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Motivation (Extremal graph theory)

Mantel-Turdn Problem

Among all graphs on n vertices containing no triangles, maximize the number of edges. J

Since we are interested in large n, we normalize. Let’s define

No. of edges in G

No. of triangles in G
K

t(K3,G) = t(K2,G) =

n3 n2
Problem
Maximize (K2, G) subject to the constraint ¢(K3,G) = 0. J
Mantel-Turdn Theorem
t(K2,G) > 3 = t(K3,G) > 0. J

See Aigner and Ziegler '14.

Brown University, May 11, 2023



Motivation (Statistical physics)

Ising model on graphs (See Lovasz’ book Large Networks and Graph Limits)

Let G be a weighted graph on n vertices with weighted adjanceny matrix A.
Let F be a finite simple graph on m vertices.
We define homomorphism density of F' into G

HEG) =— 3 1 At

nm .
11,9255 0m {u,v}€E(F)

F := A graph on m vertices. Every vertex may have a state 1,2,...,q.
Between two neighboring vertices with states i, j, there is an interaction energy J;;.
A configuration is a map o : V(F) — [q].

The partition function is given by

z= 3 ep|- D Jewew | = D 1L B

o:V(F)—[q] uwveE(F) o:V(G)—[q)l uveE(F)

where §;; = exp (—Ji;).

Miniminizing Z is equivalent to minimizing ¢(F, Kg)7 where Kg is complete graph with
edge weights 3;;.
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Motivation (Exponential random graph models)

o ERGM is an exponential family of models on simple graphs. E.g.,

P(Gn =Q) ocexp( 22/6’1 FZ,G’>

where Fi, ..., F} are simple graphs and 1, ..., 8 are real parameters.
o Can be used to fit a random graph to some empirical homomorphism densities.
o Given complete or partial data on the graph, say the edge density or the degree
distribution, the MLE is an optimization on graphs.

o A similar optimization problem appears in the large deviation limit. See Chatterjee and
Diaconis ’13, Chatterjee ’17.

Brown University, May 11, 2023



Introduction

Summary

o There are interesting optimization problems on graphs.

e Some of these optimization problem may not admit solutions in the space of finite
graphs.

Plan

o Fill in the holes in the space of graphs, that is, take a completion of the space of all
finite graphs.

o Try solving optimization problem on the complete space.

o These optimization problems have rich symmetries, invariance under relabeling of
vertices. Can we exploit that?

Brown University, May 11, 2023



Introduction

Detour: Interacting Diffusion (McKean, Kac, Snitzman, Otto ...)

Consider the following example of interacting diffusions

N
) 1 : . )
ax;N = ~ Sovb(xpN - xPNyde+dwi, i=1,..., N
j=1

N _ i
Xy =z -

Let ,uév =N-1 vazl 5X1'»N(t)' Then, ué\’ — ¢ weakly where u is a gradient flow with
respect to 2-Wasserstein metric, given as

1
Ot (x) = —dive [ue(x) - (Vo * pe) ()] + 5 Ape () - (1.1)
Equation (1.1) is a Wasserstein gradient flow of

pr= [[ ba —w)p(dz)p(dy) + Ent(p).

Brown University, May 11, 2023



Detour continued...

Interacting particles system converges to McKean-Vlasov

Suppose Xé’N are i.i.d. with distribution pg. As N — oo, each XN has a natural limit X°.
Each X" is an independent copy of following McKean-Vlasov process

dXi = (Vb* ,ut)(Xt) dt +dB; , Xt—0 = Xo ~ uo -

o Think of each particle X as doing a (noisy) gradient flow.

Drift of the particle X*~ depends on ‘itself’ XN and ‘on the ensemble’
N1 vazl dxi,n in a symmetric way.

@ Then, ‘the ensemble limit’ also performs a gradient flow in suitable sense.

o And, the evolution of a typical particle can be described by a McKean-Vlasov equation.

Brown University, May 11, 2023



Introduction

Objective J

Study large scale optimization problems over dense weighted graphs.

Let G = (V, E) be a graph and let A be an adjacency matrix of G.

0o 1 1 1 e 0O 0 1 1
@09 toro = GO ooy
1 0 1 0 e 1 1 1 0

Figure: Symmetry in unlabeled graphs.

Invariant functions

A function F': M, — R is said to be invariant function/graph function if F(A) = F(A?) for
all permutations o € S, and A € My, where A7 (i,5) = A(o(2),0(5))-

Examples of functions
o Edge density: h_(G) = (# of edges in G)/n2.
o Triangle density: ha(G) = (# of As in G)/n3.

Brown University, May 11, 2023



Optimization on Graphons

Plan and analogies with interacting diffusion

Objective
Let F' be graph function. Our goal is to minimize F' over large graphs. J

Can perform gradient descent on finite graphs/symmetric matrices.

Exploiting the symmetry
o Think of the problem as an optimization problem on the space of ‘graphons’.

o Hope-Pray-Prove! The gradient descent process on finite graphs/symmetric matrices
converge to a limit as n — oo.

o Can we show that the limit of GD is a gradient flow on graphons?

What natural Markov processes on graphs converge to the gradient flow or related
processes?

Graphons vs Wasserstein space

o Given a graph on n vertices is akin to particle ensemble

o Think of every edge as a particle and edge-weights are evolving

Brown University, May 11, 2023



Setup and Results
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Setup and Results [ESISONS

Graphons

Kernels W

A kernel is a measurable function W: [0,1]2 — [—1, 1] such that W (z,y) = W (y, ).

o Adjacency matrix = kernel.

1 1
o7 05
—16 —15 —12 -7
1 |-15 —-14 —11 1 = 05 0
16 |—-12 —-11 -6 4
-7 1 4 9 025 -05
”1! 0.25 0.5 0.75 1

Symmetric matrix A

Kernel representation of A

o Identify adjacency matrix/kernel up to ‘permutations’.

o Identify W = Ws if one can be obtained by ‘relabeling’ the vertices of the other, i.e.,

Wi(e(z), o(y)) = Wa(z,y), where ¢ :[0,1] — [0,1]is a measure preserving map.

Brown University, May 11, 2023
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Setup and Results [ESISONS

Graphons

Graphons w (Lovész & Szegedy, 2006): W = W/ J

Cut metric :: Weak convergence
o Cut metric, g, metrizes graph convergence.

° (W, d0) is compact.

v
Invariant L2 metric do :: 2-Wasserstein metric Wy
o Stronger than the cut metric (i.e., g convergence % d2 convergence).
o Gromov-Wasserstein distance between ([0, 1], Leb, W1) and ([0, 1], Leb, W2).
v

We show ( Oh, P., Somani, Tripathi, '21)
o The metric d2 is geodesic (just like W2). Geodesic convexity on (l//\/\, 02).
e Notion of ‘gradient’ on (17\/\, 02) called ‘Frechét-like derivative’!

o Construction of ‘gradient flows’ on (W, 62)*.

1Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré,
2008 Brown University, May 11, 2023



Setup and Bl Results

Existence of gradient flow on Graphons

Theorem [OPST ’21]

IfR: W—R
o has a Fréchet-like derivative,
o is geodesically semiconvex in d2,

then starting from any Wy € W, 3! gradient flow curve (Wt)te]lh for R satisfying
t
Wi == Wo — / DR(Ws)ds + boundary terms, ¢ ¢€ Ry,
0

inside W. At the boundary {—1,1} of W, add constraints to contain it.

Scaling limits of GD [OPST 21 + HOPST ’22]

Euclidean GD/SGD of R, over n X n symmetric matrices, converges to the ‘gradient flow’ of
R on the metric space of graphons.

y

Brown University, May 11, 2023



Setup and Results [SECENIeS

Example

For p € [0, 1], define the entropy function I(p) = plog(p) + (1 — p) log(p). In the following we
assume W : [0,1]%2 — [0, 1].
For a kernel W, define

I(W) = H I(W(z,y))dz dy.
Gradient flow of F(W) = (K3, W) + BI(W)

Wi(z,y) :Wo(x,y)—B/Ot/Ws(x,z)Ws(z,y)dzds—B/Otlog< W (z,y) ds) .

1= Ws(xv y)

Finite dimensional gradient descent

- t 2 ‘ Wi (i, g
Wt(")(w)=W<§n)‘3"2/ - () (Z’J)ds_ﬂ/ R (7(1) D).
o n 0 1—Ws"(4,7)

Brown University, May 11, 2023



Setup and Results [SECENIeS

Markov Chain converging to gradient flow

Suppose we want to construct a Markov process on graphs that converges to the gradient
flow of triangle density ¢(K3,-). J

e Start with G 0.
o At each time step 7y, all the edges in G, j, flip (or don’t flip according to following rule).

o If {¢,7} is not an edge in G, ) then {%,j} remains a non-edge in Gy, jy1.-
o If {i,j} is an edge in G, i then drop it with probability

_ . By
Dij = Tn s
n

where A;; = Number of triangles with containing {4, j}.
o Take the step-size 7, = n—lz
@ One can also analyze variants of Metropolis-Hastings MC whose invariant measures are
Gibbs measures.
e As n — oo, paths of such processes also converge. Current work with

Athreya-P.-Somani-Tripathi.

Brown University, May 11, 2023



Scaling limit of Noisy SGD

Scaling limit of Noisy SGD

For n € N, let VRn(A) = E¢[Vin(A;6)] for A € My.

Stochastic Gradient Descent (SGD)

Given the k-th iterate W,gn) € M, sample &,
W =W~ mn? VW)

stochastic Euclidean
gradient

Brown University, May 11, 2023



Setup and Bl Scaling limit of Noisy SGD

Scaling limit of Noisy SGD

For n € N, let VRp(A) = E¢[Vin(A4;6)] for A € My,

Noisy SGD

Given the k-th iterate W,S") € M, sample &,

1/2
WD =W~ meon? VW6 + m? & ~N(O,T)
stochastic Euclidean independent GOE noise
gradient

Brown University, May 11, 2023



ST NIl Scaling limit of Noisy SGD

Scaling limit of Noisy SGD

For n € N, let VRn(A) = E¢[Vin(4;6)) for A € My.

Noisy SGD

Given the k-th iterate W,gn) € My, sample &,

W;ETFPTOJ(VVIE") — men? VWMo + wm? & ~NOI) >
—_——
stochastic Euclidean independent GOE noise
gradient

Brown University, May 11, 2023



ST NIl Scaling limit of Noisy SGD

Scaling limit of Noisy SGD

For n € N, let VRn(A) = E¢[Vin(4;6)) for A € My.

Noisy SGD

Given the k-th iterate W,gn) € My, sample &,

W;ETFPTOJ(VVIE") — men? VWMo + wm? & ~NOI) )
—_——
stochastic Euclidean independent GOE noise
gradient

If Wén) LN Wo, and 7, — 0, as n — oo, then a.s.

dul
w) =T, as n — oo,

where I': ¢ — T'(¢) is the curve described by the McKean-Vlasov equation.

Brown University, May 11, 2023



ST NIl Scaling limit of Noisy SGD

McKean-Vlasov equation

Let (92, F,P) be a probability space with a Brownian Motion B(t), and
U, V) "k Unilo, 1].
e R is a function on graphons and DR its L2 “gradient”.

o Consider the process (X (t),I'(t)) such that on {U = u,V = v},

dX(t) = —(DR)(T(®))(u,v) dt + dB(t) +dL~(¢) — dL* (1),
constrain in [—1, 1] (McKean—Vlasov)
D(t)(z,y) =E[X () | (U, V) = (z,9)], ¥ (2,y) €[0,1).

(T'(t), t > 0) is a process of kernels, given the initial random labeling.

Expected to arise as limit of large number of graph dynamics.

Existence + uniqueness when DR is L? Lipschitz - [HOPST ’22] Bfown University, May 11, 2023



ST NIl Scaling limit of Noisy SGD

A novel notion of “mean-field”

“Mean-field interaction”: For any edge-weight, the effect of all others edge-weights on its

evolution is invariant under vertex relabeling.

“Propagation of chaos”: Every edge-weight between a set of m randomly chosen vertices
evolves independently in the limit.

Brown University, May 11, 2023
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bout proofs

Proof Sketch:Scaling limits of gradient flow

e We show that the cut topology is consistent with the invariant L? metric 622.
o At every n € N, consider implicit Euler update rule with positive a step size 7.

o The limit is obtained by showing I'-convergence.

2Gradient Flows: In Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli, Savaré
5
08 Brown University, May 11, 2023



Ideas about proofs

Proof Sketch: Scaling limits of noisy SGD

o The existence of the deterministic limit I" is obtained as a limit of a Picard iterations.
o Independently sample a sequence of vertices.

o From SGD iterations W (™ (t), sample a random m X m submatrix process W (™ (¢)[m].
o Couple and get matrix processes X (t)[m] & I'(t)[m] from McKean-Vlasov type SDEs.

e Use concentration estimates to show that as curves,

5g
W m] = T, as n — oo, and m — oo, a.s.

We recover the scaling limit of SGD (without added noise) as a corollary.

Brown University, May 11, 2023



oming and future work

Upcoming work

Cut convergence gives limited information

‘What can we infer if W, — W in cut topology?
We can infer the convergence of ¢(F, W,) — t(F, W) for any finite graphs.
Unfortunately, we can’t say [ Wn(z,y)?dzdy — [[ W(z,y)?dzdy.

Cut topology is not good for weighted graphs

Let G(n,p) be the Erdos-Renyi graph.

G(n,p) - Wp =p.

Let K (n,p) be the complete weighted graph withe edge weights p.
K(n,p) — Wp.

We would want to say G(n,p) converges to an infinite exchangeable array G(co,p) with
i.i.d. Bernoulli random variables.

And, K (n,p) converges to an infinite (deterministic) array K (oo, p).

Stronger but natural topology? Measure-valued graphons.
. Also analyze Metropolis-Hastings using gradient flows.

Brown University, May 11, 2023




nd future work

Simulations

o Turan’s theorem: The n-vertex triangle-free graph with the maximum number of edges
is a complete bipartite graph.

Q. Can we recover this theorem through an optimization problem on graphons?

1
F(W) = (K3, W) = 5t(K2, W) . J
”};T] 1.0 n""ul 1 “',‘;’z%‘ 1.0

0 0
GO0 025 0d 07 L G0 025 0 07 L 00025 030 07 L

(a) GD (n=17) (b) GD (n = 32) (c) GD (n = 256)

Brown University, May 11, 2023
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nd future work

Upcomi

Future directions

o Extension to Deep NNs. Use a graphon for each layer (bipartite graph), respecting all

joint layerwise permutation symmetries - In progress.
Te+1

Figure: A b-layer NN.

o How does data distribution propagate across depth? Control theory, optimal transport -

Open.

Brown University, May I1, 2023
/ 26



Propagation of Chaos experiments

e SGD training of a 5 layer deep feedforward ReLU networks. o: x — max{0,z}.
o Test joint independence of elements in random 2 X 2 submatrices.
o Null hypothesis: All the 4 random variables are jointly independent.

FashionMNIST b =5 FashionMNIST b =5 FashionMNIST b =5 FashionMNIST b =5

10 0 it 10 10? 0 10 10 0 0 10 it

(a) FashionMNIST

CIFARI0 b =5 CIFARI0 b =5 CIFARI0 b =5 CIFARI0 b =5

(b) Dataset: CIFARIO0. z-axis: n, y-axis: p-value with interquartile range.
Brown University, May 11, 2023



Thank you!

Thank you!

ArXiv version®: https://arxiv.org/abs/2210.00422

3Stochastic optimization on matrices and a graphon McKean-Vlasov limit - Harchaoui, Oh, Pal, Somani,

Tripathi, 2022 Bféwn University, May 1, 2023
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