## Math 524

Homework due 10/14/09

Reading from Stein \& Shakarchi: Chapter 1, $\S 2,3,4$.

Problem 1. Let $(X, \rho)$ be a metric space, and let $\left\{x_{n}\right\}_{n \geq 1} \subset X$ be a Cauchy sequence. Assume that $\left\{x_{n}\right\}$ has a cluster point $x \in X$. Prove that the sequence $\left\{x_{n}\right\}$ converges to $x$. (Recall $x$ is a cluster point for $\left\{x_{n}\right\}$ if $\forall \epsilon>0$ and $\forall N \in \mathbb{N}, \exists n \in \mathbb{N}$, with $n \geq N$ such that $\rho\left(x, x_{n}\right)<\epsilon$.)

Problem 2. Let $(X, \rho)$ be a metric space. Prove that $X$ is complete if and only if for any decreasing sequence $\left\{A_{n}\right\}$ of non-empty closed subsets of $X$ (i.e. $\cdots \subset A_{n} \subset A_{n-1} \cdots \subset A_{2} \subset$ $A_{1}, A_{i} \neq \emptyset, A_{i}$ closed) such that

$$
\lim _{n \rightarrow \infty} \operatorname{diam} A_{n}=0
$$

then

$$
\cap_{n=1}^{\infty} A_{n}=\{x\} \quad \text { for some } \quad x \in X .
$$

Problem 3. Let $F$ be a subset of $[0,1]$ constructed in the same manner as the Cantor ternary set except that each of the intervals removed at the $n$th step has length $\alpha 3^{-n}$ with $0<\alpha<1$. Then $F$ is closed, $F^{c}$ is dense in $[0,1]$ and $m_{*} F=1-\alpha$. Such set $F$ is called a generalized Cantor set.

Exercise from Stein \& Shakarchi: 3, Chapter 1 (page 38).
Note the differences between the last 2 problems.
(*) Problem from Stein \& Shakarchi: 2, Chapter 1 (page 46). This type of decomposition of an open set is called a Whitney decomposition. It is an important tool in Harmonic Analysis.

