
An estimate for supersolutions of
second order elliptic operators with bounded coefficients

Lemma. Let u ∈ H1(Br(x0)) be a weak non-negative supersolution of L in Br(x0) ⊂ Rn,

i.e. for any ζ ∈ H1
0 (Br(x0)) with ζ ≥ 0 a.e. in Br(x0)

(∗)
∫
Br(x0)

∑
|α|,|β|≤1

aαβD
αuDβζ ≥ 0,

where

(E)
∑

|α|=|β|=1

aαβη
αηβ ≥ |η|2, ∀η ∈ Rn,

and

(B∞)
∑

|α|=|β|=1

‖aαβ‖L∞(Br(x0)) +
∑

|α|+|β|=1

r‖aαβ‖L∞(Br(x0)) + r2‖a00‖L∞(Br(x0)) ≤ Λ.

Then for θ ∈ (0, 1), there exists p0 > 0 such that p ∈ (0, p0),(∫
Bθr(x0)

up

)(∫
Bθr(x0)

u−p

)
≤ Cr2n,

where C is a constant that depends on n, θ, Λ, and p.

Proof: Recall that for A,B > 0, ε > 0, p > 1, and p′ = p/p − 1 the following inequality
holds

(0) AB ≤ εAp + C(ε, p)Bp
′
.

Without loss of generality assume that r = 1 and x0 = 0. By a computation carried out
in class we have that, if u is as above for any ζ ∈ H1

0 (B1) with ζ ≥ 0 a.e. in B1,

(1)
∫
ζ2|Dw|2 ≤ C

∫
(|Dζ|2 + ζ2),

where w = log(u+ ε) for ε > 0. C is a constant independent of ε. Choosing ζ ∈ C∞c (B1),
0 ≤ ζ ≤ 1, ζ ≡ 1 in B√θ, and |Dζ| ≤ Cθ, we have that

(2)
∫
B√θ

|Dw|2 ≤ C.
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Let q ≥ 2, b > 0, a ≥ b + 1, ϕ ∈ C∞c (B√θ), 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in Bθ, and |Dϕ| ≤ Cθ.
Let v = |w − λ|, where λ is a constant to be chosen. Note that |Dv| = |Dw| a.e. If
ζ = vq−1ϕaq−b, (1) yields

(3)
∫
v2(q−1)|Dv|2ϕ2aq−2b ≤ Cq2

∫
v2(q−2)|Dv|2ϕ2aq−2b + Cq2

∫
v2(q−1)ϕ2aq−2b−2.

If q > 2, applying (0) with p = (q − 1)/(q − 2) and A = v2(q−2), we have that

Cq2v2(q−2) ≤ 1
2
v2(q−1) + Cqq2(q−1).

Then (3) becomes

(4)
∫
v2(q−1)|Dv|2ϕ2aq−2b ≤ Cqq2(q−1)

∫
|Dv|2ϕ2aq−2b + Cq2

∫
v2(q−1)ϕ2aq−2b−2.

Note that v2(q−1) ≤ 1 + v2q. Combining the fact that |Dw| = |Dv| a.e., (2) and (4) we
have that

(5)
∫
v2(q−1)|Dv|2ϕ2aq−2b ≤ Cqq2(q−1) + Cq2

∫
v2qϕ2aq−2b−2.

Thus

(6)
∫
|D(vqϕaq−b)|2 ≤ Cqq2q + Cq4

∫
v2qϕ2aq−2b−2.

Applying Sobolev’s inequality in (6) with κ = n/n− 2 if n ≥ 3, and κ > 1 if n = 2 we
obtain

(7)
(∫

(vϕa)2qκϕ−2bκdx

)1/κ

≤ (Cq2)q + Cq4
∫

(vϕa)2qϕ−2(b+1)dx.

Choose b such that b+ 1 = bκ, and let dν = ϕ−2bκdx = ϕ−2(b+1)dx. Let q = κ` for ` ≥ `0
where `0 ≥ 1 is such that κ`0−1 ≤ 2 < κ`0 . (7) becomes

(8)
(∫

(vϕa)2κ
`+1
dν

)1/κ

≤ (Cκ2`)κ
`

+ Cκ4`

∫
(vϕa)2κ

`

dν.

If

Ψ(`) =
(∫

(vϕa)2κ
`

dν

)1/κ`

,

(8) can be written as follows

(9) Ψ(`+ 1) ≤ Cκ2(`+1) + C1/κ`κ4`/κ`Ψ(`).
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Iterating inequality (9) we conclude that for ` ≥ `0

(10)
Ψ(`+ 1) ≤

∑
j≥1

C1/κjκ4j/κj

∑̀
j=`0

κ2j + Ψ(`0)


≤ Cκ2(`+1) + CΨ(`0).

In order to bound Ψ(`0), recall inequality (3) for q = 2

(11)

∫
v2|Dv|2ϕ4a−2b ≤ C

∫
|Dv|2ϕ4a−2b + C

∫
v2ϕ4a−2b−2

≤ C + C

∫
v2ϕ4a−2b−2

≤ C + C

∫
v4ϕ4a−2b−2.

Thus

(12)
∫
|D(v2ϕ2a−b)|2 ≤ C + C

∫
v4ϕ4a−2b−2.

Applying Sobolev’s inequality with κ as above we have that

(13)
(∫

(vϕa)4κdν
)1/κ

≤ C + C

∫
(vϕa)4dν.

Apply Hölder’s inequality with p = 2κ− 1, then inequality (0) with p = (2κ− 1)/κ > 1 we
have that for δ > 0 small

(14)

∫
(vϕa)4dν =

∫
(vϕa)4κ/(2κ−1)(vϕa)4(1−κ/(2κ−1))dν

≤
(∫

(vϕa)4κdν
)1/(2κ−1)(∫

(vϕa)2dν
)(2κ−2)/(2κ−1)

≤ δ
(∫

(vϕa)4κdν
)1/κ

+ Cδ

(∫
(vϕa)2dν

)2

.

Combining (13) and (14) we conclude that provided δ > 0 is small enough

(15)
(∫

(vϕa)4κdν
)1/2κ

≤ C + C

∫
(vϕa)2dν.

Note that if κ`0−1 ≤ 2, (15) insures that

(16) Ψ(`0) ≤ C + C

(∫
(vϕa)2dν

)
.
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We now assume that κ`0−1 < 2 < κ`0 . Let 2κ`0 = 2κ`0(α+β) where α = (κ`0−2)/κ`0−1(κ−
1) and β = 1 − α. Apply Hölder’s inequality in Ψ(`0) with p = (2κ − 2)/(κ`0 − 2), and
p′ = p/(p− 1). Note that 2κ`0αp = 4κ and 2κ`0βp = 4. Then the first inequality in (14),
(0) applied with the appropriate exponent, and inequality (15) yield

(16)

Ψ(`0) ≤
(∫

(vϕa)4κdν
)1/pκ`0 (∫

(vϕa)4dν
)1/p′κ`0

≤
(∫

(vϕa)4κdν
)1/pκ`0+1/p′(2κ−1)κ`0 (∫

(vϕa)2dν
)(2κ−2)/(2κ−1)p′κ`0

≤ C
(∫

(vϕa)4κdν
)1/2κ

+ C

(∫
(vϕa)2dν

)
≤ C + C

∫
(vϕa)2dν.

Since a ≥ b+1, ϕ ∈ C∞c (B√θ), 0 ≤ ϕ ≤ 1, and v = |w−λ|, choosing λ = |B√θ|
−1
∫
B√θ

wdx,
applying Poincaré’s inequality and using inequality (2), (16) becomes

(17) Ψ(`0) ≤ C + C

∫
B√θ

|w − λ|2dx ≤ C + C

∫
B√θ

|Dw|2dx ≤ C.

Combining (10), (17), Hölder’s inequality, and the fact that dx ≤ dν we conclude that for
` ≥ 0

(18)
(∫

(vϕa)2κ
`

dx

)1/2κ`

≤ Cκ`.

For j ≥ 1 there is ` ≥ 0 so that 2κ`−1 ≤ j < 2κ`, thus

(19)
(∫

(vϕa)jdx
)1/j

≤ C
(∫

(vϕa)2κ
`

dx

)1/2κ`

≤ Cκ` ≤ Cj.

Hence

(20)
∫
Bθ

vjdx ≤ Cjjj .

Dividing (20) by (2C)jjj , and summing over all j ≥ 1 we obtain

(21)
∫
Bθ

∑
j≥1

( v

2C

)j (1
j

)j
≤ 2.
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Recall that j−1(j!)1/j → τ ∈ (0, 1) as j → ∞. Assume that for j > j0, j−1(j!)1/j ≥ τ/2.
Thus for s > 0

(22)

∑
j≥1

sj

jj
=
∑
j≥1

sj

j!
· j!
jj
≥ j0!
jj00

j0∑
j=1

sj

j!
+

∑
j≥j0+1

1
j!

(sτ
2

)j
≥ j0!
jj00

∑
j≥1

1
j!

(sτ
2

)j
≥ j0!
jj00

exp(
sτ

2
).

Combining inequalities (21) and (22) we conclude that

(23)
∫
Bθ

exp
( vτ

4C

)
≤ C0.

Recall that v = | log(u + ε) − λ|. Let p0 = τ/4C > 0 and note that for p ∈ (0, p0] (23)
implies

(24)
∫
Bθ

exp (p | log(u+ ε)− λ|) ≤ C0.

Thus

(25) exp (−pλ)
∫
Bθ

exp (p log(u+ ε)) ≤ C0,

and

(26) exp (pλ)
∫
Bθ

exp (−p log(u+ ε)) ≤ C0.

Multiplying (25) and (26) we conclude that

(27)
(∫

Bθ

(u+ ε)p
)(∫

Bθ

(u+ ε)−p
)
≤ C.

Since u+ ε→ u a.e as ε→ 0, Fatou’s lemma guarantees that(∫
Bθ

up
)(∫

Bθ

u−p
)
≤ C.
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