February 13, 2008

Midterm - Friday February 15, 2008!

Problem 3.53

Suppose that F is a polynomial of degree n defined by

$$
F(x)=\sum_{i=0}^{n} c_{i} x^{i}
$$

and has zeros $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ such that $\alpha_{i} \neq 0$ for all i. Derive a formula for

$$
\sum_{i=1}^{n} \frac{1}{\alpha_{i}}
$$

in terms of $c_{0}, c_{1}, \cdots, c_{n}$.

Hint: First show that

$$
F(x)=c_{n} \prod_{i=1}^{n}\left(x-\alpha_{i}\right) .
$$

The Fibonacci numbers are defined by the recurrence relation $f_{1}=1, f_{2}=1$ and

$$
f_{n}=f_{n-1}+f_{n-2} \quad \text { for } \quad n \geq 3
$$

Prove that for $n \geq 1, f_{3 n}$ is even.

