GEOMETRIC MEASURE THEORY
 HOMEWORK

Problem 1 (Intersection with half spaces): If $H_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, r\rangle<t\right\}$ for some $e \in \mathbb{S}^{n-1}, t \in \mathbb{R}$, and E a set of finite perimeter in \mathbb{R}^{n}, then $E \cap H_{t}$ is a set of finite perimeter in \mathbb{R}^{n}. Show that for a.e. $t \in \mathbb{R}$

$$
\nu_{E \cap H_{t}}\left\|\partial\left(E \cap H_{t}\right)\right\|=\nu_{E}\|\partial E\|\left\llcorner H_{t}+e \mathcal{H}^{n-1}\left\llcorner\left(E \cap \partial H_{t}\right) .\right.\right.
$$

Note that for a.e. $t \in \mathbb{R}$

$$
\mathcal{H}^{n-1}\left(E \cap \partial H_{t}\right) \leq\|\partial E\|\left(H_{t}\right), \quad\left\|\partial\left(E \cap H_{t}\right)\right\|\left(\mathbb{R}^{n}\right) \leq\|\partial E\|\left(\mathbb{R}^{n}\right)
$$

Problem 2 (Convex sets are of locally finite perimeter):

1. Show that a set is convex if and only if its closure is the intersection of countably many closed half spaces.
2. Show that, if E is a set of locally finite perimeter in \mathbb{R}^{n}, and if K is convex, then $E \cap K$ is a set of locally finite perimeter, with $\|\partial(E \cap K)\|\left(\mathbb{R}^{n}\right) \leq\|\partial E\|\left(\mathbb{R}^{n}\right)$.
3. Show that every convex set is of locally finite perimeter, and every bounded convex set is of finite perimeter.
