Math 525

Homework due 03/11/2015

Reading from Folland, 2nd edition: Chapter 6: section 2 and 3.

Problems from Folland: Chapter 6: problems 20 and 22.

Problem 1 (20 points): Let (X, \mathcal{M}, μ) be a complete σ-finite measure space.

1. Show that for $p \geq 2$ and $x \in[0,1]$

$$
\left(\frac{1+x}{2}\right)^{p}+\left(\frac{1-x}{2}\right)^{p} \leq \frac{1}{2}\left(1+x^{p}\right)
$$

2. Prove that for $2 \leq p<\infty$, if $f, g \in L^{p}(\mu)$ then

$$
\left\|\frac{f+g}{2}\right\|_{p}^{p}+\left\|\frac{f-g}{2}\right\|_{p}^{p} \leq \frac{1}{2}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right)
$$

This is Clarkson inequality.
3. Show that for $p \geq 2, L^{p}$ is uniformly convex. Recall this means that given $\epsilon>0$ there is $\delta=\delta(\epsilon) \in(0,1)$ with $\delta(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$ s so that whenever

$$
\|f\|_{p}=\|g\|_{p}=1 \text { then }\|f-g\|_{p} \geq \epsilon \text { implies that }\left\|\frac{f+g}{2}\right\|_{p} \leq 1-\delta
$$

4. Using the result above prove that for $2 \leq p<\infty$ the following statement holds. If $\left\{f_{n}\right\}_{n} \in L^{p}$ converges weakly to f and $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$ then $\left\{f_{n}\right\}_{n}$ converges strongly to f, that is $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$.

Problem 2 (Reals 2011): Let \mathcal{X} and \mathcal{Y} be Banach spaces and $T: \mathcal{X} \rightarrow \mathcal{Y}$ a one-to-one bounded linear map whose range $T(\mathcal{T})$ is closed in \mathcal{Y}. Show that for each bounded linear functional ϕ on \mathcal{X} there is a bounded linear functional ψ on \mathcal{Y} such that $\phi=\psi \circ T$, and there is a constant C (independent of ϕ) such that ψ can be chosen to satisfy $\|\psi\| \leq C\|\phi\|$.

