Math 525

Homework due 01/14/2015

Reading from Folland: Chapter 3: sections 1 and 2.

Exercises from Folland: Chapter 3: 40, 42

Problem 1: Let f be a continuous real-valued function on [0, 1]. Let k be a fixed positive integer. Suppose that for each $y \in \mathbb{R}$ the set $\{x \in [0, 1] : f(x) = y\}$ contains at most k points. Prove that $f \in BV[0, 1]$.

Problem 2: Show that if F is of bounded variation in [a, b], then:

$$\int_{a}^{b} |F'(x)| \, dx \le T_{a}^{b}(F)$$

and

$$\int_{a}^{b} |F'(x)| \, dx = T_{a}^{b}(F)$$

if and only if F is absolutely continuous in [a, b].

Problem 3: A bounded function $F : \mathbb{R} \to \mathbb{R}$ is said to be of bounded variation on \mathbb{R} if F is of bounded variation on any finite interval [a, b] and $\sup_{[a,b]} T_a^b(F) < \infty$. Prove that F enjoys the following properties:

- 1. $\int_{\mathbb{R}} |F(x+h) F(x)| \, dx \leq A|h|$, for some constant A and all $h \in \mathbb{R}$.
- 2. $|\int_{\mathbb{R}} F(x)\varphi'(x)| dx| \leq A$, where φ ranges over all C^1 functions with compact support satisfying $\sup_{x \in \mathbb{R}} |\varphi(x)| \leq 1$.