Math 524

Homework due 11/22/00

* **Problem:** Let (X, \mathcal{M}, μ) be a measure space. Assume $\mu(X) < \infty$. Let $\{f_n\}_{n \ge 1}$ be a sequence in $L^1(\mu)$ satisfying:

- 1. $f_n \to f \ \mu a.e$ in X
- 2. Given $\epsilon > 0$ there is $\delta > 0$ so that

$$\sup_{n\geq 1} \int_E |f_n| \, d\mu < \epsilon, \quad \text{whenever} \quad \mu(E) < \delta.$$

Show that $f \in L^1(\mu)$ and that $f_n \to f$ in $L^1(\mu)$, i.e.

$$\lim_{n \to \infty} \int |f_n - f| \, d\mu = 0.$$

Problems from Folland:

Chapter 2, Section 3: problem 23.

Chapter 2, Section 4: problems 33, 34, 36, 40, 41, 44.

Hint for problem 36: see problems 3 and 5 in Chapter 2, Section 1.