Math 525

Homework due 03/11/2015

Reading from Folland, 2nd edition: Chapter 6: section 2 and 3.

Problems from Folland: Chapter 6: problems 20 and 22.

Problem 1 (20 points): Let (X, \mathcal{M}, μ) be a complete σ -finite measure space.

1. Show that for $p \ge 2$ and $x \in [0, 1]$

$$\left(\frac{1+x}{2}\right)^p + \left(\frac{1-x}{2}\right)^p \le \frac{1}{2}(1+x^p)$$

2. Prove that for $2 \leq p < \infty$, if $f, g \in L^p(\mu)$ then

$$\left\|\frac{f+g}{2}\right\|_{p}^{p} + \left\|\frac{f-g}{2}\right\|_{p}^{p} \le \frac{1}{2}\left(\|f\|_{p}^{p} + \|g\|_{p}^{p}\right)$$

This is Clarkson inequality.

3. Show that for $p \ge 2$, L^p is **uniformly convex**. Recall this means that given $\epsilon > 0$ there is $\delta = \delta(\epsilon) \in (0, 1)$ with $\delta(\epsilon) \to 0$ as $\epsilon \to 0$ s that whenever

$$||f||_p = ||g||_p = 1$$
 then $||f - g||_p \ge \epsilon$ implies that $\left\|\frac{f + g}{2}\right\|_p \le 1 - \delta.$

4. Using the result above prove that for $2 \leq p < \infty$ the following statement holds. If $\{f_n\}_n \in L^p$ converges weakly to f and $||f_n||_p \to ||f||_p$ then $\{f_n\}_n$ converges strongly to f, that is $||f_n - f||_p \to 0$ as $n \to \infty$.

Problem 2 (Reals 2011): Let \mathcal{X} and \mathcal{Y} be Banach spaces and $T : \mathcal{X} \to \mathcal{Y}$ a one-to-one bounded linear map whose range $T(\mathcal{T})$ is closed in \mathcal{Y} . Show that for each bounded linear functional ϕ on \mathcal{X} there is a bounded linear functional ψ on \mathcal{Y} such that $\phi = \psi \circ T$, and there is a constant C (independent of ϕ) such that ψ can be chosen to satisfy $\|\psi\| \leq C \|\phi\|$.