Math 525

Homework due 02/18/2015

Reading from Folland, 2nd edition: Chapter 5: sections 3 and 5.

Problems from Folland: Chapter 5: problems 17,19, 22, 25.

Problem 1: Suppose that the Banach space \mathcal{X} is uniformly convex. That is, suppose that for every $\epsilon>0$ there exists $\delta \in(0,1)$ so that if

$$
\|x\|=\|y\|=1 \text { and }\|x-y\| \geq \epsilon \text { then }\left\|\frac{x+y}{2}\right\|<1-\delta .
$$

Let f be a linear functional on \mathcal{X} with norm 1. Prove that there is a unique point $x \in \mathcal{X}$ such that $\|x\|=1$ and $f(x)=1$.

