Convex Algebraic Geometry

Rekha R. Thomas

University of Washington, Seattle

CAG = study of convex hulls of real algebraic varieties

- $I \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]=: \mathbb{R}[\mathbf{x}] \quad$ ideal
- $\mathcal{V}_{\mathbb{R}}(I):=\left\{\mathbf{p} \in \mathbb{R}^{n}: f(\mathbf{p})=0 \forall f \in I\right\}$ real variety of I, closed, semi-algebraic
- $\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ convex hull of $\mathcal{V}_{\mathbb{R}}(I)$
convex, semi-algebraic

$$
I=\left\langle x^{2} y-1\right\rangle
$$

$\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ open
(1) $S \subseteq \mathbb{R}^{n}$ is (basic) semi-algebraic if

$$
\begin{aligned}
& S=\left\{\mathbf{p} \in \mathbb{R}^{n}: f_{1}(\mathbf{p}) \triangleright_{1} 0, \ldots, f_{s}(\mathbf{p}) \triangleright_{s} 0\right\}, \\
& f_{i} \in \mathbb{R}[\mathbf{x}], \quad \triangleright_{i} \in\{\geq, \leq,=, \neq\}
\end{aligned}
$$

(2) semi-algebraic set = union of basic semi-algebraic sets

I. Why should anyone care?

(1) univariate ideals: $I=\langle f\rangle$
$\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(f)\right)-\min$ and max real roots of f

(2) $\mathcal{V}_{\mathbb{R}}(I)$ finite:

- $\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ is a polytope
- allows linear optimization over $\mathcal{V}_{\mathbb{R}}(I)$

contains $0 / 1$ integer programming: $\max \left\{\mathbf{c} \cdot \mathbf{x}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \in\{0,1\}^{n}\right\}$

Ex: $G=([n], E)$ graph on n nodes
(i) max stable set problem in G
(ii) max cut problem in G

(3)Polynomial Optimization: $p^{*}:=\inf \{p(\mathbf{x}): \mathbf{x} \in K\}, K$ semi-algebraic

$$
p(\mathbf{x})=\sum_{\alpha \in S} p_{\alpha} \mathbf{x}^{\alpha},|S|=s, p_{\alpha} \in \mathbb{R}
$$

- $K=\mathbb{R}^{n}$ (unconstrained poly optimization):

II. Representing $\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$

\star finite real varieties:
$\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x} \leq \mathbf{b}\right\}$ polytope

- linear programming (polynomial time)
- duality theory / seperation theorem (Farkas lemma)
- projection algorithms (Fourier-Motzkin elimination)
- well developed computational methods

What is a useful representation in other cases?
Driven by available algorithms \& their inputs

Semidefinite programming

- $A, B \in \operatorname{Symm}\left(\mathbb{R}^{n \times n}\right), \quad A \cdot B:=\operatorname{trace}(A B)$
- $A \succeq 0$ (positive semi-definite)
$\Leftrightarrow \quad$ all eigenvalues of A are non-negative
$\Leftrightarrow \mathbf{v}^{t} A \mathbf{v} \geq 0 \quad \forall \mathbf{v} \in \mathbb{R}^{n}$
\Leftrightarrow all principal subdeterminants ≥ 0
$\Leftrightarrow A=B B^{t}$ for some $B \in \mathbb{R}^{n \times m}$

semidefinite program (sdp):
$\sup \left\{C \cdot X: A_{j} \cdot X=b_{j}, j=1, \ldots, m, X \succeq 0\right\}$
- convex optimization, polynomial time algorithms
- Linear programming is SDP over diagonal matrices
- feasible region - spectrahedron - convex, semi-algebraic

Example:

$$
\begin{aligned}
& \left\{(x, y) \in \mathbb{R}^{2}:\left[\begin{array}{rrr}
x & 0 & y \\
0 & 1 & -x \\
y & -x & 1
\end{array}\right] \succeq 0\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}: \begin{array}{l}
0 \leq x \leq 1 \\
x \geq y^{2} \\
x-x^{3}-y^{2} \geq 0
\end{array}\right\}
\end{aligned}
$$

Open Problem: Can every convex semi-algebraic set be written as a spectrahedron or a projection of one?

Exact conditions known in \mathbb{R}^{2} (Helton-Vinnikov) no obstructions known when $n>2$.

TV screen : $I=\left\langle x^{4}+y^{4}-1\right\rangle$ $\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ is not a spectrahedron but is the projection of one. (Helton-Vinnikov)

In many more cases $\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ is the projection of a spectrahedron:

- $\mathcal{V}_{\mathbb{R}}(I)$ finite (Parrilo, Lasserre, Laurent)
- $\mathcal{V}_{\mathbb{R}}(I)$ compact with certain smoothness \& curvature (Helton-Nie)
- non-compact examples with $\operatorname{dim}\left(\mathcal{V}_{\mathbb{R}}(I)\right) \leq 2$ (Scheiderer)
- some ideals generated by convex quadrics (Gouveia, Parrilo, T.)
- rationally parametrized curves \& some hypersurfaces (Didier)

III. Approximating $\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ via SDP

$\star \operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ cut out by all linear $f \in \mathbb{R}[\mathbf{x}]$,
non-negative on $\mathcal{V}_{\mathbb{R}}(I)$
$\star f \equiv \sum h_{j}^{2} \bmod I \Rightarrow f \geq 0$ on $\mathcal{V}_{\mathbb{R}}(I)$; say f is
sum of squares (sos) mod $I \& k$-sos if $\operatorname{deg}\left(h_{j}\right) \leq k$

Definitions: $f \in \mathbb{R}[\mathbf{x}]$

- I is k-sos if $f \geq 0$ on $V_{\mathbb{R}}(I) \Rightarrow f k$-sos $\bmod I$
- I is $(1, k)$-sos if $f \geq 0$ on $\mathcal{V}_{\mathbb{R}}(I) \& f$ linear $\Rightarrow f k$-sos $\bmod I$ Lovász: Which ideals are (1,1)-sos, $(1, k)$-sos?
$\ddot{*}$ (Parrilo) I zero-dim \& radical $\Rightarrow I$ is $\left|\mathcal{V}_{\mathbb{C}}(I)\right|$-sos $\Rightarrow\left(1,\left|\mathcal{V}_{\mathbb{C}}(I)\right|\right)$-sos.
$\stackrel{\bullet}{\sim}\left\langle x^{2}\right\rangle$ not $(1, k)$-sos for any k

Theta bodies of polynomial ideals (Gouveia-Parrilo-T)

$$
\begin{gathered}
\mathrm{TH}_{k}(I):=\left\{\mathbf{x} \in \mathbb{R}^{n}: f(\mathbf{x}) \geq 0 \forall f \text { linear \& } \mathbf{k} \text {-sos mod } I\right\} \\
\mathrm{TH}_{1}(I) \supseteq \mathrm{TH}_{2}(I) \supseteq \cdots \supseteq \overline{\operatorname{conv}\left(\mathcal{U}_{\mathbb{R}}(I)\right)}-(*)
\end{gathered}
$$

Theorem (GPT): $\mathrm{TH}_{k}(I)$ is the projection of a spectrahedron

Definition: I is

- TH_{k}-exact if $\mathrm{TH}_{k}(I)=\operatorname{cl}\left(\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)\right)$ (finite convergence)
- TH-exact if there is convergence in $(*)$
* $\left\langle x^{2} y-1\right\rangle$ is $(1,2)$-sos and TH_{2}-exact
* $\left\langle x^{2}\right\rangle$ is TH_{1}-exact
* $\mathcal{V}_{\mathbb{R}}(I)$ compact $\Rightarrow I$ is TH -exact (Schmüdgen) eg. tv screen
* ideal of rational normal curve of degree d is TH_{d}-exact

Geometry of theta bodies

Theorem (GPT): $\mathrm{TH}_{1}(I)=\bigcap\left\{\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(F)\right): F\right.$ convex quadric in $\left.I\right\}$ Ex. $I=$ Vanishing ideal of $\{(0,0),(1,0),(0,1),(2,2)\}$

Corollary: $J_{n}:=\left\langle\sum_{i=1}^{n} x_{i}^{2}-1\right\rangle$ is $(1,1)$-sos \& TH_{1}-exact.
By Scheiderer $\exists f \geq 0 \bmod J_{n}, n \geq 4$ that is not $\operatorname{sos} \bmod J_{n}$.

Question: What is the geometry of higher theta bodies?

The spectrahedra upstairs

Real radical ideals

Definition: I real radical if it is the vanishing ideal of $\mathcal{V}_{\mathbb{R}}(I)$

- Theorem (GPT): I real radical $\Rightarrow I$ is $(1, k)$-sos $\Leftrightarrow I$ is TH_{k}-exact
- Theorem (GPT): I real radical \& 0-dimensional. Then TFAE:
- I is TH_{1}-exact
- $\operatorname{conv}\left(\mathcal{V}_{\mathbb{R}}(I)\right)$ has a (finite) linear inequality description in which \forall

$$
f(\mathbf{x}) \geq 0, f \equiv f^{2} \bmod I
$$

$-\cdots \forall f(\mathbf{x}) \geq 0, \mathcal{V}_{\mathbb{R}}(I) \subseteq\{f(\mathbf{x})=0\} \cup\{f(\mathbf{x})=1\}$

IV. Computation

via Combinatorial Moment Matrices (Laurent, Lasserre)
μ probability measure supported on $K \subseteq \mathbb{R}^{n}$:

- $y_{\alpha}:=\int \mathbf{x}^{\alpha} d \mu \quad$ moment of order α
- $y:=\left(y_{\alpha}: \alpha \in \mathbb{N}^{n}\right)$ moment sequence of μ
- $M(\mathbf{y}) \in \mathbb{R}^{\mathbb{N}^{n} \times \mathbb{N}^{n}}: M(\mathbf{y})_{(\alpha, \beta)}:=y_{\alpha+\beta}$ moment matrix $\quad(M(\mathbf{y}) \succeq 0)$
\mathcal{B} linear basis for $\mathbb{R}[\mathbf{x}] / I$ containing $1, x_{1}, \ldots, x_{n}$ (use Gröbner bases)
- Combinatorial moment matrix: $\mathbf{y}=\left(y_{\gamma}: \mathbf{x}^{\gamma} \in \mathcal{B}\right) \longrightarrow M_{\mathcal{B}}(\mathbf{y})$
$\mathbf{x}^{\alpha} \mathbf{x}^{\beta} \equiv \sum_{\mathbf{x}} \gamma_{\in \mathcal{B}} \lambda_{\mathbf{y}}{ }_{\mathbf{x}} \gamma_{;} \quad \quad M_{\mathcal{B}}(\mathbf{y})_{\alpha, \beta}:=\sum_{\mathbf{x}} \gamma_{\in \mathcal{B}} \lambda_{\gamma} y_{\gamma}$

Theorem (GPT): $\mathrm{TH}_{k}(I)$ is the closure of the projn onto $\left(y_{1}, \ldots, y_{n}\right)$ of

$$
\begin{equation*}
\left\{\mathbf{y} \in \mathbb{R}^{\mathcal{B}_{2 k}}: M_{\mathcal{B}_{k}}(\mathbf{y}) \succeq 0, y_{0}=1\right\} \tag{sdp}
\end{equation*}
$$

Duality

$\mathbb{R}[\mathbf{x}]^{*} \cong\left\{\mathbf{y}:=\left(y_{\alpha} \in \mathbb{R}: \alpha \in \mathbb{N}^{n}\right)\right\}$ dual vector space of $\mathbb{R}[\mathbf{x}]$

$$
\begin{array}{ccc}
\mathcal{P}=\left\{p: p(\mathbf{x}) \geq 0, \forall \mathbf{x} \in \mathbb{R}^{n}\right\} & \supseteq & \Sigma=\left\{\sum h_{j}^{2}: h_{j} \in \mathbb{R}[\mathbf{x}]\right\} \\
\mathfrak{M}:=\left\{\mathbf{y} \in \mathbb{R}^{\mathbb{N}^{n}}: \mathbf{y} \text { mom seq in } \mathbb{R}^{n}\right\} & \subseteq \mathcal{M}_{\succeq}:=\left\{\mathbf{y} \in \mathbb{R}^{\mathbb{N}^{n}}: M(\mathbf{y}) \succeq 0\right\}
\end{array}
$$

Haviland $1935 \mathcal{P}=\mathcal{M}^{*}, \mathscr{P}^{*}=\mathcal{M}$
Berg,Christensen,Jensen 1979: $\Sigma=\mathcal{M}_{\succeq}^{*}, \Sigma^{*}=\mathcal{M}_{\succeq}$

- $(n=1) \Rightarrow \begin{aligned} & \mathcal{M}=\mathcal{M}_{\succeq} \text { Hamburger's theorem } \\ & \mathcal{P}=\Sigma\end{aligned}$

V. Why does Lovász care?

- $G=([n], E)$ graph, $\quad \bullet S \subseteq[n]$ stable set in G if $\forall i, j \in S,\{i, j\} \notin E$ max stable set problem: $\max \{|S|: S$ stable in $G\}$
geometric approach: $\operatorname{STAB}(G):=\operatorname{conv}\left\{\chi^{S}: S\right.$ stable set in $\left.G\right\}$ max stable set problem: $\max \left\{\sum x_{i}: \mathbf{x} \in \operatorname{STAB}(G)\right\}$ (NP-hard)
$I_{G}:=\left\langle x_{i}-x_{i}^{2}: i \in[n], x_{i} x_{j}: i j \in E\right\rangle \Rightarrow \mathcal{V}\left(I_{G}\right)=\left\{\chi^{S}: S\right.$ stable in $\left.G\right\}$ Lovász 1980: introduced $\mathrm{TH}_{1}\left(I_{G}\right)$ (Lovász theta body of G)
- $\operatorname{STAB}(G)=\operatorname{TH}_{1}\left(I_{G}\right) \Leftrightarrow G$ perfect
- poly time algorithm when G perfect
- initiated sdp relaxations in combinatorial opt

Max Cut Problem

$C \subseteq E$ cut in G if $\exists V_{1} \cup V_{2}=[n]: \forall i j \in E, i \in V_{1} \& j \in V_{2}$ or vice-versa max cut problem: $\max \{|C|: C$ cut in $G\}$
$\chi^{C}:\left(\chi^{E}\right)_{e}=\left\{\begin{array}{ll}-1 & \text { if } e \in C \\ 1 & \text { if } e \notin C\end{array} \quad \operatorname{CUT}(G):=\operatorname{conv}\left\{\chi^{C}: C\right.\right.$ cut in $\left.G\right\}$
max cut problem: $\max \left\{\sum \frac{1}{2}\left(1-x_{i j}\right): \mathbf{x} \in \operatorname{CUT}(G)\right\}$ (NP-hard)
$I G:=I\left(\left\{\chi^{C}: C\right.\right.$ cut in $\left.\left.G\right\}\right)$
GB: $\left\{x_{i j}^{2}-1\right\} \cup\left\{\mathbf{x}^{A}-\mathbf{x}^{B}: A \cup B\right.$ circuit in $\left.G\right\}$

Theorem (GPT+Laurent): G is cut-perfect (i.e., CUT $\left.(G)=\mathrm{TH}_{1}(I G)\right) \Leftrightarrow$
G has no K_{5}-minor and chordless circuits of length ≥ 5. (a Lovász qn)

Bigger context in which CAG lives

Real algebraic geometry: study of semi-algebraic sets in \mathbb{R}^{n}, preorders in $\mathbb{R}[\mathbf{x}]$, non-negative polynomials, sos polynomials, positivstellensatz

Analysis: moment problems, functional analysis

Optimization: semidefinite programming, polynomial optimization, control theory, combinatorial optimization

FRG project (2008-11):
Semidefinite Optimization and Convex Algebraic Geometry
Helton, Nie, Parrilo, Sturmfels, T., Rostalski, Klep, Gouveia, Vinzant,
Diwedi ...

