Functions of bounded variation of sets of finite perimeter
Definitions: $U \subset \mathbb{R}^{n}$ open.
i) A function $f \in L(u)$ has bounded variation in u if

$$
\sup \left\{\int_{u} t \operatorname{div} \phi d x: \phi \in C_{c}^{\prime}\left(u, \mathbb{R}^{n}\right):|\phi| \leq 1\right\}<\infty
$$

we curite $\quad f \in B V(u)$
ii) $E \subset \mathbb{R}^{n}$ measurable has finite perimeter in u if $X_{E} \in \operatorname{BV}(u)$
iii) $f \in L_{\text {bloc }}^{\prime}(U)$ has locally bounded variation if for each open set $v \subset c u$ (v compactly contained in u)

$$
\begin{gathered}
\sup \left\{\int_{V} f \operatorname{div} \phi d x: \phi \in C_{c}^{\prime}\left(v, \mathbb{R}^{n}\right):|\phi| \leq 1\right\}<\infty \\
f \in B V_{l o c}(u)
\end{gathered}
$$

iv) $E \subset \mathbb{R}^{n}$ measurable has locally finite perimeter in U if $X_{E} \in B V_{l o c}(U)$.
? $f: B \rightarrow \mathbb{R} \quad \begin{gathered}\text { continuous } \\ \text { + bounded }\end{gathered} \quad \phi \in C_{c}^{\prime}\left(B, \mathbb{R}^{n}\right) \quad \|\left.\phi\right|_{\infty} \leq 1$

$$
\begin{aligned}
& \left|\int_{B} f \operatorname{div} \phi d x\right| \leq\|f\|_{\infty} \int_{B}|\operatorname{div} \phi| d x \\
& \begin{array}{c}
f=x_{B} \\
\text { unit } \\
\text { ball }
\end{array}\left|\int_{B} \operatorname{div} b d x\right|_{\uparrow}=\left|\int_{\partial B} \Phi \cdot \nu_{B} d \sigma(x)\right|^{\text {unit nor mil }} \\
& \text { div. theorem } \\
& \leq\|\psi\|_{\infty} \int_{\partial B}\left|V_{B}\right| d \sigma \\
& \leq\|\phi\|_{\infty} H^{n-1}(\partial B) \leqslant X^{n-1}(\partial B)
\end{aligned}
$$

$X_{B} \in B V\left(\mathbb{R}^{n}\right), B$ set of finite perimeter
Can generalize if E is st ∂E is C^{\perp} \& $\quad y^{n-1}(\partial E)<\infty$

Theorem (structure theorem for $B V_{l o c}$ functions)
Assume $f \in B V_{\text {doc }}(U)$, there exist a Radon measure μ on U and $\sigma: U \rightarrow \mathbb{R}^{n} \mu$. measurable function st.
(i) $|\sigma(x)|=1 \quad \mu a \cdot e$
(ii) $\quad \forall \phi \in c_{c}^{\prime}\left(u, \mathbb{R}^{n}\right)$

$$
\int_{u} f \operatorname{div} \phi d x=-\int_{u} \phi \cdot \sigma d \mu
$$

Remark: The structure theorem asserts that the weak first partial derivatives of Br functions are Radon measures.
Pf Define $L: c_{c}^{\prime}\left(u, \mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ linear

$$
\left.\begin{array}{ll}
L \phi=-\int_{u} f \operatorname{div} \phi d x & \operatorname{vcc} u \\
\left.L \phi: \phi \in c_{c}^{\prime}\left(v, \mathbb{R}^{n}\right):\|\phi\|_{\infty} \leq 1\right\} & =c_{v}<\infty
\end{array}\right\}
$$

$\phi \in C_{c}^{\prime}\left(V, \mathbb{R}^{n}\right) \quad\|\phi\|_{\infty} \leq 1 \quad|L O| \leq c_{V}$
if $\|\Delta\|_{\infty}=1 \quad|L \phi| \leqslant c_{v}=c_{V}\|\phi\|_{\infty}$
if $\|\phi\|_{\infty} \neq 0 \quad$ \& $\quad\left\|\|_{\infty} \neq 1 \quad \psi=\frac{\phi}{\|\phi\|_{\infty}}\right.$

$$
\begin{array}{ll}
\psi \in C_{c}^{\prime}\left(v, \mathbb{R}^{n}\right) & \|\psi\|_{\infty}=1 \\
\|L \psi\| \leq c_{V} & \left|L \frac{\phi}{\|\phi\|_{\infty}}=|L \phi| \frac{1}{\|\phi\|_{\infty}} \leq c_{V}\right.
\end{array}
$$

goal extend L to all operator on $c_{c}\left(U, \mathbb{R}^{n}\right)$
$\phi \in C_{c}\left(M, \mathbb{R}^{n}\right) \quad$ sp $\phi \subset K \subset V \subset C U$
$\exists\left\{\phi_{k}\right\} \subset C_{c}^{\prime} c\left(V, R^{n}\right) \quad \phi_{k} \rightarrow \phi$ uniformly on V
define $\overline{L d}=\lim _{k \rightarrow \infty} L \phi_{k} \mid \quad \bar{L}$ well defined

$$
\begin{aligned}
&\left|L \phi_{k}-L \hat{\phi}_{k}\right|=\mid L\left(\phi_{k}-\hat{\phi}_{k}| | \leq C_{v}\left\|\phi_{k}-\hat{\phi}_{k}\right\|_{\infty}\right. \\
& \leqslant C_{v}\left(\left\|\phi_{k}-\phi\right\|_{\infty}+\left\|\phi-\hat{\phi}_{k}\right\|_{\infty}\right) \underset{k \rightarrow \infty}{\rightarrow} 0 \\
&-\quad L: C_{c}\left(u, \mathbb{R}^{n}\right) \rightarrow \mathbb{R} \text { lnear }
\end{aligned}
$$

$\forall v c c u$
$\sup \left\{\tau \psi: \phi \in c_{c}\left(V, \mathbb{R}^{n}\right):|\phi| \leqslant 1\right\} \leqslant c_{V}<\infty$
$\left|L \phi_{k}\right| \leqslant c_{v} \mid \phi_{k} \|_{a} k \longrightarrow \infty$
IL $\left\|\leqslant C_{V}\right\| \phi \|_{\infty}$
by RRT $\exists \sigma, \mu$ cas in theorem) st $|\sigma|=1 \mu a \cdot e$.

$$
\begin{array}{r}
I \phi=\int \phi \cdot \sigma d \mu=-\int f \operatorname{div} \phi d x \\
\text { if } \phi \in c_{c}^{\prime}\left(u, \mathbb{R}^{n}\right)
\end{array}
$$

Notation : (1) If $f \in B V_{l o x}(u), \mu=\|D f\| \quad f \quad[D f]=\|D f\| L \sigma$ i.e. $\phi \in C_{c}^{\prime}\left(u, \mathbb{R}^{n}\right)$

$$
\int_{u} f \operatorname{div} \phi d x=-\int_{u} \phi \cdot \sigma d\|D f\|=-\int_{u} \phi \cdot d[D f]
$$

(2) $E \subset \mathbb{R}^{n}$ set of locally finite perimeter of $X_{\bar{E}} \in B V_{\text {loc }}(u)$

$$
\begin{aligned}
& \left\|D X_{E}\right\|=\|\partial E\| \text { f } \sigma=-\nu_{E} \text { thes } \forall \phi \in C_{c}^{\prime}\left(u, \mathbb{R}^{n}\right) \\
& \int_{\bar{E}} \operatorname{div} \phi d x=\int_{\bar{E}} \phi \cdot \nu_{E} d\|\partial E\|
\end{aligned}
$$

$\|\partial E\|(U)$ perimeter of E in U
(3) $f \in B V_{l o c}(u) \cap L^{\prime}(u)$ then $f \in B \vee(u) \quad \forall\|D f\|(u)<\infty \quad f$

$$
\|f\|_{B v(u)}=\|f\|_{L^{\prime}(u)}+\|D f\|(u)
$$

(4) Recall from Riesz Representation Theorem; if $f, X_{E} \in B V_{l o c}(u)$ $v \subset C U$, vopen

$$
\begin{aligned}
& \|D f\|(V)=\sup \left\{\int_{V} f \operatorname{div} \phi: \phi \in C_{c}^{\prime}\left(v, \mathbb{R}^{n}\right):|\phi| \leq 1\right\} \\
& \|\partial E\|(V)=\sup ^{\left.\| \int_{E} \operatorname{div} \phi: \phi \in C_{c}^{\prime}\left(v, \mathbb{R}^{n}\right):|\phi| \leq 1\right\}}
\end{aligned}
$$

Examples: 1. C^{1} domain with $x^{n-1}(\partial E)<\infty$ set of finite perimeter

$$
\int_{E} \operatorname{div} \psi=\int_{\partial E} \phi \cdot v d x^{n-1}
$$

2. $\left.f \in C^{\prime} c \mathbb{R}^{n}\right) \quad \phi \in C_{c}^{\prime}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} f \operatorname{div} \phi=\int_{\mathbb{R}^{n}} \operatorname{div}(f \phi)-\langle D f, \phi\rangle=-\int_{\mathbb{R}^{n}}\langle D f, \phi\rangle d x \\
& \|D f\|=L^{n} L D f \mid \\
& \|=\left\{\begin{array}{cc}
D f / D f \mid & \text { if } D f \neq 0 \\
0 & \text { if } D f=0
\end{array}\right.
\end{aligned}
$$

3.

if $f \in B V\left(\mathbb{R}^{n}\right)$

$$
[D f]=L^{n} L D f+\text { singular measure }
$$

Approximation and Compactness
Theorem: (Lower semi-continuity of the variation measure) Suppose $f_{k} \in B V(u) \quad f \quad f_{k} \rightarrow f$ in $L_{l o c}^{\prime}(u)$ then

$$
\|D f\|(u) \leq \liminf _{k \rightarrow \infty}\left\|D f_{k}\right\|(u)
$$

Pl: $\quad \phi \in C_{c}^{\prime}\left(u, \mathbb{R}^{n}\right) \quad|\phi| \leqslant 1$

$$
\begin{aligned}
\int_{u} f \operatorname{div} \phi= & \lim _{k \rightarrow \infty} \int_{u} f_{k} \operatorname{div} \phi=-\lim _{k \rightarrow \infty} \int_{u} \Phi \cdot \sigma_{k} d\left\|D f_{k}\right\| \\
& =-\operatorname{lumin}_{u \rightarrow \infty} \int_{u} \phi \cdot \sigma_{u} d\left\|D f_{k}\right\| \\
& \leqslant \operatorname{lumin}_{k \rightarrow \infty}\left\|D f_{u}\right\|(u)
\end{aligned}
$$

Theorem: (Local approximation by smooth functions)
Assume $f \in B V(u)$ then there exist functions $\left|f_{k}\right|_{k=1}^{\infty} \in B V(u) \cap C^{\infty}(u)$
i) $f_{k} \rightarrow f$ in $L^{\prime}(u)$
(ii) $\left\|D f_{k}\right\|(u) \longrightarrow V D \|(u)$ as $k \rightarrow \infty$
(iii) $D f_{k} d x \longrightarrow d[D f]$ weakly as vector valued Radon measures in U; i.e. if for B Bore

$$
\mu_{k}(B)=\int_{B \cap u} D f_{u} d x \quad f \quad \mu(B)=\int_{B \cap u} d[D f]
$$

then $\quad \mu_{e} \rightarrow \mu$
Remark: Warning it is not true $\left\|D\left(f_{k}-f\right)\right\| \rightarrow 0$!!!

Pf. $f x \varepsilon>0 \quad m \in \mathbb{N} \quad k \in \mathbb{N} \quad\|D f\|(u)<\infty$

$$
U_{k}=\left\{x \in U: \operatorname{dist}(x, \partial u)>\frac{1}{m+k}\right\} \cap B(0, m+k)
$$

choose m large enough $\|D f\|\left(U \mid U_{1}\right)<\varepsilon \quad U_{0}=\phi$

define

$$
\begin{aligned}
& v_{k}=u_{k+1} \backslash \overline{u_{k-1}} \text { gen } \\
& \xi_{k} \in c_{c}^{s}\left(v_{k}\right) \text { st } \\
& 0 _\xi_{k}<1 \\
& \sum_{k=1}^{\infty} \xi_{k}=1 \text { on } u \text {, }
\end{aligned}
$$

$$
\begin{gathered}
\eta_{\varepsilon}(x)=\varepsilon^{-n} \eta\left(\frac{x}{\varepsilon}\right) \quad \eta \geqslant 0 \quad \eta \in c^{s} c\left(B_{1}\right) \quad \int \eta d x=1 \\
\eta(x)=\eta(-x)
\end{gathered}
$$

for k select $\varepsilon_{k}>0$ sit $\quad \operatorname{spt}\left(\eta_{\varepsilon_{k}} *\left(f \xi_{k}\right)\right) \subset V_{k}$

$$
\begin{align*}
& \int_{u}\left|\eta_{\varepsilon_{k}} *\left(f \xi_{k}\right)-f \xi_{k}\right| d x<\varepsilon / 2^{k} \\
& \int_{u}\left|\eta_{\varepsilon_{k}} *\left(f D \xi_{k}\right)-f D \xi_{k}\right|<\varepsilon / 2^{k} \\
& \quad f \varepsilon=\sum_{k=1}^{\infty} \eta_{\varepsilon_{k}} *\left(f \xi_{k}\right) \in c^{\infty}(u) \quad f=\sum_{k=1}^{\infty} f \xi_{k} \\
& \quad-\infty f_{\varepsilon}-f \|_{L^{\prime}(u)} \leq \sum_{k=1}^{\infty}\left|\int_{u} \eta_{\varepsilon_{k}} *\left(f \xi_{u}\right)-\left(f \xi_{k}\right)\right| \leqslant \varepsilon
\end{align*}
$$

thus $f_{\varepsilon} \rightarrow f$ in $L^{\prime}(u)$ as $\varepsilon \rightarrow 0$

Theorem: (Compactness for BV functions)
Let $u \subset \mathbb{R}^{n}$ be open and bounded with upschetz boundary. assume $\left\{f_{k}\right\}_{k} C \operatorname{Br}(u)$ st

$$
\sup _{k}\left\|^{\prime} f_{u}\right\| B v(u)<\infty
$$

Then there exists $i f_{u,} \& \subset\left\{f_{e} 4 \quad f \quad t \in B V(U)\right.$ s.t

$$
f_{k_{j}} \rightarrow f \text { in } L^{\prime}(u) \text { as } j \rightarrow \infty
$$

