Introduction to Geometric Measure Theory

Geometric Measure Theory

里

Definition 1: Lex $x \neq \phi$, a mapping $\mu: 2^{x} \rightarrow[0, \infty]$ is a measure on x provided
i) $\mu \phi=0$
ii) (subadditivity) if $A \subset \bigcup_{k=1}^{\infty} A_{k}$ then $\mu A \leq \sum_{i=1}^{\infty} \mu A_{i}$

Definition 2: A set $A \subset X$ is μ-measurable if for each $B C X$

$$
\mu B=\mu(B \cap A)+\mu(B \backslash A)
$$

Definition 3: $\operatorname{Ol} \subset 2^{x}$ is a σ-algebra of
i) $\phi, x \in \mathcal{O}$
ii) $A \in \mathcal{O} \Rightarrow A^{C} \in \mathcal{O}$
iii) If $A_{k} \in \mathscr{O}$ then $\bigcup_{k=1}^{\infty} A_{k} \in \mathscr{O}$

Definition 4: The Borel σ-algebra of a topological (metric) space X is the σ-algebra generated by the open sets of X

Definitions: A measure μ in \mathbb{R}^{n} is
i) a Bored measure if all Bored sets are measurable
ii) Bored regular if it Bore and $A \subset \mathbb{R}^{n} \quad B$ Boil set st $A \subset B$ f $\mu A=\mu B$.
iii) a Radon measure is Bora regular aud $\mu k<c s$ for every $k \subset \mathbb{R}^{n}$ compact.

Theorem: Let μ be a Bored regular measure in \mathbb{R}^{n}. If

$$
\begin{aligned}
& A_{1} \subset A_{2} \subset \ldots A_{k} \subset A_{k+1} C \ldots \text { then } \\
& \lim _{k \rightarrow \infty} \mu\left(A_{k}\right)=\mu\left(\bigcup_{k=1}^{\infty} A_{k}\right)
\end{aligned}
$$

What is the point of this theorem? The A_{R} 's do not need to be measurable'

Theorem : Let μ be a Bored regular measure on \mathbb{R}^{n}. Suppose $A \subset \mathbb{R}^{n}$ is μ - measurable and $\mu A<\infty$, then $\mu L A$ is Radon.

Lemma: Let μ be a Bore measure on \mathbb{R}^{n} of let B be a Boor st
i) If $\mu B<\infty \quad \forall \varepsilon>0 \quad \exists C$ dosed set such that

$$
C \subset B \quad \& \mu(B \backslash C)<\varepsilon
$$

ii) if μ is a Radon measure $\forall \varepsilon>0 \quad \exists U$ open set such that $B \subset u \quad \& \quad \mu|u \backslash B|<\varepsilon$
Compare with debesgere measure!
i) if $\mu=m$ i) does not need $m B<c$
if $\mu=m$ in i) $m B<\infty$ then C can be taken compact.
if μ is Radon i) holds

Theorem: (approximation by open and compact sets) Let μ be a Radon measure in \mathbb{R}^{n}, then
i) for $A \subset \mathbb{R}^{n}$

$$
\mu A=\inf \{\mu l: A \subset u \text { open }\}
$$ need to be

ii) for each μ - measurable set $A \subset \mathbb{R}^{n}$ measurable

$$
\mu A=\sup \{\mu k: K \subset A: K \text { compact }\}
$$

What is the point of this theorem?
compact nicer than closed"

Theorem: (Caratheodory's criteria)
Let μ be a measure on \mathbb{R}^{n}. If for all sets $A, B \subset \mathbb{R}^{n}$ we have

$$
\mu(A \cup B)=\mu A+\mu B \quad \text { whenever } d(A, B)>0
$$

then μ is a Bored measure.

$$
d(A, B)=\inf \{|a-b|: a \in A, b \in B\}
$$

Definition: Let μ be a Bored regular measure in \mathbb{R}^{n}

$$
\begin{aligned}
& \operatorname{spt} \mu=\left\{x \in \mathbb{R}^{n}: \mu(B(x, r))>0 \quad \forall_{r}>0\right\} \\
& \text { support of } \mu
\end{aligned}
$$

Clam: $s p t ~ \mu$ is a dosed set.

Covering theorems
A. Vitali's covering lemma
$B=B(x, r)=$ closed ball in $\mathbb{R}^{n} \quad \hat{B}=5 B=B(x, 5 r)$
Definitions: i) A collection n \mathcal{F}_{e}^{p} of closed balls in \mathbb{R}^{n} is a cover of a set $A \subset \mathbb{R}^{n}$ if

$$
A \subset \bigcup_{B \in \mathcal{T}_{e}} B
$$

ii) I s a fine cover of A if it is a cover and inf $\{\operatorname{diam} B: x \in B: B \in \mathcal{F}\}=0$ for each $x \in A$.

Theorem: (Vitali's covering theorem) Let of be a collection of non-dejenerate closed balls in \mathbb{R}^{n} with

$$
D=\sup \{\operatorname{diam} B: B \in \mathcal{F}\}<\infty
$$

Then there exists a countable family Y of disjoint balls in of such that

$$
\begin{array}{cc}
U B & \cup \\
B \in \mathcal{F}_{0} & \\
B \in G
\end{array}
$$

Moreover for each $B \in \mathcal{R}_{e}^{e} \quad \exists B^{\prime} \in C y$ st $B \cap B^{\prime} \neq \phi$ and $B \subset \widehat{B^{\prime}}$
Why is the diameter hypothesis necessary? $\mathcal{f}=\{B(0, m)\}_{m \in \mathbb{N}}$ How do you prove this? dies not satisfy
theorem How did we use this theorem?

Corollary: Assume that f_{k} is a fine cover of A by closed balls and that
$\sup \left\{\operatorname{diam} B: B \in{ }_{\text {克 }}\right\}<\infty$
Then there exists a countable family $C y$ of disjoint balls in \mathcal{F}_{e} such that for each finite subset $\left.4 B_{1} \ldots B_{m}\right\} \subseteq C_{k}$

$$
\begin{aligned}
& A \backslash \bigcup_{n=1}^{m} B_{k} \subset \cup \hat{B} \\
& \quad B \in g \backslash\left\{B_{1}, \ldots B_{m}\right\}
\end{aligned}
$$

How do you prove this?

Theorem (Filling open sets with balls)
Let $u \subset \mathbb{R}^{n}$ be an open set, let $\delta>0$. There exists a countable collection $C y$ of disjoint dosed balls in U st $\operatorname{diam} B<\delta$
$\forall B \in G$ and $L^{n}\left(u \mid \bigcup_{k=1}^{\infty} B_{k}\right)=0 \quad\left(L^{n}\right.$ Lebesgue measure)
Pf: Fix $\theta \cdot 1-\frac{1}{5^{n}}<\theta<1$ assume $L^{n}(u)<\infty$
Claim There exists a finite collection $\left\{B_{i}\right\}_{i=1}^{M_{1}}$ of disjoint closed balls diam $B_{i} \notin \delta \quad \forall i=1 \ldots M_{1}$

$$
L^{n}\left(u \backslash \bigcup_{i=1}^{M_{1}} B_{i}\right) \leqslant \theta L^{n}(u)
$$

Pf of aim: $\tilde{f}_{1}=\left\{\begin{array}{l}B \subset U: \\ \text { dosed } \\ \operatorname{diam} B<\delta\}\end{array} \neq \phi\right.$
by Vitali $\exists G_{1}$ countable disjoint subfamily of fe,

$$
\begin{aligned}
& u \subset \underset{B \in y_{1}}{\hat{B}} \\
& L^{n}(u) \leqslant \sum_{B \in g_{1}} L^{n}(\hat{B})=\underbrace{5^{n} \sum_{B \in y_{1}} L^{n}(B)} \leqslant \\
& 5^{n} L^{n}(u)<\infty \\
& 5^{n} \sum L^{n}(B)=5^{n} L^{n}(U B) \geqslant L^{n}(U) \\
& B \in G_{1} \quad B \in G_{1} \\
& L^{n}\left(U \subset \underset{B \in C_{1}}{\bigcup} B\right)=L^{n}(U)-L^{n}(\cup B) \leqslant\left(1-\frac{1}{5^{n}}\right) L^{n}(u) \\
& L^{n}\left(u \left\lvert\, \underset{B \in C y)}{\cup} \leq\left(1-\frac{1}{5^{n}}\right) L^{n}(u)\right.\right.
\end{aligned}
$$

There are finitely many balls in G_{1}.t. $\left(1-\frac{1}{5^{n}}<\theta\right)$

$$
\begin{gathered}
L^{n}\left(u, \bigcup_{i=1}^{M_{i}} B_{i}\right) \leq \theta L^{n}(u) \\
U=U_{1} \quad U_{2}=u \backslash \bigcup_{i=1}^{M_{1}} B_{i} \quad \text { open } f L^{n}\left(U_{2}\right)<\infty
\end{gathered}
$$

$F_{2}=\left\{B C U_{2}\right.$ closed dian $\left.B<\delta\right\}$ use same argument

$$
\begin{aligned}
& \left.L B_{i}\right\}_{i=M_{1}+1}^{M_{2}} c \mathcal{F}_{2}^{0} \text { disjoint } \\
& L^{n}\left(U_{2} \backslash \bigcup_{i=M_{1}+1}^{M_{2}} B_{i}\right) \leq \theta L^{n}\left(u_{2}\right) \\
& L^{n}\left(u \backslash \bigcup_{i=1}^{M_{2}} B_{i}\right) \leq \theta L^{n}\left(u \backslash \bigcup_{i=1}^{M_{i}} B_{i}\right) \leq \theta^{2} L^{n}(u)
\end{aligned}
$$

by induction $L^{n}\left(u \backslash \bigcup_{i=1}^{M_{k}} P_{i j}\right) \leqslant \theta^{k} \underbrace{L^{n}(u)}_{<\infty} \longrightarrow 0$
If $L^{n}(u)=\infty$ apply construction to

$$
\begin{array}{ll}
u_{m}=\{x \in U: & m<|x|<m+1\} \quad \text { or } \\
\hat{u}_{j}=U \cap Q_{j} & \left\{Q_{j} \quad\right. \text { open } \\
L^{n}\left(\partial\left(B_{m+1}\left(B_{m}\right)\right)=0\right. & L^{n}\left(\partial Q_{j}\right)=0
\end{array}
$$

