CONSTRUCTION OF THE REAL NUMBERS

We present a brief sketch of the construction of \mathbf{R} from \mathbf{Q} using Dedekind cuts. This is the same approach used in Rudin's book *Principles of Mathematical Analysis* (see Appendix, Chapter 1 for the complete proof). The elements of \mathbf{R} are some subsets of \mathbf{Q} called cuts. On the collection of these subsets, i.e. on \mathbf{R} , we define an order, an addition, and a multiplication. We show that \mathbf{R} endowed with this relation and these two operations is an ordered field. Each rational number can be identified with a specific cut, in such a way that \mathbf{Q} can be viewed as a subfield of \mathbf{R} .

Step 1. A subset α of **Q** is said to be a cut if:

- (I) α is not empty, $\alpha \neq \mathbf{Q}$.
- (II) If $p \in \alpha$, $q \in \mathbf{Q}$, and q < p, then $q \in \alpha$.
- (III) If $p \in \alpha$, then p < r for some $r \in \alpha$.

Remarks:

- 1.1 (III) implies that α has no largest number.
- 1.2 (II) implies that:

If $p \in \alpha$ and $q \notin \alpha$ then p < q.

If $r \notin \alpha$ and r < s then $s \notin \alpha$.

Example: Let $\alpha = \{p \in \mathbf{Q} : p < 0\} \cup \{p \in \mathbf{Q} : p \geq 2 \text{ and } p^2 < 2\}$. Note that α is a cut. In fact:

- (I) $\alpha \subset \mathbf{Q}$, $1 \in \alpha$ thus $\alpha \neq \emptyset$, and $2 \notin \alpha$ thus $\alpha \neq \mathbf{Q}$.
- (II) If $p \in \alpha$, $q \in \mathbf{Q}$, and q < p, then either $q \le 0$ and so $q \in \alpha$, or q > 0 which implies p > 0. But since $p \in \alpha$, then $p^2 < 2$. Since 0 < q < p then $q^2 < p^2$. Therefore $q^2 < 2$, i.e. $q \in \alpha$.
- (III) If $p \in \alpha$, either $p \leq 0$ or p > 0. If $p \leq 0$ then (III) is satisfied with r = 1. If p > 0 and $p^2 < 2$ then (as shown in class) $r = \frac{2(p+1)}{p+2}$ satisfies $0 and <math>r^2 < 2$. Thus $r \in \alpha$, and (III) also holds in this case.
- **Step 2.** Let **R** be the collection of all cuts of **Q**. For $\alpha, \beta \in \mathbf{R}$ define $\alpha < \beta$ to mean α is a proper subset of β , (i.e. $\alpha \subset \beta$ but $\alpha \neq \beta$). **R** is an ordered set with relation < defined above.
- **Step 3.** The ordered set **R** has the least-upper-bound property.

Let A be a nonempty subset of **R** which is bounded above. Let $\gamma = \bigcup_{\alpha \in A} \alpha$. Then $\gamma \in \mathbf{R}$ (i.e. γ satisfies (I), (II) and (III)), and $\gamma = \sup A$.

Step 4. If $\alpha, \beta \in \mathbf{R}$ define

$$\alpha + \beta = \{r + s : r \in \alpha \text{ and } s \in \beta\},\$$

$$0^* = \{p \in \mathbf{Q} : p < 0\},\$$

and

$$\alpha^* = \{ p \in \mathbf{Q} : \text{there exits } r > 0 \text{ such that } -p - r \notin \alpha \}.$$

 $\alpha + \beta$, 0* and α * are cuts. The axioms for addition hold in **R**, with 0* playing the role of 0, and α * playing the role of $-\alpha$.

Step 5. After proving that the axioms of addition hold in \mathbf{R} for the operation defined in Step 4, one can show using the cancellation law that

If
$$\alpha, \beta, \gamma \in \mathbf{R}$$
 and $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$.

Step 6. Initially we define multiplication for positive real numbers. Let $\mathbf{R}^+ = \{\alpha \in \mathbf{R} : \alpha > 0^{ast}\}$. If $\alpha, \beta \in \mathbf{R}^+$ define

$$\alpha\beta=\{p\in\mathbf{Q}:p\leq rs\text{ for some }r\in\alpha,\ s\in\beta,\ r>0,\ s>0\},$$

$$1^*=\{p\in\mathbf{Q}:p<1\},$$

and

$$\alpha_* = \{ p \in \mathbf{Q} : p \le 0 \} \cup \{ p \in \mathbf{Q} : p > 0 \text{ and there exits } r > 0 \text{ such that } \frac{1}{p} - r \notin \alpha \}.$$

 $\alpha\beta$, 1* and α_* are cuts. The axioms for multiplication hold in \mathbf{R}^+ , with 1* playing the role of 1, and α_* playing the role of $\frac{1}{\alpha}$, for $\alpha > 0^*$. Note that if $\alpha > 0^*$ and $\beta > 0^*$ then $\alpha\beta > 0^*$. One also checks that the distributive law holds in \mathbf{R}^+ .

Step 7. We complete the definition of multiplication by setting $\alpha 0^* = 0^* \alpha = 0^*$, and by setting

$$\alpha\beta = \begin{cases} (-\alpha)(-\beta) & \text{if } \alpha < 0^*, \ \beta < 0^*, \\ -[(-\alpha)\beta] & \text{if } \alpha < 0^*, \ \beta > 0^*, \\ -[\alpha(-\beta)] & \text{if } \alpha > 0^*, \ \beta < 0^*. \end{cases}$$

The products on the right were defined in Step 6. Having checked the axioms of multiplication in \mathbf{R}^+ it is simple to prove them in \mathbf{R} by repeated applications of the identity $\gamma = -(-\gamma)$. The proof of the distributive law is done by cases.

THIS COMPLETES THE SKETCH OF THE PROOF THAT R IS AN ORDERED FIELD WITH THE LEAST-UPPER-BOUND PROPERTY.

Step 8. We associate with each $r \in \mathbf{Q}$ the set

$$r^* = \{ p \in \mathbf{Q} : p < r \}.$$

 r^* is a (rational) cut, thus $r^* \in \mathbf{R}$. The rational cuts satisfy the following relations:

- (a) $r^* + s^* = (r+s)^*$.
- (b) $r^*s^* = (rs)^*$.
- (c) $r^* < s^*$ if and only if r < s.

Step 9. Step 8 says that the rational numbers can be identified with the rational cuts. This identification preserves sums, products and order. Thus the ordered field \mathbf{Q} is *isomorphic* to the ordered field $\mathbf{Q}^* \subset \mathbf{R}$ whose elements are the rational cuts.

THIS IDENTIFICATION OF ${\bf Q}$ WITH ${\bf Q}^*$ ALLOWS US TO REGARD ${\bf Q}$ AS A SUBFIELD OF ${\bf R}$.