An estimate for supersolutions of second order elliptic operators with bounded coefficients

Lemma. Let $u \in H^{1}\left(B_{r}\left(x_{0}\right)\right)$ be a weak non-negative supersolution of L in $B_{r}\left(x_{0}\right) \subset \mathbf{R}^{n}$, i.e. for any $\zeta \in H_{0}^{1}\left(B_{r}\left(x_{0}\right)\right)$ with $\zeta \geq 0$ a.e. in $B_{r}\left(x_{0}\right)$

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)} \sum_{|\alpha|,|\beta| \leq 1} a_{\alpha \beta} D^{\alpha} u D^{\beta} \zeta \geq 0 \tag{*}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{|\alpha|=|\beta|=1} a_{\alpha \beta} \eta^{\alpha} \eta^{\beta} \geq|\eta|^{2}, \quad \forall \eta \in \mathbf{R}^{n} \tag{E}
\end{equation*}
$$

and
$\left(B_{\infty}\right) \quad \sum_{|\alpha|=|\beta|=1}\left\|a_{\alpha \beta}\right\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)}+\sum_{|\alpha|+|\beta|=1} r\left\|a_{\alpha \beta}\right\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)}+r^{2}\left\|a_{00}\right\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)} \leq \Lambda$.
Then for $\theta \in(0,1)$, there exists $p_{0}>0$ such that $p \in\left(0, p_{0}\right)$,

$$
\left(\int_{B_{\theta r}\left(x_{0}\right)} u^{p}\right)\left(\int_{B_{\theta r}\left(x_{0}\right)} u^{-p}\right) \leq C r^{2 n}
$$

where C is a constant that depends on n, θ, Λ, and p.
Proof: Recall that for $A, B>0, \epsilon>0, p>1$, and $p^{\prime}=p / p-1$ the following inequality holds

$$
\begin{equation*}
A B \leq \epsilon A^{p}+C(\epsilon, p) B^{p^{\prime}} \tag{0}
\end{equation*}
$$

Without loss of generality assume that $r=1$ and $x_{0}=0$. By a computation carried out in class we have that, if u is as above for any $\zeta \in H_{0}^{1}\left(B_{1}\right)$ with $\zeta \geq 0$ a.e. in B_{1},

$$
\begin{equation*}
\int \zeta^{2}|D w|^{2} \leq C \int\left(|D \zeta|^{2}+\zeta^{2}\right) \tag{1}
\end{equation*}
$$

where $w=\log (u+\epsilon)$ for $\epsilon>0$. C is a constant independent of ϵ. Choosing $\zeta \in C_{c}^{\infty}\left(B_{1}\right)$, $0 \leq \zeta \leq 1, \zeta \equiv 1$ in $B_{\sqrt{\theta}}$, and $|D \zeta| \leq C_{\theta}$, we have that

$$
\begin{equation*}
\int_{B_{\sqrt{\theta}}}|D w|^{2} \leq C \tag{2}
\end{equation*}
$$

Let $q \geq 2, b>0, a \geq b+1, \varphi \in C_{c}^{\infty}\left(B_{\sqrt{\theta}}\right), 0 \leq \varphi \leq 1, \varphi \equiv 1$ in B_{θ}, and $|D \varphi| \leq C_{\theta}$. Let $v=|w-\lambda|$, where λ is a constant to be chosen. Note that $|D v|=|D w|$ a.e. If $\zeta=v^{q-1} \varphi^{a q-b}$, (1) yields

$$
\begin{equation*}
\int v^{2(q-1)}|D v|^{2} \varphi^{2 a q-2 b} \leq C q^{2} \int v^{2(q-2)}|D v|^{2} \varphi^{2 a q-2 b}+C q^{2} \int v^{2(q-1)} \varphi^{2 a q-2 b-2} \tag{3}
\end{equation*}
$$

If $q>2$, applying (0) with $p=(q-1) /(q-2)$ and $A=v^{2(q-2)}$, we have that

$$
C q^{2} v^{2(q-2)} \leq \frac{1}{2} v^{2(q-1)}+C^{q} q^{2(q-1)}
$$

Then (3) becomes

$$
\begin{equation*}
\int v^{2(q-1)}|D v|^{2} \varphi^{2 a q-2 b} \leq C^{q} q^{2(q-1)} \int|D v|^{2} \varphi^{2 a q-2 b}+C q^{2} \int v^{2(q-1)} \varphi^{2 a q-2 b-2} . \tag{4}
\end{equation*}
$$

Note that $v^{2(q-1)} \leq 1+v^{2 q}$. Combining the fact that $|D w|=|D v|$ a.e., (2) and (4) we have that

$$
\begin{equation*}
\int v^{2(q-1)}|D v|^{2} \varphi^{2 a q-2 b} \leq C^{q} q^{2(q-1)}+C q^{2} \int v^{2 q} \varphi^{2 a q-2 b-2} . \tag{5}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\int\left|D\left(v^{q} \varphi^{a q-b}\right)\right|^{2} \leq C^{q} q^{2 q}+C q^{4} \int v^{2 q} \varphi^{2 a q-2 b-2} \tag{6}
\end{equation*}
$$

Applying Sobolev's inequality in (6) with $\kappa=n / n-2$ if $n \geq 3$, and $\kappa>1$ if $n=2$ we obtain

$$
\begin{equation*}
\left(\int\left(v \varphi^{a}\right)^{2 q \kappa} \varphi^{-2 b \kappa} d x\right)^{1 / \kappa} \leq\left(C q^{2}\right)^{q}+C q^{4} \int\left(v \varphi^{a}\right)^{2 q} \varphi^{-2(b+1)} d x \tag{7}
\end{equation*}
$$

Choose b such that $b+1=b \kappa$, and let $d \nu=\varphi^{-2 b \kappa} d x=\varphi^{-2(b+1)} d x$. Let $q=\kappa^{\ell}$ for $\ell \geq \ell_{0}$ where $\ell_{0} \geq 1$ is such that $\kappa^{\ell_{0}-1} \leq 2<\kappa^{\ell_{0}}$. (7) becomes

$$
\begin{equation*}
\left(\int\left(v \varphi^{a}\right)^{2 \kappa^{\ell+1}} d \nu\right)^{1 / \kappa} \leq\left(C \kappa^{2 \ell}\right)^{\kappa^{\ell}}+C \kappa^{4 \ell} \int\left(v \varphi^{a}\right)^{2 \kappa^{\ell}} d \nu \tag{8}
\end{equation*}
$$

If

$$
\Psi(\ell)=\left(\int\left(v \varphi^{a}\right)^{2 \kappa^{\ell}} d \nu\right)^{1 / \kappa^{\ell}}
$$

(8) can be written as follows

$$
\begin{equation*}
\Psi(\ell+1) \leq C \kappa^{2(\ell+1)}+C^{1 / \kappa^{\ell}} \kappa^{4 \ell / \kappa^{\ell}} \Psi(\ell) \tag{9}
\end{equation*}
$$

Iterating inequality (9) we conclude that for $\ell \geq \ell_{0}$

$$
\begin{align*}
\Psi(\ell+1) & \leq\left(\sum_{j \geq 1} C^{1 / \kappa^{j}} \kappa^{4 j / \kappa^{j}}\right)\left(\sum_{j=\ell_{0}}^{\ell} \kappa^{2 j}+\Psi\left(\ell_{0}\right)\right) \tag{10}\\
& \leq C \kappa^{2(\ell+1)}+C \Psi\left(\ell_{0}\right) .
\end{align*}
$$

In order to bound $\Psi\left(\ell_{0}\right)$, recall inequality (3) for $q=2$

$$
\begin{align*}
\int v^{2}|D v|^{2} \varphi^{4 a-2 b} & \leq C \int|D v|^{2} \varphi^{4 a-2 b}+C \int v^{2} \varphi^{4 a-2 b-2} \\
& \leq C+C \int v^{2} \varphi^{4 a-2 b-2} \tag{11}\\
& \leq C+C \int v^{4} \varphi^{4 a-2 b-2}
\end{align*}
$$

Thus

$$
\begin{equation*}
\int\left|D\left(v^{2} \varphi^{2 a-b}\right)\right|^{2} \leq C+C \int v^{4} \varphi^{4 a-2 b-2} \tag{12}
\end{equation*}
$$

Applying Sobolev's inequality with κ as above we have that

$$
\begin{equation*}
\left(\int\left(v \varphi^{a}\right)^{4 \kappa} d \nu\right)^{1 / \kappa} \leq C+C \int\left(v \varphi^{a}\right)^{4} d \nu \tag{13}
\end{equation*}
$$

Apply Hölder's inequality with $p=2 \kappa-1$, then inequality (0) with $p=(2 \kappa-1) / \kappa>1$ we have that for $\delta>0$ small

$$
\begin{align*}
\int\left(v \varphi^{a}\right)^{4} d \nu & =\int\left(v \varphi^{a}\right)^{4 \kappa /(2 \kappa-1)}\left(v \varphi^{a}\right)^{4(1-\kappa /(2 \kappa-1))} d \nu \\
& \leq\left(\int\left(v \varphi^{a}\right)^{4 \kappa} d \nu\right)^{1 /(2 \kappa-1)}\left(\int\left(v \varphi^{a}\right)^{2} d \nu\right)^{(2 \kappa-2) /(2 \kappa-1)} \tag{14}\\
& \leq \delta\left(\int\left(v \varphi^{a}\right)^{4 \kappa} d \nu\right)^{1 / \kappa}+C_{\delta}\left(\int\left(v \varphi^{a}\right)^{2} d \nu\right)^{2}
\end{align*}
$$

Combining (13) and (14) we conclude that provided $\delta>0$ is small enough

$$
\begin{equation*}
\left(\int\left(v \varphi^{a}\right)^{4 \kappa} d \nu\right)^{1 / 2 \kappa} \leq C+C \int\left(v \varphi^{a}\right)^{2} d \nu \tag{15}
\end{equation*}
$$

Note that if $\kappa^{\ell_{0}-1} \leq 2$, (15) insures that

$$
\begin{equation*}
\Psi\left(\ell_{0}\right) \leq C+C\left(\int\left(v \varphi^{a}\right)^{2} d \nu\right) \tag{16}
\end{equation*}
$$

We now assume that $\kappa^{\ell_{0}-1}<2<\kappa^{\ell_{0}}$. Let $2 \kappa^{\ell_{0}}=2 \kappa^{\ell_{0}}(\alpha+\beta)$ where $\alpha=\left(\kappa^{\left.\ell_{0}-2\right)} / \kappa^{\ell_{0}-1}(\kappa-\right.$ 1) and $\beta=1-\alpha$. Apply Hölder's inequality in $\Psi\left(\ell_{0}\right)$ with $p=(2 \kappa-2) /\left(\kappa^{\ell_{0}}-2\right)$, and $p^{\prime}=p /(p-1)$. Note that $2 \kappa^{\ell_{0}} \alpha p=4 \kappa$ and $2 \kappa^{\ell_{0}} \beta p=4$. Then the first inequality in (14), (0) applied with the appropriate exponent, and inequality (15) yield

$$
\begin{align*}
\Psi\left(\ell_{0}\right) & \leq\left(\int\left(v \varphi^{a}\right)^{4 \kappa} d \nu\right)^{1 / p \kappa^{\ell_{0}}}\left(\int\left(v \varphi^{a}\right)^{4} d \nu\right)^{1 / p^{\prime} \kappa^{\ell_{0}}} \\
& \leq\left(\int\left(v \varphi^{a}\right)^{4 \kappa} d \nu\right)^{1 / p \kappa^{\ell_{0}}+1 / p^{\prime}(2 \kappa-1) \kappa^{\ell_{0}}}\left(\int\left(v \varphi^{a}\right)^{2} d \nu\right)^{(2 \kappa-2) /(2 \kappa-1) p^{\prime} \kappa^{\ell_{0}}} \tag{16}\\
& \leq C\left(\int\left(v \varphi^{a}\right)^{4 \kappa} d \nu\right)^{1 / 2 \kappa}+C\left(\int\left(v \varphi^{a}\right)^{2} d \nu\right) \\
& \leq C+C \int\left(v \varphi^{a}\right)^{2} d \nu
\end{align*}
$$

Since $a \geq b+1, \varphi \in C_{c}^{\infty}\left(B_{\sqrt{\theta}}\right), 0 \leq \varphi \leq 1$, and $v=|w-\lambda|$, choosing $\lambda=\left|B_{\sqrt{\theta}}\right|^{-1} \int_{B_{\sqrt{\theta}}} w d x$, applying Poincaré's inequality and using inequality (2), (16) becomes

$$
\begin{equation*}
\Psi\left(\ell_{0}\right) \leq C+C \int_{B_{\sqrt{\theta}}}|w-\lambda|^{2} d x \leq C+C \int_{B_{\sqrt{\theta}}}|D w|^{2} d x \leq C \tag{17}
\end{equation*}
$$

Combining (10), (17), Hölder's inequality, and the fact that $d x \leq d \nu$ we conclude that for $\ell \geq 0$

$$
\begin{equation*}
\left(\int\left(v \varphi^{a}\right)^{2 \kappa^{\ell}} d x\right)^{1 / 2 \kappa^{\ell}} \leq C \kappa^{\ell} \tag{18}
\end{equation*}
$$

For $j \geq 1$ there is $\ell \geq 0$ so that $2 \kappa^{\ell-1} \leq j<2 \kappa^{\ell}$, thus

$$
\begin{equation*}
\left(\int\left(v \varphi^{a}\right)^{j} d x\right)^{1 / j} \leq C\left(\int\left(v \varphi^{a}\right)^{2 \kappa^{\ell}} d x\right)^{1 / 2 \kappa^{\ell}} \leq C \kappa^{\ell} \leq C j \tag{19}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\int_{B_{\theta}} v^{j} d x \leq C^{j} j^{j} \tag{20}
\end{equation*}
$$

Dividing (20) by $(2 C)^{j} j^{j}$, and summing over all $j \geq 1$ we obtain

$$
\begin{equation*}
\int_{B_{\theta}} \sum_{j \geq 1}\left(\frac{v}{2 C}\right)^{j}\left(\frac{1}{j}\right)^{j} \leq 2 \tag{21}
\end{equation*}
$$

Recall that $j^{-1}(j!)^{1 / j} \rightarrow \tau \in(0,1)$ as $j \rightarrow \infty$. Assume that for $j>j_{0}, j^{-1}(j!)^{1 / j} \geq \tau / 2$. Thus for $s>0$

$$
\begin{align*}
\sum_{j \geq 1} \frac{s^{j}}{j^{j}}=\sum_{j \geq 1} \frac{s^{j}}{j^{j}} \cdot \frac{j!}{j^{j}} & \geq \frac{j_{0}!}{j_{0}^{j_{0}}} \sum_{j=1}^{j_{0}} \frac{s^{j}}{j!}+\sum_{j \geq j_{0}+1} \frac{1}{j!}\left(\frac{s \tau}{2}\right)^{j} \\
& \geq \frac{j_{0}!}{j_{0}^{j_{0}}} \sum_{j \geq 1} \frac{1}{j^{j}}\left(\frac{s \tau}{2}\right)^{j} \tag{22}\\
& \geq \frac{j_{0}!}{j_{0}^{j_{0}}} \exp \left(\frac{s \tau}{2}\right)
\end{align*}
$$

Combining inequalities (21) and (22) we conclude that

$$
\begin{equation*}
\int_{B_{\theta}} \exp \left(\frac{v \tau}{4 C}\right) \leq C_{0} \tag{23}
\end{equation*}
$$

Recall that $v=|\log (u+\epsilon)-\lambda|$. Let $p_{0}=\tau / 4 C>0$ and note that for $p \in\left(0, p_{0}\right](23)$ implies

$$
\begin{equation*}
\int_{B_{\theta}} \exp (p|\log (u+\epsilon)-\lambda|) \leq C_{0} \tag{24}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\exp (-p \lambda) \int_{B_{\theta}} \exp (p \log (u+\epsilon)) \leq C_{0} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\exp (p \lambda) \int_{B_{\theta}} \exp (-p \log (u+\epsilon)) \leq C_{0} \tag{26}
\end{equation*}
$$

Multiplying (25) and (26) we conclude that

$$
\begin{equation*}
\left(\int_{B_{\theta}}(u+\epsilon)^{p}\right)\left(\int_{B_{\theta}}(u+\epsilon)^{-p}\right) \leq C . \tag{27}
\end{equation*}
$$

Since $u+\epsilon \rightarrow u$ a.e as $\epsilon \rightarrow 0$, Fatou's lemma guarantees that

$$
\left(\int_{B_{\theta}} u^{p}\right)\left(\int_{B_{\theta}} u^{-p}\right) \leq C
$$

