Math 524

Homework due 12/09/09

Reading from Stein & Shakarchi: Chapter 6, §1, §2, and §3.

Problem 1: Let X be a non-empty set. A monotone class \mathcal{C} on X is a subcollection of $\mathcal{P}(X)$ which is closed under countable increasing unions and countable decreasing intersections.

- 1. Prove that the intersection on any family of monotone classes is a monotone class. Hence for any $\mathcal{E} \subset \mathcal{P}(X)$ there exits a smallest monotone class containing \mathcal{E} . This monotone class is the monotone class generated by \mathcal{E} .
- 2. Prove The monotone class lemma: If \mathcal{A} is an algebra of subsets of X, the monotone class \mathcal{C} generated by \mathcal{A} coincides with the σ -algebra \mathcal{M} generated by \mathcal{A} .

Problem 2: Let X = Y = [0,1], $\mathcal{M} = \mathcal{N} = \mathcal{B}_{[0,1]}$, μ =Lebesgue measure and ν =counting measure. If $D = \{(x,x) : x \in [0,1]\}$ is the diagonal in $X \times Y$, show that

$$\iint \chi_D \, d\mu d\nu, \quad \iint \chi_D \, d\nu d\mu, \quad \iint \chi_D \, d(\mu \times \nu)$$

are all unequal. To compute $\iint \chi_D d(\mu \times \nu) = \mu \times \nu(D)$, go back to the definition of $\mu \times \nu$.

Problem 3: Suppose (X, \mathcal{M}, μ) is a σ -finite measure space and $f \in \mathcal{L}^+$. Let

$$G_f = \{(x, y) \in X \times [0, \infty] : y \le f(x)\}.$$

- 1. Prove that G_f is $\mathcal{M} \otimes \mathcal{B}_{\mathbb{R}}$ measurable. (Hint: consider the map $(x,y) \to f(x) y$).
- 2. Prove that $\mu \times m(G_f) = \int f d\mu$.

Problem 4: Let $(X\mathcal{M}, \mu)$ and (Y, \mathcal{N}, ν) be arbitrary measure spaces (not necessarily σ -finite).

- 1. If $f: X \to \mathbb{R}$ is \mathcal{M} -measurable, $g: Y \to \mathbb{R}$ is \mathcal{N} -measurable, and h(x,y) = f(x)g(y), prove that h is $\mathcal{M} \otimes \mathcal{N}$ -measurable.
- 2. If $f \in L^1(\mu)$ and $g \in L^1(\nu)$, prove that $h \in L^1(\mu \times \nu)$ and

$$\int h d(\mu \times \nu) = \left[\int f d\mu \right] \left[\int g d\nu \right].$$

Problem 5: Let (X, d) be a metric space. Let μ be a doubling measure on \mathcal{B}_X , i.e. there exists a constant $C \geq 1$ such that $\forall x \in X$ and r > 0

$$\mu(B(x,2r)) \le C\mu(B(x,r)).$$

Assume that $\mu(B(x_0, 1)) < \infty$ for some $x_0 \in X$.

- 1. Show that if K is compact then $\mu(K) < \infty$.
- 2. Assume $X = \mathbb{R}^n$ and d is the Euclidean distance. Prove that if $E \in \mathcal{B}_{\mathbb{R}^n}$ with $\mu(E) < \infty$ then given $\epsilon > 0$ there exists a compact set K with $K \subset E$ and $\mu(E \setminus K) < \epsilon$.

Note: μ is not necessarily Lebesgue measure.