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Probtemz : Let
µ

be a Bord measure in IR"
,
such that

apt µ = IRN , assume µ is doubling and McBeal ) ) cos
show that for any dyadic cube Q in IR

"

µ (DQ) = 0 .

-

- unit use



Besiwvitch covering
theorem -

- -
-

theorem ( Besicovitch
covering theorem )

there exists a constant Nn depending only on the dimension n
,
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Corollary : If µ is a measure in IRN and led & A are as in Besiwvitch
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theorem : ( More on filling open sets with balls I

Let µ be a Bord measure on Rn
,

led a non - degenerate collection

of closed balls
.

Let A devote the set of centers of balls in Te .

Assume : i ) µ CAI c as

ii) ehf h r : Bca
,
r) c- It =0 tae A

Then for each open set UCR
"

there exists a countable

disjoint subduction G of such that

U B c U f
BEY

µ CAN U i

YzecgB 1=0

Ruud : A does not need to be µ - measurable .
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Differentiation of Radon measured

Definition : Let µ f V be Radon measures -
For KEIR
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Definition : If 5mV Get = Df Vliet < as we say that
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.
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