
MATH 409 LECTURE 10
DIJKSTRA’S ALGORITHM FOR SHORTEST PATHS

REKHA THOMAS

In this lecture we see the first algorithm to compute shortest paths
from a given vertex r to all vertices v in a digraph G without negative
cost cycles. See [1] and [2] for more details.

The digraph G is assumed to be connected and simple. The algo-
rithms we will see are based on the following principle that we proved
last time.

Bellman’s principle: Let G be a digraph with all the above assump-
tions. If e = vs is the final edge of a shorest path P[r,s] from r to s,
then P[r,v], which is P[r,s] without e = vs is a shortest path from r to v.

We will look for an algorithm that computes the shortest (r, v)-dipath
for all v ∈ V (G). This of course includes the shortest (r, s)-path in G.
Note that if we adopt this strategy, then we can store a shortest path
from r to v by simply storing the last edge in the path. The shortest
path between any two vertices can be reconstructed from this.

Dijkstra’s algorithm (Dijkstra 1959)
This algorithm requires that ce ≥ 0 for all e ∈ E(G).
Input: A digraph G with edge costs ce ≥ 0 for all e ∈ E(G). A start
vertex r.
Output: The shortest (r, v)-dipaths in G for all v ∈ V (G) and their
costs.

What we in fact get are the following: for each v ∈ V (G),
— l(v), the cost of a shortest (r, v)-dipath in G
— p(v), the vertex just before v on this shortest (r, v)-dipath.
We will get l(v) =∞ if v is not reachable from r.

(1) Set l(r) = 0, l(v) = ∞ for all v ∈ V (G)\{r} and R = ∅. R is
the list of vertices processed so far.

(2) Find a v ∈ V (G)\R with l(v) = min {l(w) : w ∈ V (G)\R}.
(3) Set R = R ∪ {v}.

Date: April 19, 2010.
1



2 REKHA THOMAS

(4) For all w ∈ V (G)\R such that vw ∈ E(G) do:
if l(w) > l(v) + cvw then set l(w) := l(v) + cvw and p(w) := v.

(5) If R 6= V (G) then go to (2).

Exercise 1. [1, Problem 2.36] Give an example to show that Dijkstra’s
algorithm can give incorrect results if negative edge costs are allowed.

Recall that all our graphs have n vertices and m edges.

Theorem 2. (1) Dijkstra’s algorithm runs in O(n2) time.
(2) Dijkstra’s algorithm works correctly.

Proof. (1) There are n iterations in the algorithm. The main work in
each iteration is done in Step (4) of the algorithm where we update
the l-value of all the neighbors of the vertex v being processed in that
iteration. Each update takes a constant amount of time and there are
at most n− 1 neighbors for any given vertex. Therefore, the total time
taken in O(n2).

(2) In order to show that the algorithm works correctly, we will argue
that the following three properties hold at the end of every iteration.

(a) For all v ∈ R and w ∈ V (G)\R, l(v) ≤ l(w).
(b) For all v ∈ R, l(v) is the length of the shortest (r, v)-path. If

l(v) < ∞, then there exists an (r, v)-path of length l(v) with
final edge (p(v), v) (unless v = r in which case there is no pre-
vious node for r) whose vertices are in R.

(c) For all w ∈ V (G)\R, l(w) is the length of a shortest (r, w)-
path in G[R ∪ {w}]. If l(w) < ∞ then p(w) ∈ R and l(w) =
l(p(w)) + c(p(w),w).

If we prove this then (b) will hold at the end of the algorithm which
will prove the correctness of the algorithm.

At the start of the algorithm, R = ∅ and so (a) and (b) are vacuously
true. Let’s check that (c) is also true. For w = r, l(w) = 0 and
G[R ∪ {w}] = G[∅ ∪ {r}] = G[{r}]. The shortest (r, r)-path in G[{r}]
does indeed have length zero. For w 6= r, l(w) =∞ and G[R ∪ {w}] =
G[{w}]. There no (r, w)-path in G[{w}] which shows that the length
of a shortest (r, w)-path in G[{w}] is indeed ∞.

Suppose the vertex v is chosen in Step (2) of some iteration of the
algorithm and suppose further that properties (a)-(c) hold until the
end of the previous iteration. We prove below that Steps (3) and (4)
in the current iteration will continue to preserve (a)-(c) showing that
these properties will hold again at the end of this iteration.



MATH 409 LECTURE 10 DIJKSTRA’S ALGORITHM FOR SHORTEST PATHS 3

(a) Pick an x ∈ R and a y ∈ V (G)\R, y 6= v. Suppose we are in
Step (2) of the current iteration and have just chosen v to process.
Then after Step (2) we have l(x) ≤ l(v) since (a) held at the end of
the previous iteration and l(v) ≤ l(y) since otherwise we would not
have chosen v to process. Step (3) does not affect any l-values and
so these relations continue to hold. In Step (4), l(y) could change for
all y ∈ V (G)\R such that vy ∈ E(G). If l(y) changes, it changes to
l(v) + cvy ≥ l(v) since cvy ≥ 0. Therefore we still have that l(v) ≤ l(y)
for all y ∈ V (G)\R, y 6= v. Putting everything together, we get that
(a) holds at the end of this iteration.

(b) We now check that (b) holds at the end of this iteration. Since
this is a statement for vertices in R and (b) held until the end of the
previous iteration, we only have to check that (b) holds for the new
vertex v that was added to R in Step (3). In Step (3) we add v to R
and our job is to check that l(v) is the length of a shortest (r, v)-path
in the whole graph. By our assumptions, property (c) held until before
Step (3) which implies that l(v) is the length of a shortest (r, v)-path
using the vertices in the current R (which includes v). So the only way
(b) can fail is if there exists an (r, v)-path P in G using a vertex in
V (G)\R that is shorter than l(v). Suppose such a path exists.

Let w be the first vertex in V (G)\R on this path P as you traverse the
path from r to v. Since (c) was true before Step (3), l(w) ≤ c(P[r,w]).
Further, since ce ≥ 0, c(P[r,w]) ≤ c(P = P[r,v]) and by assumption,
c(P = P[r,v]) < l(v). Putting all this together,

l(w) ≤ c(P[r,w]) ≤ c(P = P[r,v]) < l(v)

which implies that l(w) < l(v) contradicting the choice of v in Step (2)
as the next vertex to be processed.

(c) Let w be a vertex in V (G)\R at the end of Steps (3) and (4).
There are two possibilities: either l(w) got updated in Step (4) or not.
If l(w) is not updated, then it was either because, vw 6∈ E(G) or be-
cause vw ∈ E(G) but l(w) < l(v) + cvw.

Case 1. l(w) is not updated in Step (4) because vw 6∈ E(G):
Suppose there is a path P in G[R ∪ {w}] with c(P ) < l(w). Then

this path must use v since otherwise, it would use only the vertices in
R\{v}∪{w} and (c) would have been violated in the previous iteration
of the algorithm. Also, since vw 6∈ E(G), there is a node x ∈ R, x 6= v
that is the neighbor of w on the path P . These two facts and the fact



4 REKHA THOMAS

that all edge costs are non-negative imply that c(P ) ≥ l(v)+cxw. How-
ever, at the start of this iteration (in Step (2)) we had that l(x) ≤ l(v)
by (a). This implies that c(P ) ≥ l(v) + cxw ≥ l(x) + cxw. This last
quantity l(x) + cxw ≥ l(w) since l(w) was checked for updates when x
was processed. Together this implies that c(P ) ≥ l(w) which contra-
dicts our starting assumption. Therefore, (c) is true in this case.

Case 2. l(w) is not updated in Step (4) because l(w) < l(v) +
cvw: In this case, there is an (r, w)-path in G[R\{v} ∪ {w}] with cost
l(w) that was a shortest (r, w)-path in this smaller induced subgraph.
Adding v to R did not give us a shorter path and so (c) is true for such
a w.

Case 3. l(w) got updated in Step (4): Then p(w) is set to v
and l(w) has been updated to l(v) + cvw and there is an (r, w)-path in
G[R∪{w}] of length l(v) + cvw with final edge vw. Suppose there is an
(r, w)-path P in G[R∪{w}] which is shorter than l(w). Then this path
P must contain v, the only new vertex added to R since otherwise,
(c) would have been violated for this w in the previous iteration which
contradicts our assumption. (Note that l-values only decrease as the
algorithm runs.) Let x be the neighbor of w in this path P . Since
x ∈ R, by part (a) we have that l(x) ≤ l(v). Also, since x ∈ R and
xw ∈ E(G), we would have updated l(w) when we processed x which
means that l(w) ≤ l(x) + cxw. Putting all this together, we have

l(w) ≤ l(x) + cxw ≤ l(v) + cxw.

However, since P contains v, the length of P[r,v] is at least l(v) which
is the length of a shortest (r, v)-path in G. Also, P contains xw and
cxw ≥ 0. Together we get that c(P ) ≥ l(v) + cxw. Including this at the
end of the above chain of inequalities we get that l(w) ≤ c(P ) which
contradicts our assumption that c(P ) < l(w). �

Exercise 3. [1, Problem 2.18] Show by an example that a spanning
directed tree rooted at r can be of minimum cost but not contain least
cost dipaths to all the nodes. Also show the converse that it may
contain least cost dipaths but not be of minimum cost.

Exercise 4. [1, problem 2.24] There are certain street corners in Bridgetown
such that the street on which a car leaves the intersection may depend
on the street on which it entered the intersection (for example “no
left turn”). How can a digraph, and arc costs, be defined so that the
dipaths correspond to legal routes?



MATH 409 LECTURE 10 DIJKSTRA’S ALGORITHM FOR SHORTEST PATHS 5

Exercise 5. [1, problem 2.21] Run Dijkstra’s algorithm on the fol-
lowing digraph. V = {r, a, b, d, f, g, h, j, k} and for each v ∈ V the
elements of the list Lv are the pairs (w, cvw) for which vw ∈ E. Lr :
(a, 2), (k, 7), (b, 5). La : (d, 8), (f, 4). Lb : (k, 3), (f, 2). Ld : (h, 5). Lf :
(g, 3), (j, 7). Lg : (h, 4), (j, 3). Lj : (k, 4), (h, 3). Lk : (d, 2), (h, 9), (g, 6),
(f, 1). Lh = ∅.

References

[1] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. Wiley-Interscience Series in Discrete Mathematics, 1998.

[2] B. Korte and J. Vygen. Combinatorial Optimization. Springer, Berlin, 2000.


