February 13, 2008

Midterm - Friday February 15, 2008!

Problem 3.53

Suppose that F is a polynomial of degree n defined by

$$F(x) = \sum_{i=0}^{n} c_i x^i$$

and has zeros $\alpha_1, \alpha_2, \cdots, \alpha_n$ such that $\alpha_i \neq 0$ for all *i*. Derive a formula for

$$\sum_{i=1}^{n} \frac{1}{\alpha_i}$$

in terms of c_0, c_1, \cdots, c_n .

Hint: First show that

$$F(x) = c_n \prod_{i=1}^n (x - \alpha_i).$$

1

The Fibonacci numbers are defined by the recurrence relation $f_1 = 1$, $f_2 = 1$ and

$$f_n = f_{n-1} + f_{n-2}$$
 for $n \ge 3$.

Prove that for $n \geq 1$, f_{3n} is even.