | t ∈ T }, if necessary, we may
always assume that T is contained in R. In this case, for

→

l ∈L(pp) written in normal form
(1.2.1) we get

(T −1S)→

l = Xl0
0

. . . Xln
n (T −1 R)l. (1.4.1)
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If T is the set of all homogeneous non-zero elements of R, Q = T −1S is the total ring
of homogeneous quotients. Its zero-component Q0 is the field of rational functions

k(
X p1

1
X p0

0
, . . . ,

X pn
n

X p0
0

) or k(
x p1

1
x p0

0
), according as S = S(pp) or S = S(pp , λλ). Moreover, passage

to the zero-component

modL( pp)(Q) −→ mod (Q0), M −→ M0

defines a category equivalence. We express this fact, stating that the L(pp)-graded algebra
Q is Morita-equivalent to the algebra Q0.

1.5. Let XX be either Pn(pp) or its subset CC(pp , λλ), accordingly S stands either for S(pp) or
S( pp , λλ). For

→

l = l0
→x0 + . . . + ln

→xn and t = (t0 , t1, . . . , tn) ∈G(pp) we write
→

l (t) = t p0
0

. . . t pn
n , (1.5.1)

which identifies
→

l with a character of G(pp), actually L(pp) with Hom(G(pp) , k*). We hav e

f (tx) =
→

l (t) f (x) for f ∈ S→

l , x ∈ kn+1 , t ∈G(pp). (1.5.2)

This allows to form the sets

D( f ) = {[x] ∈ XX | f (x) = 0} ,  f ∈ S homogeneous ,

which form a basis for the Zariski topology on XX . As usual V( f ) denotes the complement
of D( f ) in XX . The structure sheaf OOXX is the sheaf of L(pp)-graded k-algebras attached to
the presheaf D( f ) → S f , f ∈ S homogeneous. S f denotes the L(pp)-graded quotient ring
T −1S, where T is the multiplicative set generated by f . As usual ( [17]), we have

Γ (D( f ) , OOXX ) = S f (1.5.4)

if f is a homogeneous element of S+ =
→

l >0
+ S→

l . By graded normality of S (cf. Proposition

1.3), we also get

Γ (XX , OOXX (→x)) = S(→x) for each →x ∈L(pp). (1.5.5)

As a result, OOXX is an L( pp)-graded sheaf of algebras

OOXX =
→

l ∈L(pp)
+ (OOXX )→

l . (1.5.6)

We note that our approach differs sensibly from the traditional treatment of weighted pro-
jective spaces [ 8], [10], [6] where the 0-component (OOXX )0 of OOPn(pp) serves as the structure
sheaf. (In order to make this comparison possible, we have to assume that p0, . . . , pn are
pairwise coprime, so L( pp) = Z.).
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The weight pp(t) of a point t = [t0, . . . , tn] is defined as Π {p j | t j = 0}. A point t is
called ordinary if pp(t) = 1, otherwise t is called exceptional. It follows from Proposition
1.3 that we may view CC(pp , λλ) as a curve in Pn(pp), which is a complete intersection since
the defining equations fi = X pi

i − X p1
1 + λ i X

p0
0 form a regular sequence of homogeneous

elements in S(pp). Actually we prefer to call CC(pp , λλ) a weighted projective line in Pn(pp):
the map

Pn(pp) −→ Pn(k) , [x0 , x1, . . . , xn] −→ [x p0
0 , . . . , x pn

n ] (1.5.7)

allows to identify both spaces set-theoretically. By means of (1.5.7) the defining equa-
tions for CC(pp , λλ) convert into equations defining a line in PPn(k). Accordingly

CC( pp , λλ) −→ PP1(k) , [x0 , x1, . . . , xn] −→ [x p0
0 , x p1

1 ] (1.5.8)

is a bijection. By means of this correspondence the exceptional points of CC(pp , λλ) are just
converted to the system λ0, . . . , λ n, attaching weight pi to λ i.

1.6. The stalk OOXX , t of the structure sheaf OOXX at t ∈ XX is given by

OOXX , t = {
f
g

| f , g ∈ S ,  g homogeneous with g(t) ≠ 0}. (1.6.1)

This ring is always L(pp)-graded regular local of dimension n + 1 if XX = Pn(pp), and an
L(pp)-graded discrete valuation ring if XX = CC(pp , λλ). Notice that R is called a graded local
ring if R has a unique homogeneous maximal ideal. Moreover regularity means that R has
finite graded global dimension n. If additionally n = 1 we deal with a graded discrete val-
uation ring. For an ordinary point t, i. e. if all homogeneous coordinates ti are non-zero,
OOXX , t is Morita-equivalent to its zero-component, which according to (1.4.1) is isomorphic
to the (now ungraded) localization of the polynomial algebra k[T1, . . . , Tn] with respect to
the maximal ideal (T1 − t1, . . . , Tn − tn) or to the localization of k[T ] with respect to (T − t1)
according as XX = Pn( pp) or XX = CC( pp , λλ), respectively. Here, we assume t0 = 1. Thus for
an ordinary point, the category modL( pp)(OOXX , t) of finitely generated L(pp)-graded modules
over OOXX , t has exactly one simple module, up to isomorphism.

By contrast for an exceptional point t of XX modL(pp)(OOXX , t) has exactly pp(t) isomor-
phism classes of simple modules. Accordingly, modL(pp)(OOXX , t) has exactly pp(t) isomor-
phism classes of indecomposable projective modules, necessarily of the form OOXX , t(

→x) for
some →x ∈L(pp).

For T an indeterminate let A be the discrete valuation ring obtained from k[T n] by
localizing at the maximal ideal (T n). It is easily checked from (1.4.1) that if XX = CC(pp , λλ)
and t denotes a point of weight n, the graded algebra OOXX , t is Morita equivalent to the
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subring of Mn(k(T )) given by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A
T n−1 A

.

.

.
TA

TA
A
.

.

.

.

.

.

.

.

.

A
T n−1 A

T n−1 A
.
.
.

TA
A

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This proves that in the L( pp)-graded situation, we basically deal with a non-commutative
sheaf theory.

We may attach a generic point ξ to XX , where the stalk FFξ = (M̃)ξ is given by T −1 M ,
with T the set of all homogeneous non-zero divisors of S. As was shown in (1.4), OOξ is
Morita-equivalent to the function field K of XX . Accordingly, we may view FFξ as a (finite
dimensional) vector space over K , whose dimension is called the rank of FF .

1.7. Again XX stands for either Pn(pp) or CC(pp , λλ). The sheaves on XX we want to consider
are the L(pp)-graded sheaves MM of OOXX -modules. Thus MM is an OOXX -module, carrying an
L(pp)-graduation MM =

→

l ∈L( pp)
+ MM→

l , satisfying OOXX→

l
M →m ⊂ M→

l + →m . Morphisms will be mor-

phisms of graded OOXX -modules of degree 0. Let ModL(pp)(OOXX ) be the resulting category of
L(pp)-graded OOXX -modules. The group L(pp) acts on ModL(pp)(OOXX ) by twist

(
→

l , MM) −→ MM(
→

l ),

where MM(
→

l )→x = MM→

l +→x . Since FF −→ Γ (XX , FF) commutes with the shift operation, (1.5.5)
generalizes to

Γ (XX , OOXX (→x)) = S(→x) for each →x ∈L(pp). (1.7.1)

A coherent sheaf on XX is by definition an L(pp)-graded OOXX -module MM , where for each
x ∈ XX there is an open neighbourhood U of x and an exact sequence

m

j=1
+ OOXX (

→

l j)|U −→
n

i=1
+ OOXX (

→

l i)|U −→ MM |U −→ 0 (1.7.2)

of L(pp)-graded OOU -modules. coh(XX) is the full subcategory of ModL(pp)(OOXX ) consisting
of all coherent sheaves on XX . Quasicoherent sheaves are similarly defined, allowing infi-
nite direct sums in (1.7.2). Qcoh(XX) denotes the category of all quasicoherent sheaves on
XX . Both coh(XX) and Qcoh(XX) are stable under the twisting operation of L(pp).

Given MM , NN ∈ModL(pp)(OOXX ), the presheaves of L(pp)-graded OOXX -modules given by
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U −→ MM(U)×OOXX (U) NN (U),

U −→ HOMOOXX (U)(MM(U) , NN (U)),

U −→ Λp MM(U) , respectively ,

allow to define the tensor sheaf MM×OOXX
NN , the homomorphism sheaf HomOOXX

(MM , NN ) and the
p-th exterior power sheaf Λp MM . Note for this purpose that MM(U)×OOXX (U) NN (U) is
L(pp)-graded, its homogeneous component of degree

→

l being spanned by all m× n with
m ∈MM(U)→x , n ∈ NN (U)→y and →x + →y =

→

l . The L(pp)-grading on Λp MM(U) is given by a simi-
lar procedure. The homogeneous component of HOM(MM(U), NN (U)) of degree

→

l consists
by definition of all morphisms of OOXX (U)-modules of degree

→

l .
Clearly, MM(

→

l ) = OOXX (
→

l )×OOXX
MM , moreover coh(XX) is stable under the above operations.

1.8. Following Serre [31] (see also [17]) we define a sheafification functor
˜ : ModL(pp)(S) −→ ModL( pp)(OOXX ), M −→ M̃ , where M̃ is the L(pp)-graded OOXX -module
attached to the presheaf

D( f ) → M f , f ∈ S homogeneous , (1.8.1)

of L(pp)-graded OOXX -modules. Hence M f consists of all fractions m
f n (m ∈ M ,  n ∈ N ). In

contrast to the traditional approach, we do not restrict to the zero-component of M f . As
in (1.5.4) we get

Γ (D( f ) , M̃) = M f , if f ∈ S+ is homogeneous. (1.8.2)

Again in contrast to [8], [10], [6], we have Serre’s theorem (compare [31], [17]),
which allows to remove all pathologies of weighted projective spaces encountered in
these papers (compare for instance Section 3 of [6]):

Serre’s theorem. Let XX denote either Pn(pp) or CC(pp , λλ), accordingly S be either the
L(pp)-graded algebra S(pp) or S( pp , λλ). Then

(i) Sheafification ˜ : modL+(S) −→ coh(XX), M −→ M̃ is an exact functor, which
admits

Γ+: coh(XX) −→ modL+(S) , MM −→
→

l ≥ 0
+ Γ (XX , MM)→

l

as a right adjoint. Γ+ is a full embedding satisfying Γ+(MM)˜ = MM for all MM ∈ coh(XX).
(ii) Sheafification annihilates exactly the M ∈modL+(S), which have finite length, and

induces an equivalence
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modL+(S)/modL+
0 (S) −→ coh(XX) , M −→ M̃

of abelian categories.
(iii) The full subcategory AA of modL+(S) consisting of all M, satisfying

Hom(E , M) = 0 = Ext1S(E , M) for all simple objects E in modL+(S) ,

is an abelian category. Moreover ˜ and Γ+ induce mutually inverse equivalences
˜ : AA −→ coh(XX) and Γ+: coh(XX) −→ AA.

(iv) The passage coh(XX) −→ modL(pp)(OOXX , ξ ) , FF → FFξ is an exact functor and
induces an equivalence between coh(XX)/Ker T and the category mod(k(XX)) of finite dimen-
sional vector spaces over the function field of XX. If XX = CC(pp , λλ), Ker T is the subcategory
coh0(XX) of all finite length coherent sheaves.

Proof: Since for a quasicoherent sheaf FF , each section s ∈ Γ (D( f ) , FF) extends to a
global section of FF - up to multiplication with a suitable power of f - each quasicoherent
(coherent) sheaf on XX has the form M̃ for some M ∈ModL(pp)(S), M ∈modL(pp)(S), respec-
tively.

For f a homogeneous element of S+ , D( f ) is an affine open subset of XX . By defini-
tion this means that the functor

ModL( pp)(OOD( f )) −→ ModL(pp)(S f ) , M −→ Γ (D( f ) , MM)

induces category equivalences

Γ : Qcoh(D( f )) −→ ModL(pp)(S f ) and Γ : coh(D( f )) −→ modL(pp)(S f ) ,

respectively, with inverse given by sheafification M −→ M̃ similar to the one explained
before. Since

Γ (D( f ) , M̃) = M f , (1.8.3)

we obtain the formula

M̃ |D = (M f )˜ (1.8.4)

as an equivalent assertion.
If FF is quasi-coherent, thus FF = M̃ , this proves by restriction to the various D( f ) that

β FF : (ΓFF)˜ −→ FF , (1.8.5)

given by the maps

βD: (ΓFF) f −→ Γ (D , FF) ,
s

f n −→
1
f n s|D
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is an isomorphism of sheaves.
Moreover, giv en M∈ModL(pp)(S) , FF∈ModL(pp)(OOXX ), the map

φM : Hom(M , ΓFF) −→ Hom(M̃ , FF) , u −→ β FF ũ (1.8.6)

is an isomorphism for each M = S(
→

l ). Viewing both expressions as functors in M , this
clearly implies that φM is always an isomorphism. This proves adjointness.

In order to prove assertion (iii), we first show that modL+
0 (S) is localizing in modL+(S),

which means by definition that the natural functor

T : modL+(S) −→ modL+(S)/modL+
0 (S) , M −→ M

has a left adjoint. According to ( [12], p. 372) this amounts to verify the following prop-
erty (*) for the full subcategory AA of modL+(S), consisting of all modules M with
HomS(E , M) = 0 = Ext1S(E , M) for all simple E in modL+(S):

(*) Each M in modL+(S) has a submodule M ʹ′, maximal among all submodules of finite
length. Moreover if M ʹ′ = 0, there is an exact sequence 0 −→ M −→ A −→ F −→ 0
with A ∈ AA and F ∈modL+

0 (S).
The first assertion follows since S is noetherian. We note that - if k = S/S+ - the sim-

ple S-modules are - up to isomorphism - of the form k(
→

l ), moreover Ext1S(k(
→

l ) , k( →m)) ≠ 0
implies

→

l ≤ →m. From the graded Koszul complex, attached to the regular sequence
X0 , X1, . . . , Xn for S = S(pp) and x0 , x1 for S = S(pp , λλ), respectively, we deduce that the
set of all

→

l ∈L+ with Ext1(k(
→

l ) , M) ≠ 0, hence also its closure E(M) with respect to prede-
cessors, is finite. We are now going to prove our second assertion by induction on the car-
dinality e(M) of E(M). If e(M) = 0, we are done. Otherwise, there is a non-split exact
sequence 0 −→ M −→ M −→ k( →m) −→ 0 with →m maximal in E(M). We infer from the
exactness of

0 −→ HomS(k(
→

l ) , k( →m)) −→ Ext1(k(
→

l ) , M) −→ Ext1(k(
→

l ) , M) −→ Ext1(k(
→

l ) , k( →m))

that E(M) ⊂ E(M), moreover that dimkExt1(k( →m) , M) < dimkExt1(k( →m) , M). Repeating
this process, we may assume e(M) < e(M). Since M has no simple submodules, the
induction hypothesis applies to M , so M , hence M , embeds into some A ∈ AA with a
finite length cokernel.

We are now going to prove that Γ+(FF) is a finitely generated L+-graded S-module: By
the previous argument, FF = M̃ for some M ∈ AA. This yields an exact sequence
0 −→ M −→ Γ+(M̃) −→ H −→ 0, where each finitely generated submodule of H has
finite length. If H ≠ 0, we find a simple submodule E of H . Since M ∈ AA, E embeds into
Γ+(M̃), which is impossible by (1.8.6), since S̃ = 0. Note for this purpose that M̃ = 0 if
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and only if M f = 0 for some homogeneous f ∈ S+.

1.8.1. Corollary. All homomorphism spaces of coh(XX) are finite dimensional over k; in
particular coh(XX) is a Krull-Schmidt category, i.e. each FF ∈ coh(XX) has a decomposition
FF = FF1+ . . .+ FFn where each FFi is indecomposable with local endomorphism ring.
Moreover, we have Hom(OO(→x) , OO(→y)) = S →y−→x for all →x , →y ∈L(pp).

1.8.2. Corollary. If K denotes the function field of XX, the formula r(FF) = dimK (FFξ )0

defines a linear form r: K0(XX) −→ Z, called the rank function. Moreover if XX = CC(pp , λλ),
r(FF) = 0 if and only if FF has finite length.

1.8.3. Corollary. Each coherent sheaf FF ∈ coh(XX) has an exact resolution
. . . −→ LL2 −→ LL1 −→ LL0 −→ FF −→ 0 ,

where each Li is a finite direct sum of sheaves of the form OOXX (→x). Moreover for
XX = Pn(pp) we may assume LL j = 0 for j ≥ n + 2.

Proof: Use gl.dim S(pp) = n + 1.
Actually as may be derived from our comparison theorem in Section 3, a stronger

result holds true: We may assume LL j = 0 for j ≥ n + 1 or LL j = 0 for j ≥ 2 according as
XX = Pn(pp) or XX = CC( pp , λλ).

1.9. A coherent sheaf FF ∈ coh(XX) is called a vector bundle if FF is locally free, i. e. XX can
be covered by open subsets U such that

FF |U =
n

i=1
+ OOXX (

→

l i)|U

for suitably chosen
→

l i, depending on U . The number n is just the rank of FF , defined
before.

We denote the full subcategory of coh(XX), consisting of all vector bundles on XX , by
vect(XX). Usually we use letters as F , G , . . . to denote vector bundles. Since all stalks
OOXX , x have graded global dimension n (1, resp.) according as XX = Pn(pp) or XX = CC(pp , λλ),
each coherent sheaf FF has an (exact) resolution

0 −→ Ln −→ Ln−1 −→ . . . −→ LL0 −→ FF −→ 0 (XX = Pn(pp)) ,

0 −→ LL1 −→ L0 −→ FF −→ 0 (XX = CC(pp , λλ))

by vector bundles Li.
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2. Serre duality and Riemann-Roch theorem
Throughout this section, CC denotes the curve CC(pp , λλ) in weighted projective space

Pn( pp).
We recall that the Picard group Pic(CC) of CC consists of all line bundles (= rank one

vector bundles) on CC with multiplication induced by the tensor product.

2.1. Proposition. The map
→

l −→ OOCC(
→

l ) allows to identify the graduation group L( pp)
with the Picard group Pic(CC).

Proof: S = S(pp , λλ) is L(pp)-graded factorial by Proposition 1.3.
In the following D stands for the formation of the k-dual.

2.2. Serre duality. For FF , GG ∈ coh(CC) we have an isomorphism

DExt1(FF , GG) −→ Hom(GG , FF( →ω )) ,

which is functorial in FF and GG, where →ω = (n − 1)→c −
n

i=0
Σ →xi is the dualizing element of

L(pp).

Proof. Proceeding as in [18], we first calculate the L(pp)-graded Cech cohomology groups
of XX = Pn(pp) attached to the affine open covering, consisting of all D(Xi) , i = 0, . . . , n.
By means of the regular sequence X0, . . . , Xn for S(pp) it then follows that

DHi(XX , OOXX ) = Hn−i(XX , OOXX (−
n

i=0
Σ →xi)) (2.2.1)

for each i = 0, . . . , n. Note for this purpose that for each M ∈ModL(pp)(S), DM is the
L(pp)-graded module with components (DM)→x = D(M−→x ). OO(−

n

i=0
Σ →xi) occurs in (2.1.1)

since S(−
n

i=0
Σ →xi) is the last non-zero term of the L(pp)-graded Koszul complex attached to

the regular sequence X0, . . . , Xn.
Using ( [15], théor ̀eme 5.9.2) and ( [23], proposition 7.17), it follows that Cech coho-

mology coincides with sheaf cohomology, calculated by means of injective resolutions
either in ModL(pp)(OOXX ) or in Qcoh(XX).

Since the system of defining equations fi = X pi
i − X p1

1 + λ i X
p0
0 , (i = 2, . . . , n)

forms a regular sequence of homogeneous elements of S(pp), each of degree →c, it follows
by standard arguments (see [6], p.57) the existence of an isomorphism of graded S-
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modules (S = S(pp , λλ))

DH1(CC , OOCC) = Γ (CC , OOCC( →ω )) , (2.2.2)

with →ω = (n − 1)→c −
n

i=0
Σ →xi. In particular for each →x ∈L(pp) we obtain a uniquely defined

η →x ∈ DExt1(OOCC(→x) , OOCC(→x + →ω )), corresponding up to twist to the identity in
Hom(OOCC , OOCC) by means of (2.2.2). Yoneda’s lemma yields natural transformations

η →x : Hom(OOCC(→x) , −) −→ DExt1(− , OOCC(→x + →ω )) , (2.2.3)

functorial with respect to morphisms OOCC(→x) −→ OOCC(→y). Actually, we may use the family
of all η →x to define natural morphisms

ηFF , GG : Hom(FF , GG) −→ DExt1(GG , FF( →ω )) (2.2.4)

for each pair FF , GG of coherent sheaves on CC, working with resolutions of FF by direct
sums of twisted structure sheaves, induced by free resolutions of Γ+(FF) in ModL+(S).

Since all stalks of CC have graded global dimension one, each quasi-coherent sheaf MM
has injective dimension at most one (cf. [23], proposition 7.17), so Ext2 vanishes. By
standard arguments (see [24], p. 240) one first proves that ηFF , GG is an isomorphism if
FF = OOCC(→x) and GG is arbitrary; combining right exactness of Ext1 with Corollary 1.8.3 now
proves the assertion.

2.3. Corollary. The category coh(CC) has almost-split sequences. Moreover, twisting
FF → FF( →ω ) with the dualizing element serves as the Auslander-Reiten translation for
coh(CC).

Proof: The assertion means that for each indecomposable coherent sheaf FF there exists a
non-split exact sequence

η: 0 −→ FF( →ω ) −→
u

GG −→
v

FF −→ 0

such that for each indecomposable sheaf XX , each non-isomorphism f : XX −→ FF lifts to GG
via v.

Since FF( →ω ) has a local endomorphism ring, Hom(− , FF( →ω )) - as an abelian group val-
ued additive functor on coh(CC)op - has a (unique) simple quotient HH , necessarily with
HH(FF( →ω )) ≠ 0. By Serre duality DHH becomes a simple subfunctor of Ext1(FF , −) with
DHH(FF( →ω )) ≠ 0. Each non-zero η ∈DHH(FF( →ω )) ⊂ Ext1(FF , FF( →ω )) represents an almost-
split sequence.
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For further information on almost-split sequences we refer to [2], [14].
For non-singular projective curves the above proof is due to Schofield. Indepen-

dently, alternative existence proofs were given by Auslander and Reiten, based on the
methods of [3], also by the authors using their comparison theorem (see Section 3). If the

weight sequence determines a Dynkin diagram, i.e. for
n

i=0
Σ

1
pi

> n − 1, Propositions 2.2 and

2.3 are covered by [26].
As we may deduce from Serre’s theorem, each coherent sheaf FF has a greatest sub-

sheaf of finite length tFF , called the torsion sheaf of FF . FF /tFF has no simple subsheaves,
so is torsion-free. Note that FF = tFF if and only if FF has finite support {x∈CC | FFx≠ 0}.

2.4. Proposition. Each coherent sheaf FF on CC has a decomposition FF = tFF +  F, where
tFF is the torsion sheaf of FF and F =̃ FF /tFF is a vector bundle. In particular, each sub-
sheaf of a vector bundle is a vector bundle again.

Proof: We claim that the sequence

0 −→ tFF −→ FF −→ FF /tFF −→ 0

splits, moreover that FF /tFF is locally free. Since tFF has finite support, both properties are
of a local character. Passing to modL( pp)(S f ) the proof of the corresponding assertions fol-
lows from the fact that S f is an L( pp)-graded Dedekind domain. Note for this purpose that
all stalks of OOCC are graded discrete valuation domains (cf. (1.6)).

For x ∈CC let cohL( pp)(CC)x denote the full subcategory of coherent sheaves with sup-
port in x. Clearly,

coh(CC)x −→ mod0(OOCC , x) , FF → FFx

defines an equivalence; moreover coho(CC), the category of all torsion sheaves decomposes
into

x ∈CC
|__| coh(CC)x.

2.5. Proposition. The category coho(CC) of torsion sheaves on CC decomposes into a
coproduct

x ∈CC
|__| mod0

L(pp)(OOCC , x) of uniserial categories. The number of isomorphism

classes of simple modules in mod0(OOCC , x) is given by the weight pp(x) of x.

Proof. Each stalk OOCC , x is a graded discrete valuation ring, its number of simple graded
modules is given by the weight pp(x) of x.
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For later use we give the following explicit description of simple sheaves on CC:

If x = [x0 , x1, . . . , xn] is an ordinary point and λ =
x p1

1
x p0

0
, multiplication with

u =  X p1
1 − λX p0

0 leads to an exact sequence

0 −→ OOCC −→
u

OOCC(→c) −→ SS −→ 0 , (2.5.1)

where SS is the unique simple sheaf concentrated at x.
By contrast, if x is exceptional with xi = 0, multiplication by Xi leads to exact

sequences

0 −→ OOCC( j →xi) −→
Xi OOCC(( j + 1)→xi) −→ SSi ,  j −→ 0 , j ∈Z/piZ , (2.5.2)

defining pi mutually non-isomorphic simple sheaves concentrated at x.
As is easily checked,

SS(→x) =̃ SS for all →x ∈L(pp) , (2.5.3)

if SS is ordinary simple. For the exceptional simple sheaves

SSi ,  j(
→x) =̃ SSi ,  j + li

, for →x =
n

r=0
Σ lr

→xr. (2.5.4)

In particular, SSi ,  j(
→ω ) = Si ,  j−1.

So the classification of (indecomposable) coherent sheaves reduces to the classifica-
tion of vector bundles. Here, the existence of a line bundle filtration serves as the basic
tool:

2.6. Proposition. Each vector bundle F on CC has a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F  ,

whose factors Fi/Fi−1 are line bundles, hence of the form OOCC(
→

l i) for suitably chosen
→

l i ∈L(pp).

Proof. We proceed by induction on r(F). As follows from Serre’s theorem, we may
assume by a suitable twist that Hom(OOCC , FF) ≠ 0, hence OOCC may be viewed as a subsheaf
of FF . If F1 ⊂ F is chosen with F1/OOCC = t(FF /OOCC), F1 is clearly a line bundle and even a
subbundle of F , i. e. F /F1 is a vector bundle again. The assertion now follows from the
induction hypothesis.
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2.7. Corollary. Let x ∈CC. If F is a vector bundle on CC of rank n, there is an exact
sequence

0 −→ F −→
n

i=1
+ Li −→ HH −→ 0

in coh(CC), where each Li is a line bundle and HH is concentrated at x.

Proof. We proceed by induction on n. Choose an exact bundle sequence
0 −→ Fn−1 −→ F −→ Ln −→ 0 as in (2.6), where LLn is a line bundle . By assump-

tion Fn−1 embeds into a direct sum
n−1

i=1
+ Li with cokernel concentrated at x. Replacing - if

necessary - each Li by some Li(l
→c), by means of Serre duality we may assume that

Ext1(Ln , L j) = 0 for all j = 1, . . . , n. Passage to the push-out

0 −→ Fn−1 −→ F −→ Ln −→ 0
↓ ↓ ||

0 −→
n−1

j=1
+ L j −→ G −→ Ln −→ 0

proves that F embeds into G =̃
n

i=1
+ Fi, again with cokernel concentrated at x.

As follows from the foregoing, the classes [OOCC(
→

l i)] form a system of generators for
the Grothendieck group K0(CC), which is defined as the Grothendieck group of coh(CC) with
respect to short exact sequences. The previous discussion shows that equivalently [OOCC]
and the classes [SS] of simple sheaves generate K0(CC). Actually the classes [OOCC(→x)], for
0 ≤ →x ≤ →c, form a Z-basis for K0(CC), as we will see later. As usual, we view linear forms
on K0(CC) as functions on coh(CC), which are additive on short exact sequences.

Since Ext2 vanishes on coh(CC), the Euler characteristic given by

χ : K0(CC) −→ Z , [FF] →
1

j=0
Σ (−1) jdimkExt j(OOCC , FF) (2.8.1)

is a linear form on K0(CC). We recall that δ : L(pp) −→ Z is the group homomorphism,
defined on generators by δ (→xi) =

p
pi

, where p = l. c. m. (p0, . . . , pn).

2.8. Proposition. There is a linear form d: K0(CC) −→ Z, called the degree, which is
uniquely determined by each of the following properties

(i) d(OOCC(→x)) = δ (→x) for each →x ∈L(pp).
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(ii) d(OOCC) = 0, and d(SS) =
p

pp(x)
if SS is a simple sheaf, concentrated at x.

Proof. Let χ (FF) =
p−1

j=0
Σ χ (FF(− j →ω )). Using Serre duality, formulas (2.5.1) and (2.5.2) yield

χ (SS) = p if pp(x) = 1 and χ (SSi ,  j) =
p
pi

for 0 ≤ i ≤ n, 1 ≤ j ≤ pi. Hence d: K0(CC) −→ Z

given by

d(FF) = χ (FF) − r(FF)χ (OOCC) (2.8.2)

satisfies condition (ii). Condition (i) now follows by repeated use of exact sequences of
type

0 −→ OOCC(→x) −→ OOCC(→x + →xi) −→ SSi , 0(→x) −→ 0. (2.8.3)

Actually with formula (2.8.2) we have proved the first assertion of Riemann-Roch’s
theorem:

2.9. Riemann-Roch theorem. The averaged Euler characteristic for CC given by

χ (FF) =
p−1

j=0
Σ χ (FF(− j →ω ))

satisfies

χ (FF) = r(FF) χ (OOCC) + d(FF) ,

in particular

χ (OOCC(→x)) = χ (OOCC) + δ (→x)

holds true for each →x ∈L( pp). Moreover
1
p
χ (OOCC) = −

1
2
δ ( →ω ) =

p
2

(
n

i=0
Σ

1
pi
− (n − 1)).

Proof: It remains to prove the last assertion. From Serre duality we get

χ (OOCC( j →ω )) = dimkHom(OOCC , OOCC( j →ω )) − dimkHom(OOCC( j →ω ) , OOCC( →ω ))

for each integer j. Consequently

χ (OOCC) + χ (OOCC(p →ω )) =
p

j=−(p−1)
Σ χ (OOCC( j →ω )) = 0 ,

hence 2 χ (OOCC) + pδ ( →ω ) = 0.
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We hav e already seen that the function field k(CC) of CC is the field k(t) of rational
functions in the indeterminate t. Hence it is in accordance with usual terminology to view
CC as a curve of genus zero. However, Riemann-Roch’s theorem suggests to consider also
the virtual genus of CC, giv en by

gv(CC) = 1 −
1
p
χ (OOCC). (2.9.1)

Accordingly,

gv(CC) = 1 +
1
2
δ ( →ω ). (2.9.2)

3. Tilting from sheaves to modules
In this section we investigate the interrelations between coherent sheaves over

CC = CC(pp , λλ) and representations of a finite dimensional k-algebra Λ, arising as endomor-
phism algebra of a tilting sheaf on CC. In the spirit of Beilinson’s Theorem [5] we show
that the derived categories of coh(CC) and mod(Λop), the category of finite dimensional
right Λ-modules, are equivalent. The equivalence Db(coh(CC)) =̃ Db(mod(Λop)) is made pre-
cise by a comparison result (Theorem 3.3) which states together with its consequences
that the classification problems for coh(CC) and mod(Λop) are basically equivalent.

For an abelian category AA, Db(AA) denotes the derived category of bounded complexes
in AA. We refer to [34] and [23] for the definition and properties of triangulated and
derived categories. We will consider AA as a full subcategory of Db(AA) viewing A ∈ AA as a
complex concentrated at 0. We only note that Db(AA) is equipped with a translation functor
T given by (T (X •))n = X n+1 and (T dX • )n = − dn+1

X • .

3.1. Definition. A coherent sheaf TT on CC is called a tilting sheaf if the following proper-
ties hold:
(1) Ext1(TT , TT ) = 0
(2) TT generates Db(coh(CC)) as a triangulated category, i.e. Db(coh(CC)) is the smallest tri-

angulated subcategory of Db(coh(CC)) containing TT .
(3) gl.dim (End(TT )) < ∞.

Actually condition (3) is a consequence of (1) and (2), as we will prove elsewhere.
Let TT be a tilting sheaf and let Λ = End(TT ). TT induces a functor

F = Hom(TT , −): Qcoh(CC) −→ Mod(Λop) , FF −→ Hom(TT , FF).

Since Λ = End(TT ), there is a functor
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G = −×ΛTT : Mod(Λop) −→ Qcoh(CC).

with G(Λ) = TT , which is right exact and commutes with arbitrary direct sums. G is
uniquely determined up to isomorphism.

In the language of sheaves this functor is given as follows: For each open subset
U ⊂ CC, TT (U) is a Λ −OOCC(U)-bimodule, and M×ΛTT is isomorphic to the sheaf associated
with the presheaf U −→ M×ΛTT (U)OOCC(U), for each M ∈Mod(Λop).

Since Qcoh(CC) has enough injectives and finite global dimension, the right derived
functor of FF ,

R*F : Db(Qcoh(CC)) −→ Db(Mod(Λop))

exists; since Mod(Λop) has enough projectives and finite global dimension, the left derived
functor of GG,

L*G: Db(Mod(Λop)) −→ Db(Qcoh(CC))

exists (see [34], [23] for the definition and properties of derived functors).

3.2. Theorem. Let TT ∈ coh(CC) be a tilting sheaf. The functors

R*Hom(TT , −): Db(coh(CC)) −→ Db(mod(Λop))

and

L*(−×ΛTT ): Db(mod(Λop)) −→ Db(coh(CC))

define equivalences of triangulated categories, mutually inverse to each other.

Proof: Db(coh(CC)) and Db(mod(Λop)) are full triangulated subcategories of Db(Qcoh(CC))
and Db(Mod(Λop)), respectively. Note that Λ generates Db(mod(Λop)) as triangulated sub-
category since Λ has finite global dimension. R*F and L*G induce equivalences between
the full subcategories {TT } and {Λ} of Qcoh(CC) and Mod(Λop), respectively. Thus the asser-
tion follows from Beilinson’s Lemma [5].

The following theorem explains the equivalence Db(coh(CC)) =̃ Db(mod(Λop)) in the
spirit of tilting theory [20], [21], [7].

3.3. Theorem. Let TT be a tilting sheaf. We denote by XXi ⊂ coh(CC) (i ≥ 0) the full subcat-
egory of all FF with Ext j(TT , FF) = 0 for all j ≠ i and by YYi ⊂ mod(Λop) (i ≥ 0) the full sub-
category of all M with TorΛj (M , TT ) = 0 for all j ≠ i.

The functors
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Exti(TT , −): XXi −→ YYi

and

TorΛi (− , TT ): YYi −→ XXi

define equivalences, mutually inverse to each other.

Proof: Let F = Hom(TT , −) and G = −×ΛTT . Ri F and LiG denote the i-th right derived
functor of F and the i-th left derived functor of G, respectively.

For Xi ∈ XXi we have H j R*F(Xi) =̃ R j F(Xi) = 0 for j ≠ i. Thus R*F(Xi) =̃ T −i Ri(Xi)
in Db(mod(Λop)), where T denotes the translation functor. We hav e
L jG Ri F(Xi) = H jT i L*G R*F(Xi), which is isomorphic to Xi for j = i and 0 otherwise,
hence Ri F(Xi) ∈ YYi. Similarly we obtain LiG(Yi) ∈ XXi, and Ri F LiG(Yi) =̃ Yi for Yi ∈ YYi.

We remark, that XXi = 0 , hence YYi = 0 for all i > 2 since Ext2(− , −) = 0 in coh(CC).
We now inv estigate, how far the subcategories (XX0 , XX1) and (YY0 , YY1) determine the

categories coh(CC) and mod(Λop), respectively.

3.4. Corollary. (XX0 , XX1) is a torsion theory for coh(CC). In particular XX0 is the full sub-
category of all coherent sheaves generated by TT , i.e. having the form TT n/UU.

Proof: Obviously, XX0∩XX1 = 0, XX1 is closed under subobjects, and XX0 is closed under
homomorphic images. It remains to show that every coherent sheaf FF admits an exact
sequence

0 −→ FF0 −→ FF −→ FF1 −→ 0

with FF0 ∈ XX0, FF1 ∈ XX1.
Since FF is noetherian, there exist a greatest subsheaf FF0 generated by TT . Thus FF0 ∈ XX0

and FF1 = FF /FF0 ∈ XX1 follows. Moreover this shows that FF ∈ XX0 if and only if there exist
an epimorphism TT n −→ FF .

If FF ∈ coh(CC), and 0 −→ FF0 −→ FF −→ FF1 −→ 0 is exact with FF0 ∈ XX0 and FF1 ∈ XX1,
Hom(TT , FF) =̃ Hom(TT , FF0) and Ext1(TT , FF) =̃ Ext1(TT , FF1). This yields:

3.5. Corollary. For each coherent sheaf FF there is an exact sequence

0 −→ Hom(TT , FF)×ΛTT −→ FF −→ TorΛ1 (Ext1(TT , FF) , TT ) −→ 0.
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3.6. Corollary. TorΛj (Exti(TT , FF) , TT ) = 0 for all i ,  j = 0 , 1 , i ≠ j and all coherent
sheaves FF.

Similar results hold true for mod(Λop):

3.7. Proposition. For each module M ∈mod(Λop), there exists an exact sequence

0 −→ Ext1(TT , TorΛ1 (M , TT )) −→ M −→ Hom(TT , M×ΛTT ) −→ 0.

Proof: Let P2 −→ P1 −→ P0 −→ M −→ 0 be a projective resolution of M . Tensoring
with TT leads to the complex

P2×ΛTT −→
u2P1×ΛTT −→

u1P0×ΛTT −→
u0 M×ΛTT −→ 0 ,

which is not necessarily exact in P1×ΛTT . Let KKi = ker ui and BB = im u2. By Corollary 3.4 ,
KK0 and BB are contained in XX0. Thus the exact sequence
0 −→ BB −→ KK1 −→ TorΛ1 (M , TT ) −→ 0 shows that Ext1(TT , KK1) =̃ Ext1(TT , TorΛ1 (M , TT )).
Application of Hom(TT , −) to the exact sequences

0 −→ KK1 −→ P1×ΛTT −→ KK0 −→ 0 ,

0 −→ KK0 −→ P0×ΛTT −→ M×ΛTT −→ 0

leads to the commutative diagram with exact rows

0 −→ P1 −→ P1 −→ 0 −→ 0
↓ ↓  ↓

0 −→ Hom(TT , KK0) −→ P0 −→ Hom(TT , M×ΛTT ) −→ 0
↓ ↓  ↓

0 −→ Ext1(TT , KK1) −→ M −→ Hom(TT , M×ΛTT ) −→ 0

and the assertion follows.

Using this Lemma, we obtain:

3.8. Corollary. (YY1 , YY0) is a torsion theory for mod(Λop).

3.9. Corollary. Exti(TT , TorΛj (M , TT )) = 0 for all i ,  j = 0 , 1 , i ≠ j and all modules
M ∈mod(Λop).

From the proof of Theorem 3.3 and the fact that ExtiAA(X , Y ) = HomDb(AA)(X , T iY ) for
all X , Y in AA where AA = coh(CC) or AA = mod(Λop), we conclude

Extl
Λ(Exti(TT , FFi) , Ext j(TT , FF j)) =̃ Extl−i+ j(FFi , FF j) (3.10.1)
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for all i ,  j , l and all FFi ∈ XXi , FF ∈ XX j . This formula yields the following consequences:

3.10. Corollary. The torsion theory (YY1 , YY0) is splitting, i.e. each indecomposable mod-
ule M ∈mod(Λop) is either in YY0 or in YY1.

3.11. Corollary. gl.dim Λ ≤ 2.

We denote by K0(Λop) the Grothendieck group of mod(Λop). We get:

3.12. Corollary.
f : K0(CC) −→ K0(Λop) , [FF] −→ [Hom(TT , FF)] − [Ext1(TT , FF)]

is an isomorphism with inverse

f −1: K0(Λop) −→ K0(CC) , [M] −→ [M×ΛTT ] − [TorΛ1 (M , TT )].

4. Sheaves and modules over canonical algebras
In [30] Ringel introduced the class of canonical algebras, which might be defined as

follows. Given (pp , λλ), we consider the quiver

X0 X0 X0

X0

→x0 −→ 2→x0 −→ . . . −→ (p0 − 1)→x0 X0

X1 X1 X1 X1 X1
0 −→ →x1 −→ 2→x1 −→ . . . −→ (p1 − 1)→x1 −→ →c

. .  .
Xn . .  . Xn

. .  .

Xn Xn Xn
→xn −→ 2→xn −→ . . . −→ (pn − 1)→xn .

with relations given by

X pi
i = X p0

0 − λ i X
p1
1 for i = 2, . . . , n. (4.1.1)

Let TT =
0≤→x≤→c
+ OOCC(→x) and Λ = End(TT ). By construction the full subcategory of coh(CC),

consisting of all OOCC(→x) for 0 ≤ →x ≤ →c is equivalent (so Λ is Morita equivalent) to the path
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algebra of this quiver with respect to the relations (4.1.1). The canonical configuration
OOCC(→x) , 0 ≤ →x ≤ →c visualizes the quiver in coh(CC).

4.1. Proposition. TT =
0≤→x≤→c
+ OOCC(→x) is a tilting sheaf.

Proof: (1) Let 0 ≤ →x , →y ≤ →c. By Serre duality we have

DExt1(OOCC(→x) , OOCC(→y)) =̃ Hom(OOCC(→y) , OOCC(→x + →ω )).

Since →ω + →x − →y ≤ →ω + →c is not positive, Hom(OOCC(→y) , OOCC(→x + →ω )) = 0 follows. This proves
Ext1(TT , TT ) = 0.

(2) In order to prove that TT generates Db(coh(CC)) it is sufficient to show that coh(CC) is
the smallest subcategory AA of coh(CC), which contains all direct factors of TT , and is closed
under the formation of kernels of epimorphisms, of cokernels of monomorphisms as well
as under extensions. By means of the exact sequence (2.5.2) all exceptional simple
sheaves are in AA. Since OOCC is in AA, we conclude from (2.8.3) that all OOCC(→x) hence all vec-
tor bundles and all simple sheaves are in AA.

(3) The quiver (4.1.1) has no oriented cycles, thus Λ has finite global dimension. In
fact gl.dim Λ ≤ 2.

The category XX0 consists of all coherent sheaves with H1(CC , FF(→x)) = 0 for −→c ≤ →x ≤ 0;
the category XX1 consists of all coherent sheaves with Γ (CC , FF(→x)) = 0 for −→c ≤ →x ≤ 0. We
choose the following notation:

coh+(CC) : = XX0 , coh−(CC) : = XX1. (4.1.2)

ΓΛ(CC , −) : = Hom(TT , −): coh+(CC) −→ YY0.

H1
Λ(CC , −) : = Ext1(TT , −): coh−(CC) −→ YY1.

We note that all sheaves of finite length are contained in coh+(Λ). Hence all sheaves
in coh−(CC) are locally free. Moreover OOCC(→x) ∈ coh+(CC) for all →x ∈L+ and
OOCC(→x) ∈ coh−(CC) otherwise. This implies that for each FF in coh(CC) there exists an
→x ∈L(pp) such that FF(→y) ∈ coh+(CC) for all →y ≥ →x.

A right Λ-module M may be viewed as a representation

(M →x , Xi: Mk →xi
−→ M(k−1)→xi

)

of the quiver dual to (4.1.1). We call M monoform (epiform, respectively) if all the linear
maps Xi are monomorphisms (epimorphisms, respectively) but not all of them are isomor-
phisms.
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The rank of M is defined by

r = dimk M0 − dimk M→c .

4.2. Lemma. r (ΓΛ(CC , FF)) = r (FF) for all FF ∈ coh+(CC) and r (H1
Λ(CC , FF)) = − r (FF) for all

FF ∈ coh−(CC). In particular, if FF ∈ coh+(CC) is locally free, ΓΛ(CC , FF)) is monoform, and if
FF ∈ coh−(CC), H1

Λ(CC , FF)) is epiform.

Proof: We giv e the proof only in case FF ∈ coh+(CC); the case FF ∈ coh−(CC) is similar. So
let FF ∈ coh(CC). From the exact sequence (2.5.2)

0 −→ OOCC(k →xi) −→ OOCC(k + 1)→xi) −→ SSi , k −→ 0

we obtain the sequence

0 −→ Hom(SSi , k , FF) −→ Hom(OOCC(k + 1)→xi , FF) −→ Hom(OOCC(k →xi) , FF) −→

−→ Ext1(SSi , k , FF) −→ Ext1(OOCC((k + 1)→xi) , FF) −→ Ext1(OOCC(k →xi) , FF) −→ 0.

Since FF ∈ coh+(CC), Ext1(OOCC(k + 1)→xi , FF) =̃ Ext1(OOCC(k →xi) , FF) =̃ 0.
Suppose, FF = OOCC(→x) is a twisted structure sheaf. Then Hom(SSi , k , OOCC(→x)) = 0 and

Ext1(SSi , k , OOCC(→x)) ≠ 0 only for one k ∈ {0, . . . , pi − 1}. In this case
dimkExt1(SSi , k , OOCC(→x)) = 1 hence r (ΓΛ(CC , OOCC(→x)) = 1.

Now, assume that FF is a sheaf of finite length, thus
Hom(OOCC(0) , FF) =̃ Hom(OOCC(→c) , FF), hence r (ΓΛ(CC , FF) = 0. Finally, suppose that FF is
locally free of rank n. There is an exact sequence

0 −→ FF −→
n

i=1
+ OOCC(→yi) −→ LL −→ 0 ,

with LL of finite length (2.7). We get r (ΓΛ(CC , FF)) = r (ΓΛ(CC ,
n

i=1
+ OOCC(→yi)) = n = r (FF). In

particular, ΓΛ(CC , FF) is monoform since Hom(SSi , k , FF) = 0 for all i , k, and there exists
some SSi , k with Ext1(SSi , k , FF) ≠ 0.

Let mod+(Λop) and mod−(Λop) be the full subcategories of mod(Λop) consisting of all
modules M , such that each indecomposable direct factor is monoform (epiform, respec-
tively). Let mod0(Λop) be the category of all modules, whose indecomposable direct fac-
tors are neither in mod+(Λop) nor in mod−(Λop).

From Lemma 4.2 we deduce that mod+(Λop) is equivalent to the category of locally
free sheaves contained in coh+(CC) by means of functor ΓΛ(CC , −). Further we have equiv-
alences H1

Λ: coh−(CC) −→ mod−(Λop) and ΓΛ: coh0(CC) −→ mod0(Λop), thus
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mod0(Λop) =̃
x ∈CC
|__| mod0(Λop)x .

According to [30], we say that mod0(Λop) separates mod+(Λop) from mod−(Λop) if the
following two conditions are satisfied:
(1) HomΛ(Z , X) = HomΛ(Y , Z ) = HomΛ(Y , X) = 0 for all modules X ∈mod+(Λop),

Y ∈mod0(Λop), and Z ∈mod−(Λop).
(2) Each morphism f : X −→ Z ,  X ∈mod+(Λop) , Z ∈mod−(Λop), admits a factorization

f = [X −→ Y −→ Z ] with Y ∈mod0(Λop). Moreover, Y may be chosen in a prescribed
component mod0(Λop)x .

4.3. Proposition ( [30]). An indecomposable module M is in mod+(Λop), mod0(Λop) or
mod−(Λop), if and only if r(M) > 0 , r(M) = 0 , r < 0, respectively. Moreover, mod0(Λop)
separates mod+(Λop) from mod−(Λop).

Proof: The first assertion is covered by Lemma 4.2. Let X ∈mod+(Λop), Y ∈mod0(Λop),
and Z ∈mod−(Λop). By means of Theorem 3.3 we have HomΛ(Y , X) = 0, since there are
no non-zero morphisms from sheaves of finite length to locally free sheaves and
HomΛ(Y , Z ) = HomΛ(X , Z ) = 0 since X , Y ∈ YY0 and Z ∈ YY1.

Let f : X −→ Z be a morphism, FF = X×ΛTT and GG = TorΛ1 (Y , TT ). There exists an exact
sequence 0 −→ GG −→ FF ʹ′ −→ LL −→ 0, where LL belongs to a fixed component of coh0(CC)
and such that Ext1(FF , FF ʹ′) = 0 (Corollary 2.7). From the exactness of

0 −→ ΓΛ(CC , FF ʹ′) −→ ΓΛ(CC , LL) −→ Z −→ 0

we conclude that f can be lifted to ΓΛ(CC , LL) since Ext1Λ(X , ΓΛ(CC , FF ʹ′)) = 0.
In the the language of [30], Proposition 4.3 shows that ind0(Λop), the category of all

indecomposable modules in mod0(Λop), is a separating tubular family of type (p0, . . . , pn).
The categories coh(CC) and mod(Λop) have almost-split sequences. Typically almost-

split sequences in coh(CC) give rise to almost-split sequences in mod(Λop):

4.4. Proposition. Let 0 −→ FF −→ MM −→ GG −→ 0 be an almost-split sequence in
coh(CC). If FF and GG are in coh+(CC),

0 −→ ΓΛ(CC , FF) −→ ΓΛ(CC , MM) −→ ΓΛ(CC , GG) −→ 0

is an almost-split sequence in mod(Λop); if FF and GG are in coh−(CC),

0 −→ H1
Λ(CC , FF) −→ H1

Λ(CC , MM) −→ H1
Λ(CC , GG) −→ 0

is an almost-split sequence in mod(Λop).
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We note that the categories mod+(Λop), mod0(Λop), and mod−(Λop) are stable under the
Auslander-Reiten translation.

Let FF be an indecomposable coherent sheaf not contained in coh+(CC) and coh−(CC),
and let 0 −→ FF+ −→ FF −→ FF− −→ 0 be exact with FF+ ∈ coh+(CC) and FF− ∈ coh−(CC).
From formula (3.10.1) we derive Ext1(FF− , FF+) = Ext2Λ(H1

Λ(CC , FF−) , ΓΛ(CC , FF+)), hence
each indecomposable direct factor of ΓΛ(CC , FF+) has injective dimension two and each
indecomposable direct factor of H1

Λ(CC , FF−) has projective dimension two. Conversely, if
GG ∈ coh+(CC) is indecomposable and ΓΛ(CC , GG) has injective dimension two, there exist
FF− ∈ coh−(CC) and an exact sequence 0 −→ GG −→ FF −→ FF− −→ 0; if GG ∈ coh−(CC) is inde-
composable and H1

Λ(CC , GG) has projective dimension two, there exists FF+ ∈ coh+(CC) and an
exact sequence 0 −→ FF+ −→ FF −→ GG −→ 0.

4.5. Proposition. (1) Let M ∈mod+(Λop) or M ∈mod0(Λop) be indecomposable and
0 −→ M −→ E −→ N −→ 0 be an almost-split sequence in mod(Λop). Then
0 −→ M×ΛTT −→ E×ΛTT −→ N×ΛTT −→ 0 is an almost-split sequence in coh(CC) if and only
if inj dim M ≤ 1.

(2) Let M ∈mod−(Λop) be indecomposable and 0 −→ N −→ E −→ M −→ 0 be an
almost-split sequence in mod(Λop). Then
0 −→ TorΛ1 (N , TT ) −→ TorΛ1 (E , TT ) −→ TorΛ1 (M , TT ) −→ 0 is an almost-split sequence if
and only if proj dim M ≤ 1.

Proof: We giv e only a proof for (1), since the proof for (2) is dual. Thus let
M ∈mod+(Λop) or M ∈mod0(Λop) be indecomposable. Since M is not injective, an
almost-split sequence 0 −→ M −→ E −→ N −→ 0 exists. Suppose that the injective
dimension of M is one, and f : M×ΛTT −→ FF is a non-zero morphism where FF is inde-
composable and f is not an isomorphism. We hav e to show that f extends to E×ΛTT . If
FF ∈ coh+(CC) we are done. Otherwise, FF is neither in coh+(CC) nor on coh−(CC). Thus there
exists an exact sequence 0 −→ FF+ −→ FF −→ FF− −→ 0 with FF+ ∈ coh+(CC) and
FF− ∈ coh−(CC). Since Hom(M×ΛTT , FF−) = 0, the morphism f factors through FF+. The mor-
phism M×ΛTT −→ FF+ is not a splittable monomorphism, since all direct summands of
ΓΛ(CC , FF+) have injective dimension two. Thus this morphism, hence also f , can be
extended to E×ΛTT .

Now suppose that inj dim M = 2 and that 0 −→ M×ΛTT −→ E×ΛTT −→ N×ΛTT −→ 0 is
an almost-split sequence. Since inj dim M = 2, there exist a non-split exact sequence
0 −→ M×ΛTT −→ FF −→ FF− −→ 0 with FF− ∈ coh−(CC). The extension property of almost-
split sequences leads to a non-zero morphism N×ΛTT −→ FF−, a contradiction.
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5. Classification for bundles and modules
Let S = S(pp , λλ), we consider the polynomial algebra R =  k[x p0

0 , x p1
1 ] now as an

L(pp)-graded subalgebra. As follows from (1.3.3), the elements

xl0
0

. . . xln
n (0 ≤ li < pi)

form an L(pp)-homogeneous basis for S over R, so S is an L(pp)-graded Cohen-Macaulay
algebra. We denote by

CML(pp)(S)

the category of all M ∈modL( pp)(S), which are finitely generated free as L(pp)-graded R-
modules. By definition these are the (maximal) L(pp)-graded Cohen-Macaulay modules
over S. Note that all S(→x), →x ∈L(pp) are in CML(pp)(S).

We are now going to prove a refinement of Serre’s theorem 1.8; again CC = CC(pp , λλ).

5.1. Theorem. The L( pp)-graded global sections functor induces an equivalence
Γ: vect(CC) −→ CML(pp)(S). Moreover, CML(pp)(S) consists of all M ∈modL(pp)(S), where
Hom(E , M) = 0 = Ext1(E , M) holds for each simple L(pp)-graded S-module E.

We note that (5.1) establishes a link to the study of Cohen-Macaulay modules for the
isolated singularity 0 of the surface FF(pp , λλ), see for instance [4].

Proof. We denote by AA(S) the category consisting of all M ∈modL(pp)(S), satisfying
Hom(E , M) = 0 = Ext1(E , M) for all simple graded modules E. Since S is noetherian,
by means of (1.7.1) using a line bundle filtration for FF , we conclude that Γ (FF) is finitely
generated over S. Moreover Γ (FF) ∈ AA(S), as one may deduce from Serre’s theorem. Con-
versely, if M ∈ AA(S), M̃ is a vector bundle over CC: First note that M = (Γ (M)) ˜, since
M ∈ AA(S), using Serre’s theorem for quasicoherent sheaves in combination with ( [12], p.
372). If M̃ has a simple subsheaf EE, M contains Γ (EE) = U as a submodule. Since U →x ≠ 0
for infinitely many →x ≤ 0, U hence M is not finitely generated, a contradiction. We con-
clude that

Γ : vect(CC) −→ CML(pp)(S) and ˜ : CML(pp)(S) −→ vect(CC)

define mutually inverse equivalences of categories.
Passing to the special case CC = P1(k), we see that vect(P1(k)) and AA(R) are equiv-

alent categories. We infer from (1.7.1) in combination with Grothendieck’s theorem [16]
that AA(R) consists just of all free modules in modL(pp)(R).
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It thus remains to prove for M ∈modL(pp)(S) that M ∈ AA(S) if and only M ∈ AA(R). Let

0 −→ S(−2→c) −→
α

S(−→c) + S(−→c) −→
β

S −→ E −→ 0 (5.1.1)

with α = (x p0
0 , x p1

1 ) and β = (x p1
1 , − x p0

0 ) be the Koszul complex giv en by the regular
sequence x p0

0 , x p1
1 in S. It is easily checked that M ∈ AA(S) if and only if

HomS(E(→x) , M) = 0 = Ext1S(E(→x) , M) for each →x ∈L(pp). An equivalent assertion is the
exactness of

0 −→ M →x −→ M →x−→c + M →x−→c −→ M →x−2→c (5.1.2)

for each →x ∈L(pp). Let V ⊂ L(pp) consist of all
n

i=0
Σ li

→xi, with 0 ≤ li < pi. If k = R/R+, we

have E =
→x ∈V
+ k(→x) as graded R-modules. Accordingly M ∈ AA(R) if and only if

HomR(E(→x) , M) = 0 = Ext1R(E(→x) , M). By means of (5.1.1) this amounts to exactness
of

0 −→
→v ∈V
+ M →x (→v) −→

→v ∈V
+ (M →x−→c (→v) + M →x−→c (→v)) −→

→v ∈V
+ M →x−2→c (→v) , (5.3.1)

an assertion equivalent to exactness of all sequences (5.1.2).

For each non-zero vector bundle let µ(F) =
d(F)
r(F)

, where d and r denote rank and

degree, respectively. F is called semi-stable (stable) if for each non-zero sub-bundle F ʹ′ of
F we have µ(F ʹ′) ≤ µ(F) (µ(F ʹ′) < µ(F), respectively).

As in the case of smooth projective curves we have the following result due to
Narasimhan and Seshadri [32]:

5.2. Proposition. For each q ∈Q let CCq denote the category consisting of the zero bun-
dle and all semi-stable vector bundles F with µ(F) = q. The following properties hold
true:

(i) Each CCq is an exact abelian subcategory of coh(CC), closed under extensions.
(ii) Each F ∈CCq has finite length in CCq. The simple objects in CCq are just the stable

bundles; in particular End(F) = k if F is stable.
(iii) If F ∈CCq, F ʹ′ ∈CCqʹ′ and Hom(F , F ʹ′) ≠ 0 then q ≤ qʹ′.

Proof: (i) is easily checked. (ii) Assume 0 ≠ F ʹ′ ⊂ F are both in CCq with r(F ʹ′) = r(F),
hence d(F ʹ′) = d(F). Since r(F /F ʹ′) = 0, the sheaf F /F ʹ′ has finite length, from d(F /F ʹ′) = 0
we conclude F /F ʹ′ = 0. Thus any chain of subobjects of F within CCq has length ≤ r(F). To
prove (iii) note that µ(F /F ʹ′) ≥ µ(F) for each semi-stable F .
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As in the case of smooth projective curves (cf. [32]) bundles on CC have a Harder-
Narasimhan filtration as follows from

5.3. Lemma. Each non-zero bundle F on CC has a non-zero sub-bundle F1 such that
each non-zero sub-bundle (sub-sheaf) F ʹ′ of F satisfies µ(F ʹ′) ≤ µ(F1). F1 is uniquely deter-
mined if we assume additionally that F1 has maximal rank.

In particular F1 is semi-stable, called the maximal semi-stable sub-bundle of F .

Proof. If 0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F is a line bundle filtration for F , each non-zero
F ʹ′ ⊂ F satisfies

µ(F ʹ′) ≤
n

i=1
Σ |d(Fi/Fi−1)|.

Now choose 0 ≠ F1 ⊂ F with µ(F1) being maximal.

5.4. Remark. The complexity of the classification problem for coh(CC), hence for vect(CC),
depends mainly on the virtual genus of CC, equivalently on the degree δ ( →ω ) of the dualizing
sheaf OOCC( →ω ). We have to distinguish the following cases:

5.4.1. If δ ( →ω ) < 0 (accordingly gv(CC) < 1), we deal with the weight sequence attached to a
Dynkin diagram Δ = Ap ,  q (p ≥ 1 , q ≥ 1), Dn (n ≥ 4) , E6 , E7 , E8, by counting the
length of the arms of Δ. If n = 1, i.e. Δ = Ap ,  q, we just deal with the weighted projective
line P1(p ,  q); if n = 2, i.e. Δ = Dn or E6 , E7, E8, CC is defined by just one equation

X p2
2 − X p1

1 + X p0
0 = 0 , (5.4.1)

and no parameters λ i occur.
In this situation the canonical algebra Λ = Λ(p0 , p1 , p2) arises as a tilted algebra of a

tame hereditary algebra Σ of extended Dynkin type Δ̃, actually as a so-called concealed
quiver algebra. [30]. By means of the comparison theorem we get
Db(mod(Σ)) = Db(coh(CC)), hence the classification for coh(CC) is equivalent to the classifi-
cation for mod(Σ). We refer to [26] for the details of the transfer of the classification for
mod(Σ), due to Nazarova [28] and Donovan-Freislich [11] (see also [9]) to the classifica-
tion for coh(CC).

Suppose now k = C. Let G ⊂ SL(2 , C) be a binary polyhedral group of Dynkin type
Δ = (p0 , p1 , p2), i.e. G has generators ξ0 , ξ1 , ξ2 and relations ξ p0

0 = ξ p1
1 = ξ p2

2 = ξ0ξ1ξ2.
The algebra of relative invariants AG,rel with respect to the natural action of G on
A =  k[T0 , T1] is generated by three fundamental relative inv ariants F0 , F1 , F2, subject to
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relation (5.4.1). As was proved already by F. Klein [25]

k[X0 , X1 , X2]/(X p2
2 − X p1

1 + X p0
0 ) =̃ AG,rel .

We refer to the survey of Slodowy [33] for further information.
AG.rel is naturally G*× Z-graded, where G* denotes the character group of G. More-

over L(pp) may be identified with a subgroup of G*× Z attaching to →xi the pair (χ , n)
where Fi has degree n in A and weight χ ∈G*. So we obtain S(pp , λλ) by restriction of
AG,rel to the subgroup L(pp) of G*× Z.

5.4.2. δ ( →ω ) = 0, accordingly gv(CC) = 1. Here we deal with the cases (2,2,2,2), (3,3,3),
(2,4,4), (2,3,6)—called tubular by Ringel [30] —corresponding to the extended Dynkin
diagrams D̃4 , Ẽ6 , Ẽ7 and Ẽ8, respectively. By means of the comparison
Db(coh(CC)) = Db(mod(Λ)), classification for coh(CC) reduces to the classification for
mod(Λ), with Λ a canonical algebra of tubular type [30] and conversely. In the rest of this
section we will show that the classification for coh(CC) is possible along the lines of
Atiyah’s classification for vector bundles ( [1] , see also [29] ) on smooth elliptic curves.
This will relate Atiyah’s classification with Ringel’s classification [30] for modules over
tubular algebras.

5.4.3. δ ( →ω ) > 0, accordingly gv(CC) > 1. Here, the corresponding canonical algebras Λ are
wild. By comparison Db(coh(CC)) = Db(mod(Λ)), classification for coh(CC) is also a wild
problem. The treatment of smooth projective curves by Narasimhan and Seshadri (com-
pare [32]) suggests to develop a classification of stable bundles by means of moduli
spaces also for coh(CC).

We note that in all three cases it is easy to determine the structure of Auslander-
Reiten components using [19].

By means of the Harder-Narasimhan filtration it is easy to deal with the cases
δ ( →ω ) ≤ 0:

5.5. Proposition. Let F be an indecomposable vector bundle on CC = CC(pp , λλ):
(i) If δ ( →ω ) < 0, correspondingly Λ(pp , λλ) is a concealed tame quiver algebra, F is sta-

ble and End(F) = k.
(ii) If δ ( →ω ) = 0, accordingly Λ(pp , λλ) is a tubular algebra, F is semi-stable.
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Proof: Let δ ( →ω ) ≤ 0. Consider an exact sequence

η: 0 −→ F1 −→ F −→ F /F1 −→ 0 ,

where F1 is the maximal semi-stable sub-bundle of F . Assume F /F1 ≠ 0, so η does not
split since F is indecomposable. By Serre duality we get a non-zero u: F1(−→ω ) −→ (F /F1).
Since δ ( →ω ) ≤ 0, we hav e µ(F1(−→ω )) ≥ µ(F1). Hence F /F1 has a non-zero subsheaf F2/F1

with µ(F2/F1) ≥ µ(F1). We conclude µ(F2) ≥ µ(F1), contradicting the choice of F1. So
F /F1 = 0 and F is semi-stable.

Suppose now δ ( →ω ) < 0. We know from the previous part that F ∈CCq for some q ∈Q.
We choose an exact sequence in CCq

η: 0 −→ S −→ F −→ G −→ 0

with S ∈CCq simple (= stable). If G ≠ 0, η does not split, so Hom(G , S( →ω )) ≠ 0. Hence
q = µ(G) ≤ µ(S( →ω ) < µ(S) = q, a contradiction.

5.6. Theorem. Suppose CC has virtual genus one. Then
(i) Each indecomposable vector bundle F on CC is semi-stable.
(ii) Each CCq is closed under the formation of Auslander-Reiten sequences; in particu-

lar CCq( →ω ) = CCq.
(iii) Each CCq is a uniserial category. Accordingly ind(CCq) decomposes into Auslander-

Reiten components, which all are tubes of finite rank.
(iv) Hom(F , G) ≠ 0 for F ∈CCq , G ∈CCqʹ′ implies q ≤ qʹ′ in Q.

Actually it is possible to prove a stronger assertion in (iii), namely

CCq =
x ∈CC
|__| CCq ,  x

with uniserial categories CCq ,  x having p(x) isomorphism classes of simple modules.

Proof: (i) is covered by Proposition 5.5.
(ii) Since δ ( →ω ) = 0, clearly CCq = CCq( →ω ) for each q ∈Q, so CCq is closed under Aus-

lander-Reiten translation, hence under the formation of Auslander-Reiten sequences, since
CCq is closed under extensions.

(iii) Let S , T be simple objects in CCq. Since CCq is extension- closed in coh(CC), calcu-
lation of extension of S , T in CCq can be done in coh(CC), so by Serre-duality

Ext1(S , T ) = Hom(T , S( →ω )).

Hence Ext1(S , T ) ≠ 0 if and only if T =̃ S( →ω ); moreover if Ext1(S , T ) ≠ 0 it has dimension



-33-

one over k. By a classical result of representation theory [13], CCq is uniserial hence each
F ∈CCq is uniquely determined by its simple socle S and its length n. Notation: F = S(n).
Since Auslander-Reiten translation F −→ F( →ω ) is given by an automorphism of finite
order (note p →ω = 0), all Auslander-Reiten components of CCq are actually tubes, whose
rank, i.e. the number of isomorphisms classes of simple objects in CCq, is a divisor of p.

(iv) is covered by Proposition 5.2.

5.7. Remark. Let first CC denote a weighted projective line of arbitrary virtual genus.
Since Qcoh(CC) has global dimension one, each X ∈Db(coh(CC)) decomposes in
Db(Qcoh(CC)), hence in Db(coh(CC)) into a (finite) direct sum of complexes T n An with
An ∈ coh(CC). Hence ind(Db(coh(CC))) can be calculated as the Ext − category of ind(coh(CC)),
whose objects are pairs (FF , n) with FF ∈ ind (coh(CC)), n ∈Z; morphisms are given by
Hom((FF , n) , (GG , m)) = Extm−n(FF , GG), and composition is defined by means of the
Yoneda composition.

If gv(CC) = 1 and Λ is the attached canonical algebra of tubular type. Theorem 5.6
allows easily to calculate the Auslander-Reiten quiver of
ind(Db(modΛ)) = ind(Db(coh(CC))), as done by Happel and Ringel [22] by different meth-
ods.

5.8. Example. We are now going to sketch how the curves CC of virtual genus one arise
as "quotients" T /G of a smooth elliptic curve T by a suitably chosen action of a finite
algebraic group G. Here, we restrict to the case (pp , λλ) = (2 , 2 , 2 , 2 ; λ) , λ ≠ 0 , 1.

We consider the plane elliptic curve T ⊂ P2(k) given by the equation f = 0, where

f = U0U2
2 − U1(U1 −U0)(U1 − λU0). (5.8.1)

The projective coordinate algebra

A =  k[U0 , U1 , U2]/( f ) (5.8.2)

of T admits a Z2×Z-graduation given by

deg(U0) = deg(U1) = (0 , 1) , deg(U2) = (1 , 1) , (5.8.3)

inducing a µµ2-action on T , where µµ2 is the algebraic group of second roots of unity. (On
points of T this action is given by [u0 , u1 , u2] −→ [u0 , u1 , − u2]). If ψ : T −→ T /µµ2 = YY
denotes the quotient map, the direct image sheaf ψ*(OOTT ): = OOYY carries a Z2-graduation
corresponding to the µµ2-action on T . Contrary to the usual approach, where the zero-com-
ponent of OOYY serves as the structure sheaf for T /µµ2, we define coh(YY ) as the category of all
coherent Z2 -graded OOYY - modules.
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We are now going to prove that coh(YY ) =̃ coh(CC(2 , 2 , 2 , 2 ; λ)), which justifies our
assertion T /µµ2 = CC.

First, we note that the map φ : Z2×Z −→ L(pp), giv en on generators by φ (0 , 1) = 3→x0,
φ (1 , 1) = →x1 + →x2 + →x3 allows to identify Z2×Z with a subgroup of L(pp). Moreover, with

U0 = x3
0 , U1 = x0 x2

1 , U2 = x1 x2 x3 (5.8.4)

it is easy to see that the restriction
(u ,  n) ∈Z2×Z

+ Sφ (u ,  n) of S = S(pp , λλ) to Z2×Z is isomor-

phic to A as a Z2×Z-graded algebra.
Moreover, one checks that M ∈modL(pp)(S) has finite length if and only its restriction

M =
(u ,  n) ∈Z2×Z

+ Mφ (u ,  n) has finite length in modZ2×Z(A). Hence restriction M −→ M

induces an equivalence

modL( pp)(S)/modL
0 (pp)(S) −→ modZ2×Z(A)/modZ2×Z

0 (A) (5.8.5)

of quotient categories. The category on the left is just coh(CC(pp , λλ)), by a variant of Serre’s
theorem the category on the right is equivalent to coh(YY ).
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1-209 (1982).
33. P. Slodowy, “Platonic solids, Kleinian singularities and Lie groups,” Algebraic Geom-

etry, pp. 102-138, Springer-Verlag, Heidelberg - New York (1983). Lecture Notes in
Mathematics 1008.

34. J. L. Verdier, “Cat ́egories dérivés, etat 0,” Séminaire géom ́etrie algébrique, 4 1/2, pp.
262-311, Springer-Verlag, Berlin - Heidelberg -  New York (1977). Lecture Notes in
Mathematics 569.


