Math 525

Homework due 01/14/2015

Reading from Folland: Chapter 3: sections 1 and 2.

Exercises from Folland: Chapter 3: 40, 42

Problem 1: Let f be a continuous real-valued function on $[0,1]$. Let k be a fixed positive integer. Suppose that for each $y \in \mathbb{R}$ the set $\{x \in[0,1]: f(x)=y\}$ contains at most k points. Prove that $f \in B V[0,1]$.

Problem 2: Show that if F is of bounded variation in $[a, b]$, then:

$$
\int_{a}^{b}\left|F^{\prime}(x)\right| d x \leq T_{a}^{b}(F)
$$

and

$$
\int_{a}^{b}\left|F^{\prime}(x)\right| d x=T_{a}^{b}(F)
$$

if and only if F is absolutely continuous in $[a, b]$.

Problem 3: A bounded function $F: \mathbb{R} \rightarrow \mathbb{R}$ is said to be of bounded variation on \mathbb{R} if F is of bounded variation on any finite interval $[a, b]$ and $\sup _{[a, b]} T_{a}^{b}(F)<\infty$. Prove that F enjoys the following properties:

1. $\int_{\mathbb{R}}|F(x+h)-F(x)| d x \leq A|h|$, for some constant A and all $h \in \mathbb{R}$.
2. $\left|\int_{\mathbb{R}} F(x) \varphi^{\prime}(x)\right| d x \mid \leq A$, where φ ranges over all C^{1} functions with compact support satisfying $\sup _{x \in \mathbb{R}}|\varphi(x)| \leq 1$.
