Math 310

Homework due 03/12/08

Reading: Preface for the student. Chapter 1. Chapter 2. Chapter 3: The principle of induction, Strong induction. Chapter 4: Bijections. Injections and Surjections. Composition of functions. Cardinality.

Problem 1. Let X be an uncountable set, Y be a countable set, and $f: X \rightarrow Y$. Prove that some element of Y has an uncountable pre-image. That is there exists $y \in Y$ such that

$$
\{x \in X: f(x)=y\} \quad \text { is uncountable. }
$$

Problem 2. Suppose that P and Q are true statements and R and S are false statements. Which of the following are given a truth value of TRUE?

1. $R \Longrightarrow P$
2. $(P \vee R) \wedge S$
3. $Q \Longrightarrow(P \Longrightarrow \neg S)$
4. $\neg(R \vee Q) \Longleftrightarrow S$

Problem 3. For a function $f: A \rightarrow B$, dene for $S \subset A$

$$
f(S)=\{y \in B: y=f(x) \text { for some } x \in S\}
$$

Let $S, T \subset A$.

1. Prove that

$$
f(S \cap T) \subset f(S) \cap f(T)
$$

Give an example where these sets are not equal.
2. Prove that if f is an injection, then

$$
f(S \cap T)=f(S) \cap f(T)
$$

Problem 4. Prove that for all $n \in \mathbb{N}$

$$
1+3+5+7+\cdots+(2 n-1)=n^{2}
$$

Problem 5. For all of the following give a function $h: \mathbb{Z} \rightarrow \mathbb{Z}$ that satisfy the given properties:

1. h is injective but not surjective.
2. h is surjective but not injective.
3. h is a bijection.

Problem 6. Prove that if a and b are odd integers that $a^{2}-b^{2}$ is divisible by 8 .

