The Aldous diffusion on continuum trees

Soumik Pal
University of Washington, Seattle
Vienna probability seminar
Jun 11, 2019

Noah Forman, Douglas Rizzolo, Matthias Winkel

arXiv:1804.01205, 1802.00862, 1609.06707
Thanks to NSF, UW RRF, EPSRC for grant support

Part 1

The Aldous diffusion conjecture

Aldous down-up chain

Markov chain on rooted leaf-labeled binary trees. Each transition has two parts.

- Down-move: delete unif random leaf, contract away parent branch point.
- Up-move: select unif random edge, insert branch point, grow out new leaf-edge.

Results

Proposition (Aldous '01)

This is stationary with unif distrib on leaf-labeled binary trees.
Theorem (Schweinsberg '01)
Relaxation time of Aldous chain on n-leaf trees is $\Theta\left(n^{2}\right)$.
Conjecture (Aldous '99)
This Markov chain has a continuum analogue: a continuum random tree-valued diffusion, stationary w/ law of Brownian CRT.

What is a Brownian CRT? Aldous, Le Gall, ...

- Tree as a metric space with edge length $1 / \sqrt{n} . n \rightarrow \infty$.
- Harris path representation (Harris '52):

(CRT Figure due to I. Kortchemski)

History and context

- Theoretical motivation: to construct a fundamental object "Brownian motion on \mathbb{R}-tree space".
- Applied motivation: Aldous diffusion and projected processes are useful for inference on phylogenetic trees and genetic modeling. E.g., Ethier-Kurtz-Petrov diffusion.
- See: Evans-Winter '06, Evans-Pitman-Winter '06, Crane '14.
- Very recent related work: Löhr-Mytnik-Winter '18. Analysis without metric.

Our result

- We have a pathwise construction of the continuum-tree-valued analogue to the Aldous chain, stationary under BCRT (among other features).
- Forman-P.-Rizzolo-Winkel. "Aldous diffusion I: A projective system of continuum k-tree evolutions." ArXiv:1089.07756 [math.PR].
- For the remainder of this talk, we discuss this construction.

Key challenge: perfectly ephemeral leaves

- Time scaling is by n^{2}, where n is number of leaves.
- Takes $O(n \log (n))$ moves to replace every leaf. In $O\left(n^{2}\right)$ moves, w/ high probability, every leaf is replaced.
- Challenge: moves defined in terms of leaves, but in limit leaves die instantly. Makes it difficult to describe limiting object.
- Strategy: re-orient; focus on branch points.

Part 2

Projections and Intertwinings

Intutition

- Brownian CRT can be constructed as a projective limit of consistent finite trees.
- Idea goes back to original construction of Aldous.
- One can try a similar strategy in dynamics.

Spinal projection (discrete regime)

Spinal projection (discrete regime)

Taking the limit

Idea: Fix j and consider what happens when $n \rightarrow \infty$ in the projected trees.

- Take proportions of leaf masses in each component.

Taking the limit

Idea: Fix j and consider what happens when $n \rightarrow \infty$ in the projected trees.

- Take proportions of leaf masses in each component.
- P '13: Wright-Fisher diffusion with negative mutation rates finds limit up until the first time a labeled block vanishes.

Taking the limit

Idea: Fix j and consider what happens when $n \rightarrow \infty$ in the projected trees.

- Take proportions of leaf masses in each component.
- P '13: Wright-Fisher diffusion with negative mutation rates finds limit up until the first time a labeled block vanishes.
- What to do when a coordinate hits zero?
- FPRW: solves by resampling.

Taking the limit

Idea: Fix j and consider what happens when $n \rightarrow \infty$ in the projected trees.

- Take proportions of leaf masses in each component.
- P '13: Wright-Fisher diffusion with negative mutation rates finds limit up until the first time a labeled block vanishes.
- What to do when a coordinate hits zero?
- FPRW: solves by resampling.
- FPRW: There is a way to do this consistently over j that allows taking projective limits. Intertwining.

Taking the limit

Idea: Fix j and consider what happens when $n \rightarrow \infty$ in the projected trees.

- Take proportions of leaf masses in each component.
- P '13: Wright-Fisher diffusion with negative mutation rates finds limit up until the first time a labeled block vanishes.
- What to do when a coordinate hits zero?
- FPRW: solves by resampling.
- FPRW: There is a way to do this consistently over j that allows taking projective limits. Intertwining.

Then let $j \rightarrow \infty$.

Spinal projection (continuum regime)

Continuum 5-tree w/ interval partitions.

Interval partition (IP) β of $[0, M]$: a collection of disjoint, open intervals that cover $[0, M]$ up to Leb-null set.

Interval partitions

Interval partition (IP) β of $[0, M]$: a collection of disjoint, open intervals that cover $[0, M]$ up to Leb-null set.

Example: Excursion intervals of standard Brownian bridge.

Call this a Poisson-Dirichlet $\left(\frac{1}{2}, \frac{1}{2}\right)$ interval partition, $\operatorname{PDIP}\left(\frac{1}{2}, \frac{1}{2}\right)$.

Spinal projection of BCRT; Pitman-Winkel '15

- Dirichlet $\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ mass split among the 5 external and 4 internal components.
- Split the mass in each internal edge into an indep. $\operatorname{PDIP}\left(\frac{1}{2}, \frac{1}{2}\right)$.

We can recover path lengths from this picture, as diversities of interval partitions,

$$
\operatorname{Div}(\beta)=\lim _{h \rightarrow 0} \sqrt{h} \#\{U \in \beta: \operatorname{Leb}(U)>h\} .
$$

Projected diffusion on interval partitions

- One can recover the tree metric from diversity of interval partitions.
- The Aldous diffusion projected to interval partitions is also Markov.
- Select j leaves. Construct process of interval partitions from the projected masses.
- If we can describe it, and repeat consistency over j, that gives a projective limit as $j \rightarrow \infty$.
- The limit is the Aldous diffusion itself.

Projected diffusion on interval partitions

- One can recover the tree metric from diversity of interval partitions.
- The Aldous diffusion projected to interval partitions is also Markov.
- Select j leaves. Construct process of interval partitions from the projected masses.
- If we can describe it, and repeat consistency over j, that gives a projective limit as $j \rightarrow \infty$.
- The limit is the Aldous diffusion itself.
- What is the dynamics on each interval partition?

Part 3

Dynamics on interval partitions

Projected chains and Chinese Restaurants

- Due to Dubins-Pitman
- $\operatorname{CRP}(\alpha, \theta), \alpha \in[0,1), \theta>-\alpha$. E.g., $\alpha=\frac{1}{2}, \theta=\frac{1}{2}$.
- Customer n will join table w / m other customers $w /$ weight $m-\alpha$.
- Or, sit at empty table $\mathrm{w} /$ weight $\theta+\alpha$ (\# of tables).

Probabilities of customer 5 joining each table

A Chinese restaurant with re-seating

- Markov chain on composition/ partitions of [n].
- Transition rule: uniform random customer leaves, then re-enters according to $\operatorname{CRP}(\alpha, \theta)$ seating rule.

- See Petrov '09; Borodin-Olshanski '09

Aldous chain as re-seating

Poissonized down-up CRP

- each customer leaves after Exponential(1) time,
- for a table w/ m customers, add customers with rate $m-\frac{1}{2}$,
- between any two tables, insert new tables w/ rate $\frac{1}{2}$.

Table populations

Tables evolve independently of each other. Population of each is a birth-and-death chain.

When it has population m, increases $\mathrm{w} /$ rate $m-\frac{1}{2}$, decreases $\mathrm{w} /$ rate m. Birth-and-death chain.

Coding the Poissonized, ordered CRP

Convergence

In scaling limits:

- Law of birth-and-death chain of table populations in re-seating, starting from 1 , converges to $\operatorname{BESQ}(-1)$ excursion measure, Bessel square diffusion with drift -1 .
- Draw lines connecting deaths and births of tables. Converges to spectrally positive Stable $\left(\frac{3}{2}\right)$.

Spindles on scaffolding

- Decorate jumps of Stable (3/2) by ind. BESQ (-1) excursions.
- Scaffolding - Lévy process.
- Spindles - independent excursions hanging on jumps of scaffolding.

The Skewer map

For $y \in \mathbb{R}$, to get the level y skewer:

- Draw a line across picture at level y.
- From left to right, collect cross-sections of spindles.
- Slide together, as if on a skewer, to remove gaps.
- A stochastic process on interval partitions.

The Skewer process

- As line moves up from level 0, interval partition evolves continuously.
- Diversity=number of existing tables=local time of Stable(3/2)=tree metric on the spine.

The Skewer process

- As line moves up from level 0, interval partition evolves continuously.
- Diversity=number of existing tables=local time of Stable(3/2)=tree metric on the spine.

The Skewer process

- As line moves up from level 0, interval partition evolves continuously.
- Diversity=number of existing tables=local time of Stable(3/2)=tree metric on the spine.

The Skewer process

- As line moves up from level 0, interval partition evolves continuously.
- Diversity=number of existing tables=local time of Stable(3/2)=tree metric on the spine.

The Skewer process

- As line moves up from level 0, interval partition evolves continuously.
- Diversity=number of existing tables=local time of Stable(3/2)=tree metric on the spine.

The Skewer process

- As line moves up from level 0, interval partition evolves continuously.
- Diversity=number of existing tables=local time of Stable(3/2)=tree metric on the spine.

Outline of the construction of the Aldous diffusion by FPRW; chatty version

- Poissonize: leaves die and born independently.
- Project on j leaves to get $(j-1)$ independent skewer processes and j leaf masses.
- Each skewer process is a diffusion. Each mass is BESQ.
- Show consistency over j by intertwining.
- DePoissonize by scaling and time-change.
- Take projective limit. Obtain process stationary with Brownian CRT.
- Prove limit is Markov and continuous is GH topology.

Building the limit

Evolving interval partitions generate a tree-valued process.

Part 4

Application: Ethier-Kurtz-Petrov diffusions

Ranked interval lengths and Poisson-Dirichlets

- Consider interval partition (IP) of $[0,1]$ (mass one).
- Consider decreasing order stats of interval mass.
- Kingman simplex:

$$
\nabla_{\infty}=\left\{x_{1} \geq x_{2} \geq \ldots, \sum_{i \in \mathbb{N}} x_{i}=1\right\}
$$

- PDIP gives Poisson-Dirichlet distributions on ∇_{∞}.
- $\operatorname{PDIP}(1 / 2,1 / 2) \rightarrow \operatorname{PD}(1 / 2,1 / 2)$.
- $\operatorname{PDIP}(\alpha, \theta) \rightarrow \operatorname{PD}(\alpha, \theta), 0 \leq \alpha<1, \theta>-\alpha$.

Diffusions on the Kingman simplex

- Diffusions on ∇_{∞} reversible with respect to $\operatorname{PD}(\alpha, \theta)$?
- Ethier-Kurtz '81, Petrov '10 - generator for EKP (α, θ) :

$$
\sum_{i \geq 1} x_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}-\sum_{i, j \geq 1} x_{i} x_{j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}-\sum_{i \geq 1}\left(\theta x_{i}+\alpha\right) \frac{\partial}{\partial x_{i}}
$$

- Also see Bertoin '08, Borodin and Olshanski '09, Feng-Sun '10, Feng-Sun-Wang-Xu '11, Ruggiero and coauthors '09, '13,'14.
- Mostly analytical or Dirichlet form techniques.
- Understanding on path behavior missing.

Diffusions without ranking?

- Theorem (FPRW) The de-Poissonized skewer process of interval partitions, when ranked gives EKP ($1 / 2,1 / 2$) diffusion on the Kingman simplex.
- Provides pathwise description.
- Can be generalized to all (α, θ) (future work).
- Advantage of not ranking: provides better understanding of evolution of small blocks.
- Allows us to settle some conjectures by previous authors.
- E.g. continuity of diversity process.

Vielen Dank!

