Math 582

Homework - Part 3

Due March 17

Problem 4. Let μ be a Radon measure on \mathbb{R}^{n}. Assume that for $a \in \operatorname{spt} \mu=\Sigma$

$$
\begin{equation*}
1 \leq \lim \sup \frac{\mu(B(a, 2 r))}{\mu(B(a, r))}<\infty \tag{1}
\end{equation*}
$$

1. Show that for $\tau \geq 1$ and $a \in \Sigma$

$$
1 \leq \limsup \frac{\mu(B(a, \tau r))}{\mu(B(a, r))}<\infty .
$$

2. Prove that if there exit $\kappa>1$ and $R>0$ such that for $r \in(0, R)$ and all $a \in \Sigma$

$$
\begin{equation*}
\frac{\mu(B(a, 2 r))}{\mu(B(a, r))} \leq \kappa \tag{2}
\end{equation*}
$$

then for all $\nu \in \operatorname{Tan}(\mu, a)$ such that

$$
\nu=\lim _{i \rightarrow \infty}\left(\mu\left(B\left(a, r_{i}\right)\right)\right)^{-1} T_{a, r_{i \#}} \mu
$$

$x \in \operatorname{spt} \nu$ if and only if there exists a sequence $x_{i} \in T_{a, r_{i}}(\Sigma)$ such that $x_{i} \rightarrow x$.

