Math 525

Homework due 02/18/2015

Reading from Folland, 2nd edition: Chapter 5: sections 3 and 5.

Problems from Folland: Chapter 5: problems 17,19, 22, 25.

Problem 1: Suppose that the Banach space \mathcal{X} is uniformly convex. That is, suppose that for every $\epsilon > 0$ there exists $\delta \in (0,1)$ so that if

$$||x|| = ||y|| = 1 \text{ and } ||x - y|| \ge \epsilon \text{ then } ||\frac{x + y}{2}|| < 1 - \delta.$$

Let f be a linear functional on \mathcal{X} with norm 1. Prove that there is a unique point $x \in \mathcal{X}$ such that ||x|| = 1 and f(x) = 1.