

Definition 1: let
$$X \neq \phi$$
, a mapping $\mu: 2^{X} \rightarrow EO, \sigma J$ is a
measure on X provided
i) $\mu \phi = 0$ σ
ii) (subaditivity) if $A \in \bigcup A_{k}$ then $\mu A \leq \sum \mu A_{i}$
 $\mu A_{i} = \mu (A_{k}) + \mu (A_{k}) = \mu (A_{k}) + \mu (A_{k})$
Definition 2: $A \approx A \subset X = \mu (A_{k}) + \mu (A_{k})$
 $B \subset X = \mu (B \cap A) + \mu (B \cap A)$
Definition 3: $\partial C \subset 2^{X}$ is a ∇ -algebra if
i) $\phi, X \in \partial C$
ii) $A \in \partial C \Longrightarrow A^{C} \in \partial C$
iii) $A \in \partial C \Longrightarrow A^{C} \in \partial C$
iii) $A \in \partial C = A^{C} \in \partial C$
iii) $A \in \partial C = A^{C} \in \partial C$
iv) $A \in \partial C = A^{C} \in \partial C$
iv) $A \in \partial C = A^{C} = A^{C} \in \partial C$
iv) $A \in \partial C = A^{C} = A^{C}$

Theorem: (Caratheodory's criterion)
let
$$\mu$$
 be a measure on \mathbb{R}^n . If for all sets A, B C \mathbb{R}^n we
have $\mu(A \cup B) = \mu A + \mu B$ whenever $d(A, B) > 0$
then μ is a Bord measure.
 $d(A, B) = \inf \{ | a - b | : a \in A, b \in B \}$
Definition: Let μ be a Borel regular measure in \mathbb{R}^n
 $\operatorname{support} of \mu$
Claim: spt μ is a dosed set.

Covering theorems
A. Vitali 's covering lemma

$$B = B(x,r) = closed ball in R^n \quad B = 5B = B(x,5r)$$

Definitions: i) A collection \mathcal{F} of closed balls in R^n is a cover
of a set $A \subset R^n$ if
 $A \subset \bigcup_{B \in \mathcal{B}} B$
Ti) \mathcal{F} is a fine cover of A if it is a cover and
inf f diam B : $x \in B$: $B \in \mathcal{F} f_{f} = 0$ for each $x \in A$.

Theorem: (Vitali 's covering theorem) dir
$$\mathcal{F}$$
 be a collection of
non-degenerate closed balls in \mathbb{R}^n with
 $D = \sup l \operatorname{diam} B : B \in \mathcal{F}^l \} < \infty$
Then there exists a caustable family (y of disjoint balls in
 \mathcal{F} such that
 $UB \subset UB$
 $B \in \mathcal{F}^l \quad B \in \operatorname{eg}$
Moreover for each $B \in \operatorname{F}^l = B' \in \operatorname{Cy}$ st $B \cap B' \neq \emptyset$
and $B \subset B'$
Why is the diameter hypothesis necessary? $\mathcal{F} = \{B(o,m)\}_{med}^{med}$
How do you prove this?
How did we use this theorem?

How du you prove this ?

Theorem (Filling open sets with balls)
Let
$$U \subset \mathbb{R}^n$$
 be an open set, let $S > 0$. There exists a countable
collection (Q) of disjoint dosed balls in $U = S.I$. diam $B < S$
 $\forall B \in (Q)$ and $L^n (U = \bigcup B_K) = 0$ (L^n belongue measure)
 $\mathbb{P}I: Tix = 0$ $(1 - \frac{1}{2} < 0 < 1$ assume $L^n (U) < \infty$
Claim There exists a finite collection $1B_i \{ H_i \\ i = i \}$ of disjoint
dissed balls draw $B_i \neq S$ $\forall i = 1 \dots M_i$
 $L^n (U = \bigcup B_i) \leq 0 L^n (U)$
 $\mathbb{P}I = 0I$ daim : $\mathbb{P}I = 1 B \subset U$: diam $B < S \} \neq \emptyset$
by Vitali $\exists Q_i$ countable disjoint subfamily of $\mathbb{P}I$

$$U \subset \bigcup_{B} L^{n}(u) \notin Z L^{n}(B) = 5^{n} Z L^{n}(B) \notin Seg_{1}$$

$$Be g_{1}$$

$$Be g_{1}$$

$$Be g_{1}$$

$$Be g_{1}$$

$$Be g_{1}$$

$$C^{n}(B) = 5^{n} L^{n}(UB) \Rightarrow L^{n}(U)$$

$$Be g_{1}$$

$$C^{n}(U \cap UB) = L^{n}(U) - L^{n}(UB) \notin (1 - \frac{1}{5^{n}})L^{n}(U)$$

$$Be g_{1}$$

$$C^{n}(U \cap UB) \notin (1 - \frac{1}{5^{n}})L^{n}(U)$$

$$Be g_{1}$$

$$C^{n}(U \cap UB) \notin (1 - \frac{1}{5^{n}})L^{n}(U)$$

$$Be g_{1}$$

$$C^{n}(U \cap UB) \notin (1 - \frac{1}{5^{n}})L^{n}(U)$$

$$C^{n}(U \cap UB) \oplus (1 - \frac{1}{5^{n}})L^{n}(U)$$

$$C^{n}(U \cap UB) \oplus$$