An estimate for supersolutions of second order elliptic operators with bounded coefficients

Lemma. Let $u \in H^1(B_r(x_0))$ be a weak non-negative supersolution of L in $B_r(x_0) \subset \mathbb{R}^n$, i.e. for any $\zeta \in H^1_0(B_r(x_0))$ with $\zeta \ge 0$ a.e. in $B_r(x_0)$

(*)
$$\int_{B_r(x_0)} \sum_{|\alpha|, |\beta| \le 1} a_{\alpha\beta} D^{\alpha} u \, D^{\beta} \zeta \ge 0,$$

where

(E)
$$\sum_{|\alpha|=|\beta|=1} a_{\alpha\beta} \eta^{\alpha} \eta^{\beta} \ge |\eta|^2, \quad \forall \eta \in \mathbf{R}^n,$$

and

$$(B_{\infty}) \quad \sum_{|\alpha|=|\beta|=1} \|a_{\alpha\beta}\|_{L^{\infty}(B_{r}(x_{0}))} + \sum_{|\alpha|+|\beta|=1} r\|a_{\alpha\beta}\|_{L^{\infty}(B_{r}(x_{0}))} + r^{2}\|a_{00}\|_{L^{\infty}(B_{r}(x_{0}))} \leq \Lambda.$$

Then for $\theta \in (0, 1)$, there exists $p_0 > 0$ such that $p \in (0, p_0)$,

$$\left(\int_{B_{\theta r}(x_0)} u^p\right) \left(\int_{B_{\theta r}(x_0)} u^{-p}\right) \le Cr^{2n},$$

where C is a constant that depends on n, θ , Λ , and p.

Proof: Recall that for $A, B > 0, \epsilon > 0, p > 1$, and p' = p/p - 1 the following inequality holds

(0)
$$AB \le \epsilon A^p + C(\epsilon, p)B^{p'}.$$

Without loss of generality assume that r = 1 and $x_0 = 0$. By a computation carried out in class we have that, if u is as above for any $\zeta \in H_0^1(B_1)$ with $\zeta \ge 0$ a.e. in B_1 ,

(1)
$$\int \zeta^2 |Dw|^2 \le C \int (|D\zeta|^2 + \zeta^2).$$

where $w = \log(u + \epsilon)$ for $\epsilon > 0$. *C* is a constant independent of ϵ . Choosing $\zeta \in C_c^{\infty}(B_1)$, $0 \le \zeta \le 1$, $\zeta \equiv 1$ in $B_{\sqrt{\theta}}$, and $|D\zeta| \le C_{\theta}$, we have that

(2)
$$\int_{B_{\sqrt{\theta}}} |Dw|^2 \le C.$$

-	1
	I
-	-

Let $q \geq 2, b > 0, a \geq b + 1, \varphi \in C_c^{\infty}(B_{\sqrt{\theta}}), 0 \leq \varphi \leq 1, \varphi \equiv 1$ in B_{θ} , and $|D\varphi| \leq C_{\theta}$. Let $v = |w - \lambda|$, where λ is a constant to be chosen. Note that |Dv| = |Dw| a.e. If $\zeta = v^{q-1}\varphi^{aq-b}$, (1) yields

(3)
$$\int v^{2(q-1)} |Dv|^2 \varphi^{2aq-2b} \le Cq^2 \int v^{2(q-2)} |Dv|^2 \varphi^{2aq-2b} + Cq^2 \int v^{2(q-1)} \varphi^{2aq-2b-2}.$$

If q > 2, applying (0) with p = (q-1)/(q-2) and $A = v^{2(q-2)}$, we have that

$$Cq^2v^{2(q-2)} \le \frac{1}{2}v^{2(q-1)} + C^q q^{2(q-1)}$$

Then (3) becomes

(4)
$$\int v^{2(q-1)} |Dv|^2 \varphi^{2aq-2b} \le C^q q^{2(q-1)} \int |Dv|^2 \varphi^{2aq-2b} + Cq^2 \int v^{2(q-1)} \varphi^{2aq-2b-2} dv^{2(q-1)} \varphi^{2aq-2} dv^{2(q-1)} \varphi^{2(q-2)} dv^{2(q-1)} \varphi^{2(q-2)} dv^{2(q-1)} dv^{2(q-$$

Note that $v^{2(q-1)} \leq 1 + v^{2q}$. Combining the fact that |Dw| = |Dv| a.e., (2) and (4) we have that

(5)
$$\int v^{2(q-1)} |Dv|^2 \varphi^{2aq-2b} \le C^q q^{2(q-1)} + Cq^2 \int v^{2q} \varphi^{2aq-2b-2}.$$

Thus

(6)
$$\int |D(v^q \varphi^{aq-b})|^2 \le C^q q^{2q} + Cq^4 \int v^{2q} \varphi^{2aq-2b-2}.$$

Applying Sobolev's inequality in (6) with $\kappa = n/n - 2$ if $n \ge 3$, and $\kappa > 1$ if n = 2 we obtain

(7)
$$\left(\int (v\varphi^a)^{2q\kappa}\varphi^{-2b\kappa}dx\right)^{1/\kappa} \le (Cq^2)^q + Cq^4 \int (v\varphi^a)^{2q}\varphi^{-2(b+1)}dx.$$

Choose b such that $b + 1 = b\kappa$, and let $d\nu = \varphi^{-2b\kappa} dx = \varphi^{-2(b+1)} dx$. Let $q = \kappa^{\ell}$ for $\ell \ge \ell_0$ where $\ell_0 \ge 1$ is such that $\kappa^{\ell_0 - 1} \le 2 < \kappa^{\ell_0}$. (7) becomes

(8)
$$\left(\int (v\varphi^a)^{2\kappa^{\ell+1}}d\nu\right)^{1/\kappa} \le (C\kappa^{2\ell})^{\kappa^\ell} + C\kappa^{4\ell}\int (v\varphi^a)^{2\kappa^\ell}d\nu.$$

If

$$\Psi(\ell) = \left(\int (v\varphi^a)^{2\kappa^\ell} d\nu\right)^{1/\kappa^\ell},$$

(8) can be written as follows

(9)
$$\Psi(\ell+1) \le C\kappa^{2(\ell+1)} + C^{1/\kappa^{\ell}}\kappa^{4\ell/\kappa^{\ell}}\Psi(\ell).$$

Iterating inequality (9) we conclude that for $\ell \geq \ell_0$

(10)
$$\Psi(\ell+1) \leq \left(\sum_{j\geq 1} C^{1/\kappa^j} \kappa^{4j/\kappa^j}\right) \left(\sum_{j=\ell_0}^{\ell} \kappa^{2j} + \Psi(\ell_0)\right)$$
$$\leq C\kappa^{2(\ell+1)} + C\Psi(\ell_0).$$

In order to bound $\Psi(\ell_0)$, recall inequality (3) for q = 2

(11)

$$\int v^2 |Dv|^2 \varphi^{4a-2b} \leq C \int |Dv|^2 \varphi^{4a-2b} + C \int v^2 \varphi^{4a-2b-2}$$

$$\leq C + C \int v^2 \varphi^{4a-2b-2}$$

$$\leq C + C \int v^4 \varphi^{4a-2b-2}.$$

Thus

(12)
$$\int |D(v^2 \varphi^{2a-b})|^2 \le C + C \int v^4 \varphi^{4a-2b-2}.$$

Applying Sobolev's inequality with κ as above we have that

(13)
$$\left(\int (v\varphi^a)^{4\kappa}d\nu\right)^{1/\kappa} \le C + C\int (v\varphi^a)^4d\nu.$$

Apply Hölder's inequality with $p = 2\kappa - 1$, then inequality (0) with $p = (2\kappa - 1)/\kappa > 1$ we have that for $\delta > 0$ small

(14)

$$\int (v\varphi^{a})^{4} d\nu = \int (v\varphi^{a})^{4\kappa/(2\kappa-1)} (v\varphi^{a})^{4(1-\kappa/(2\kappa-1))} d\nu$$

$$\leq \left(\int (v\varphi^{a})^{4\kappa} d\nu \right)^{1/(2\kappa-1)} \left(\int (v\varphi^{a})^{2} d\nu \right)^{(2\kappa-2)/(2\kappa-1)}$$

$$\leq \delta \left(\int (v\varphi^{a})^{4\kappa} d\nu \right)^{1/\kappa} + C_{\delta} \left(\int (v\varphi^{a})^{2} d\nu \right)^{2}.$$

Combining (13) and (14) we conclude that provided $\delta > 0$ is small enough

(15)
$$\left(\int (v\varphi^a)^{4\kappa}d\nu\right)^{1/2\kappa} \le C + C\int (v\varphi^a)^2d\nu.$$

Note that if $\kappa^{\ell_0 - 1} \leq 2$, (15) insures that

(16)
$$\Psi(\ell_0) \le C + C\left(\int (v\varphi^a)^2 d\nu\right).$$

We now assume that $\kappa^{\ell_0-1} < 2 < \kappa^{\ell_0}$. Let $2\kappa^{\ell_0} = 2\kappa^{\ell_0}(\alpha+\beta)$ where $\alpha = (\kappa^{\ell_0}-2)/\kappa^{\ell_0-1}(\kappa-1)$ and $\beta = 1 - \alpha$. Apply Hölder's inequality in $\Psi(\ell_0)$ with $p = (2\kappa - 2)/(\kappa^{\ell_0} - 2)$, and p' = p/(p-1). Note that $2\kappa^{\ell_0}\alpha p = 4\kappa$ and $2\kappa^{\ell_0}\beta p = 4$. Then the first inequality in (14), (0) applied with the appropriate exponent, and inequality (15) yield

(16)

$$\Psi(\ell_{0}) \leq \left(\int (v\varphi^{a})^{4\kappa} d\nu\right)^{1/p\kappa^{\ell_{0}}} \left(\int (v\varphi^{a})^{4} d\nu\right)^{1/p'\kappa^{\ell_{0}}} \\ \leq \left(\int (v\varphi^{a})^{4\kappa} d\nu\right)^{1/p\kappa^{\ell_{0}}+1/p'(2\kappa-1)\kappa^{\ell_{0}}} \left(\int (v\varphi^{a})^{2} d\nu\right)^{(2\kappa-2)/(2\kappa-1)p'\kappa^{\ell_{0}}} \\ \leq C \left(\int (v\varphi^{a})^{4\kappa} d\nu\right)^{1/2\kappa} + C \left(\int (v\varphi^{a})^{2} d\nu\right) \\ \leq C + C \int (v\varphi^{a})^{2} d\nu.$$

Since $a \ge b+1$, $\varphi \in C_c^{\infty}(B_{\sqrt{\theta}})$, $0 \le \varphi \le 1$, and $v = |w-\lambda|$, choosing $\lambda = |B_{\sqrt{\theta}}|^{-1} \int_{B_{\sqrt{\theta}}} w dx$, applying Poincaré's inequality and using inequality (2), (16) becomes

(17)
$$\Psi(\ell_0) \le C + C \int_{B_{\sqrt{\theta}}} |w - \lambda|^2 dx \le C + C \int_{B_{\sqrt{\theta}}} |Dw|^2 dx \le C.$$

Combining (10), (17), Hölder's inequality, and the fact that $dx \leq d\nu$ we conclude that for $\ell \geq 0$

(18)
$$\left(\int (v\varphi^a)^{2\kappa^\ell} dx\right)^{1/2\kappa^\ell} \le C\kappa^\ell.$$

For $j \ge 1$ there is $\ell \ge 0$ so that $2\kappa^{\ell-1} \le j < 2\kappa^{\ell}$, thus

(19)
$$\left(\int (v\varphi^a)^j dx\right)^{1/j} \le C \left(\int (v\varphi^a)^{2\kappa^\ell} dx\right)^{1/2\kappa^\ell} \le C\kappa^\ell \le Cj.$$

Hence

(20)
$$\int_{B_{\theta}} v^j dx \le C^j j^j.$$

Dividing (20) by $(2C)^j j^j$, and summing over all $j \ge 1$ we obtain

(21)
$$\int_{B_{\theta}} \sum_{j \ge 1} \left(\frac{v}{2C}\right)^j \left(\frac{1}{j}\right)^j \le 2.$$

/
Ŧ

Recall that $j^{-1}(j!)^{1/j} \to \tau \in (0,1)$ as $j \to \infty$. Assume that for $j > j_0$, $j^{-1}(j!)^{1/j} \ge \tau/2$. Thus for s > 0

(22)
$$\sum_{j\geq 1} \frac{s^{j}}{j^{j}} = \sum_{j\geq 1} \frac{s^{j}}{j!} \cdot \frac{j!}{j^{j}} \ge \frac{j_{0}!}{j_{0}^{j_{0}}} \sum_{j=1}^{j_{0}} \frac{s^{j}}{j!} + \sum_{j\geq j_{0}+1} \frac{1}{j!} \left(\frac{s\tau}{2}\right)^{j} \ge \frac{j_{0}!}{j_{0}^{j_{0}}} \sum_{j\geq 1} \frac{1}{j!} \left(\frac{s\tau}{2}\right)^{j} \ge \frac{j_{0}!}{j_{0}^{j_{0}}} \exp(\frac{s\tau}{2}).$$

Combining inequalities (21) and (22) we conclude that

(23)
$$\int_{B_{\theta}} \exp\left(\frac{v\tau}{4C}\right) \le C_0.$$

Recall that $v = |\log(u + \epsilon) - \lambda|$. Let $p_0 = \tau/4C > 0$ and note that for $p \in (0, p_0]$ (23) implies

(24)
$$\int_{B_{\theta}} \exp\left(p \left| \log(u+\epsilon) - \lambda \right|\right) \le C_0.$$

Thus

(25)
$$\exp(-p\lambda)\int_{B_{\theta}}\exp\left(p\,\log(u+\epsilon)\right) \le C_0,$$

and

(26)
$$\exp(p\lambda) \int_{B_{\theta}} \exp(-p \log(u+\epsilon)) \le C_0.$$

Multiplying (25) and (26) we conclude that

(27)
$$\left(\int_{B_{\theta}} (u+\epsilon)^p\right) \left(\int_{B_{\theta}} (u+\epsilon)^{-p}\right) \le C.$$

Since $u + \epsilon \rightarrow u$ a.e as $\epsilon \rightarrow 0$, Fatou's lemma guarantees that

$$\left(\int_{B_{\theta}} u^p\right) \left(\int_{B_{\theta}} u^{-p}\right) \le C.$$

7	r
J	٤