$$
\exists c>1 \mathrm{~s} t
$$

Definition: A measure μ in \mathbb{R}^{n} is doubluig if $\hat{\forall x \in \text { sot } \mu}$ $\forall r \in(0$, diam $\operatorname{spt} \mu)$

$$
\mu(B(x, 2 r)) \leq C \mu(B(x, r))
$$

Problem 1: Let μ be a doubling measure on \mathbb{R}^{n}, assume $x_{0} \in$ spot μ and

$$
\mu\left(B\left(x_{0}, 1\right)\right)<\infty
$$

Show that for every $x \in \operatorname{spt} \mu$ there exists $E_{x} \subset(0$, diam spot μ) $m\left((0, d(a m\right.$ opt $\mu) \mid E x)=0 \quad \forall r \in E_{x}$

$$
\mu(\partial B(x, r))=0
$$

Given au example of a doubling measure in \mathbb{R}^{2}, $x_{0} \in \operatorname{spt} \mu$ and $r_{0}>0$ such that

$$
\mu\left(\partial B\left(x_{0}, r_{0}\right)\right) \neq 0
$$

$M \rightarrow \operatorname{arc}$ length

Problem 2 : Let μ be a Bore measure in \mathbb{R}^{n}, such that Apt $\mu=\mathbb{R}^{n}$, assume μ is doubling and $\mu(B(0,1))<\infty$ show that for any dyadic cube Q in \mathbb{R}^{n}

$$
\mu(\partial Q)=0
$$

unit cube

Besicuvitch covering theorem
Theorem (Besicovitch covering theorem)
There exists a constant N_{n} depending only on the dimeusion n, with the following property: If \mathcal{F} is a collection of non-degenerate closed balls in \mathbb{R}^{n} with

$$
\sup \left\{\operatorname{diam} B: B \in \bigodot_{k}^{P}\right\}<\infty
$$

and if A is the set of centers of the balls in Y_{e} then there exist No countable collections $V_{1, \ldots,} y_{N_{n}}$ of disjoint balls in C_{e}, such that

$$
A \subset \bigcup_{i=1}^{N_{n}} \bigcup_{B \in G_{i}} B
$$

(1) Read proof in Evans \& Gariepy
(2) Does Besicovitch hold on metric spaces?

Corollary: If μ is a measure in \mathbb{R}^{n} and $f \& A$ are as in Beriovitch covering theorem, then there exists a countable disjoint subfamily of If, gel such that

$$
\mu(A) \leq \mu(n) \sum_{B \in \mathcal{S}^{\prime}} \mu(A \cap B)
$$

Warning: Fir dos not necessarily cover A.!
?f

$$
\begin{aligned}
& A \subset \bigcup_{i=1}^{N_{n}} \bigcup_{B \in g_{j}} B \cap A \\
& \mu(A) \leq \sum_{i=1}^{N_{n}} \underbrace{\sum_{B \in g_{i}} \mu(A \cap B)}_{\text {choose } G_{i} \text { sit }} \leq N_{n} \sum_{B \in \mathcal{F}^{e}} \mu(A \cap B)
\end{aligned}
$$

$\sum_{B \in G_{i}} \mu(A \cap B)$ is the maximum $\quad G_{i}=f^{\prime}$ $B \in G_{i}$

Theorem: (More on filling open sets with balls)
Let μ be a Bond measure on \mathbb{R}^{n}, Y_{k} a non-degenerate collection of closed balls - Let A denote the set of centers of balls in F. Assume:
i) $\mu(A)<\infty$
ii) inf $\left\{r: B(a, r) \in \mathcal{F}^{0}\right\}=0 \quad \forall a \in A$

Then for each open set $U \subset \mathbb{R}^{n}$ there exists a countable disjoint subcollection $\mathcal{G} \subset g_{e}^{e}$ such that

$$
\begin{gathered}
\bigcup_{B \in y^{B}}^{B} \subset u \\
\mu\left(A \cap u \quad \bigcup_{B \in G} B\right)=0
\end{gathered}
$$

Reuronk: A does not need to be μ-measurable.

Proof: $\quad 1-\frac{1}{N_{n}}<\theta<1$
Clam : $\exists\left\{B_{1}, \ldots . B_{M_{1}}\right\}$ disjoint dosed balls in $\mathcal{C}_{k}^{p} ; B_{i} \subset U$

$$
\mu\left(A \cap u \backslash \bigcup_{i=1}^{M_{1}}\right) \leq \theta \mu(A \cap U)
$$

$\frac{P f}{F}$: her $f_{1}=\{B \in \mathcal{F}: \operatorname{diam} B \leq 1 ; B \subset U\}$

$$
\exists g_{i}
$$

$$
\begin{aligned}
& A \cap U \subset \bigcup_{i=1}^{N_{n}} \bigcup_{B \in G g_{i}} B^{B} \\
& \mu(A \cap U) \leq N_{n} \sum_{B \in G g_{i}} \mu(A \cap U \cap B) \\
& \frac{\perp}{N_{n}} \mu(A \cap U) \leq \mu\left(A \cap U \cap \bigcup_{B \in G_{i}} B\right)
\end{aligned}
$$

Clave: $B_{1} \ldots B_{M_{1}} \quad(1-\theta) \mu(A \cap U) \leq \mu\left(A \cap U \cap \bigcup_{i=1}^{M_{1}} B_{i}\right)$

$$
\begin{aligned}
\mu(A \cap U) & =\mu\left(A \cap \cup \cap \bigcup_{i=1}^{M_{1}} B_{i}\right)+\mu\left(A \cap u \backslash \bigcup_{i=1}^{M_{1}} B_{i}\right) \\
& \geqslant(1-\theta) \mu(A \cap U)+\mu\left(A \cap U \backslash \bigcup_{i=1}^{M_{i}} B_{i}\right)
\end{aligned}
$$

(2) $\quad U_{2}=U 1 \bigcup_{I=1}^{M_{1}} B_{i} \quad$ repeat.

$$
\mu\left(A \cap \cup \backslash \bigcup_{i=1}^{\bigcup_{k}} B_{i}\right) \leq \theta^{k} \mu(A \cap U) \leq \theta^{k} \underbrace{\mu(A)}_{<\infty}
$$

Differentiation of Radon measures
Definition: Let $\mu f \nu$ be Radon measures - For $x \in \mathbb{R}^{n}$ define

$$
\bar{D}_{\mu \nu}(x)=\left\{\begin{array}{c}
\operatorname{hinsup}_{r \rightarrow 0} \frac{\nu(B(x, r))}{\mu k(B(x, r))} \quad \text { if } x \in \operatorname{spt} \mu \\
+\infty \quad \text { otherwise }
\end{array}\right.
$$

upper density of

$$
v \omega \cdot r \cdot t \mu
$$

$$
{\underset{\sim}{\uparrow}}_{D_{\mu}}(x)=\left\{\begin{array}{cc}
\liminf _{r \rightarrow 0} \frac{V(B(x, r))}{\mu(B(x, r))} & \text { if } x \in \operatorname{spt} \mu \\
+\infty & \text { otherwise }
\end{array}\right.
$$

lower density
of $\nu \quad \omega$. r.t μ
Definition: If $\bar{D} \mu \nu(x)=D{ }^{2} \nu \nu(x)<\infty$ we say that ν is differentiable $w . r . t ~ \mu \quad a x$ and write

$$
\bar{D}_{\mu \nu}(x)=D_{\mu \nu} \mathcal{F}(x)=D_{\mu} V(x) \longleftarrow
$$

Relationship with Radon - Nikodym? density of v $w . r . t ~ \mu$. at x

