Math 524

Homework due 11/15/00

Problem 1. (Prelim) Let $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence of non-negative functions defined on a measure space $(X, \mathcal{M} \mu)$, such that for every $n \geq 1$,

$$
\int_{X} f_{n} d \mu \leq 1
$$

Prove that

$$
\limsup _{n \rightarrow \infty}\left(f_{n}(x)\right)^{1 / n} \leq 1 \quad \mu \text { - a.e. } x \in X .
$$

Problem 2. (Prelim) Show, with justification of each step, that

$$
\int_{0}^{1}\left(\sum_{n=1}^{\infty} x^{k} \frac{\cos \left(2^{k} \pi x\right)}{k}\right) d x=\sum_{n=1}^{\infty}\left(\int_{0}^{1} x^{k} \frac{\cos \left(2^{k} \pi x\right)}{k} d x\right)
$$

Problems from Folland:

Chapter 2, Section 3: problems 18, 19, 20, 21, 27, 28 (a-c).

