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Part 1

The Aldous diffusion conjecture
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Markov chain on rooted leaf-labeled binary trees. Each transition
has two parts.

/

» Down-move: delete unif random leaf, contract away parent
branch point.

» Up-move: select unif random edge, insert branch point, grow
out new leaf-edge.



Results

Proposition (Aldous '01)

This is stationary with unif distrib on leaf-labeled binary trees.

Theorem (Schweinsberg '01)

Relaxation time of Aldous chain on n-leaf trees is ©(n?).

Conjecture (Aldous '99)

This Markov chain has a continuum analogue: a continuum
random tree-valued diffusion, stationary w/ law of Brownian CRT.



What is a Brownian CRT? Aldous, Le Gall, ...

» Tree as a metric space with edge length 1/4/n. n — cc.

=

» Harris path representation (Harris '52):

(CRT Figure due to I. Kortchemski)



History and context

» Theoretical motivation: to construct a fundamental object —
“Brownian motion on R-tree space”.

» Applied motivation: Aldous diffusion and projected processes
are useful for inference on phylogenetic trees and genetic
modeling. E.g., Ethier-Kurtz-Petrov diffusion.

» See: Evans-Winter '06, Evans-Pitman-Winter '06, Crane '14.

> Very recent related work: Lohr-Mytnik-Winter '18. Analysis
without metric.



Our result

» We have a pathwise construction of the
continuum-tree-valued analogue to the Aldous chain,
stationary under BCRT (among other features).

» Forman-P.-Rizzolo-Winkel. “Aldous diffusion I: A projective
system of continuum k-tree evolutions.” ArXiv:1089.07756
[math.PR].

» For the remainder of this talk, we discuss this construction.



Key challenge: perfectly ephemeral leaves

» Time scaling is by n?, where n is number of leaves.

» Takes O(nlog(n)) moves to replace every leaf. In O(n?)
moves, w/ high probability, every leaf is replaced.

» Challenge: moves defined in terms of leaves, but in limit leaves
die instantly. Makes it difficult to describe limiting object.

» Strategy: re-orient; focus on branch points.



Part 2

Projections and Intertwinings



Intutition

» Brownian CRT can be constructed as a projective limit of
consistent finite trees.

» ldea goes back to original construction of Aldous.

» One can try a similar strategy in dynamics.



Spinal projection (discrete regime)
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Spinal projection (discrete regime)




Taking the limit

Idea: Fix j and consider what happens when n — oo in the
projected trees.

» Take proportions of leaf masses in each component.
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Taking the limit

Idea: Fix j and consider what happens when n — oo in the
projected trees.

v

Take proportions of leaf masses in each component.

v

P '13: Wright-Fisher diffusion with negative mutation rates
finds limit up until the first time a labeled block vanishes.

What to do when a coordinate hits zero?

v

v

FPRW: solves by resampling.

v

FPRW: There is a way to do this consistently over j that
allows taking projective limits. Intertwining.

Then let j — oo.



Spinal projection (continuum regime)

Continuum 5-tree w/ interval partitions.
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Interval partition (IP) 3 of [0, M]: a collection of disjoint, open
intervals that cover [0, M] up to Leb-null set.



Interval partitions

Interval partition (IP) 3 of [0, M]: a collection of disjoint, open
intervals that cover [0, M] up to Leb-null set.

Example: Excursion intervals of standard Brownian bridge.

Call this a Poisson—DirichIet(%, %) interval partition, PDIP (% %)



Spinal projection of BCRT; Pitman-Winkel '15
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> Dirichlet(%, ey %) mass split among the 5 external and 4
internal components.

» Split the mass in each internal edge into an indep. PDIP(%, %)
We can recover path lengths from this picture, as diversities of
interval partitions,

Div() = lim Vh#{U € B: Leb(U) > h}.



Projected diffusion on interval partitions

» One can recover the tree metric from diversity of interval
partitions.

» The Aldous diffusion projected to interval partitions is also
Markov.

> Select j leaves. Construct process of interval partitions from
the projected masses.

> If we can describe it, and repeat consistency over j, that gives
a projective limit as j — oo.
» The limit is the Aldous diffusion itself.



Projected diffusion on interval partitions

» One can recover the tree metric from diversity of interval
partitions.

» The Aldous diffusion projected to interval partitions is also
Markov.

> Select j leaves. Construct process of interval partitions from
the projected masses.

> If we can describe it, and repeat consistency over j, that gives
a projective limit as j — oo.
» The limit is the Aldous diffusion itself.

» What is the dynamics on each interval partition?



Part 3

Dynamics on interval partitions



Projected chains and Chinese Restaurants

Due to Dubins-Pitman

CRP(a,0), a €[0,1), § > —a. Eg., a=1,0=1.

» Customer n will join table w/ m other customers w/ weight
m— a.

Or, sit at empty table w/ weight 6 + «(# of tables).

v

v

v

Probabilities of customer 5 joining each table
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A Chinese restaurant with re-seating

» Markov chain on composition/ partitions of [n].

» Transition rule: uniform random customer leaves, then
re-enters according to CRP(«, 6) seating rule.

:O..‘.O ®
o ©® ;. - :.O. OO

» See Petrov '09; Borodin-Olshanski '09



Aldous chain as re-seating
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Poissonized down-up CRP

S8Ry

» each customer leaves after Exponential(1) time,

» for a table w/ m customers, add customers with rate m — 1

» between any two tables, insert new tables w/ rate %



Table populations

Tables evolve independently of each other. Population of each is a

birth-and-death chain.
I * |
2 2
%, decreases w/

When it has population m, increases w/ rate m —
rate m. Birth-and-death chain.
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Coding the Poissonized, ordered CRP
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Convergence

In scaling limits:

> Law of birth-and-death chain of table populations in
re-seating, starting from 1, converges to BESQ(—1) excursion
measure, Bessel square diffusion with drift —1.

» Draw lines connecting deaths and births of tables. Converges
to spectrally positive Stable(3).

A




Spindles on scaffolding

» Decorate jumps of Stable (3/2) by ind. BESQ(—1)
excursions.

» Scaffolding - Lévy process.

» Spindles - independent excursions hanging on jumps of
scaffolding.



The Skewer map

For y € R, to get the level y skewer:

» Draw a line across picture at level y.

v

From left to right, collect cross-sections of spindles.

v

Slide together, as if on a skewer, to remove gaps.

v

A stochastic process on interval partitions.
[




The Skewer process

> As line moves up from level 0, interval partition evolves
continuously.

» Diversity=number of existing tables=local time of
Stable(3/2)=tree metric on the spine.
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The Skewer process

> As line moves up from level 0, interval partition evolves
continuously.

» Diversity=number of existing tables=local time of
Stable(3/2)=tree metric on the spine.



Outline of the construction of the Aldous diffusion by
FPRW; chatty version

» Poissonize: leaves die and born independently.

» Project on j leaves to get (j — 1) independent skewer
processes and j leaf masses.

» Each skewer process is a diffusion. Each mass is BESQ.
» Show consistency over j by intertwining.
» DePoissonize by scaling and time-change.

> Take projective limit. Obtain process stationary with
Brownian CRT.

» Prove limit is Markov and continuous is GH topology.



Building the limit

Evolving interval partitions generate a tree-valued process.

type 2 type 1 -7

O




Part 4

Application: Ethier-Kurtz-Petrov diffusions



Ranked interval lengths and Poisson-Dirichlets

v

Consider interval partition (IP) of [0,1] (mass one).

v

Consider decreasing order stats of interval mass.

v

Kingman simplex:

voo:{X12X22...,ZX,':1}.

PDIP gives Poisson-Dirichlet distributions on V.
PDIP(1/2,1/2) — PD(1/2,1/2).
PDIP(«,0) - PD(,0),0< < 1, 60> —a.

v

v

v



Diffusions on the Kingman simplex

» Diffusions on V4, reversible with respect to PD («, 0)?
» Ethier-Kurtz '81, Petrov '10 - generator for EKP («, 6):

z:x-a—2 - Z x-x-ai2 - Z(Hx- + ) 9
"Ox? " Ox;0x; — ' ox;’

i>1 P>l !

» Also see Bertoin '08, Borodin and Olshanski '09, Feng-Sun
'10, Feng-Sun-Wang-Xu '11, Ruggiero and coauthors '09,
'13,'14.

» Mostly analytical or Dirichlet form techniques.

» Understanding on path behavior missing.



Diffusions without ranking?

» Theorem (FPRW)

The de-Poissonized skewer process of interval partitions, when
ranked gives EKP (1/2,1/2) diffusion on the Kingman simplex.

» Provides pathwise description.
» Can be generalized to all («, ) (future work).

» Advantage of not ranking: provides better understanding of
evolution of small blocks.

» Allows us to settle some conjectures by previous authors.

» E.g. continuity of diversity process.



Vielen Dank!



