Proposition: (Existence of minimizers for the Plateau type problem)
Let $A \subset \mathbb{R}^{n}$ open bounded set $f E_{0}$ a set of finite perimeter in \mathbb{R}^{n}. There exists a set of finite perimeter E st $E \backslash A=E_{0} \backslash A$ and

$$
P(E) \leq P(F) \quad \text { for every } F \text { st } F \backslash A=E_{0} \backslash A
$$

E is a minimizer for the variational problem

$$
\gamma\left(A, E_{0}\right)=\inf \left\{P(F): F \backslash A=E_{0} \backslash A\right\}
$$

Pf: (1) E_{0} is admissible ie $P\left(E_{0}\right)<\infty \quad E_{0} \backslash A=E_{0} A$

$$
\gamma\left(A, E_{0}\right) \leqslant P\left(E_{0}\right)<\infty
$$

Take $\left\{E_{k} Y_{k} \quad E_{k} \backslash A=E_{0} \backslash A\right.$

$$
\begin{gathered}
P\left(E_{u}\right) \longrightarrow \gamma\left(A, E_{0}\right)=\gamma<\infty \\
P\left(E_{u}\right) \leq P\left(E_{0}\right)
\end{gathered}
$$

$M_{k}=E_{k} \triangle E_{0}=E_{k} \backslash E_{\partial} \cup E_{0} \backslash E_{k}=E_{k} \cap E_{0}^{c} \cup E_{0} \cap E_{k}^{c}$ \uparrow finite perimeter

$$
\begin{aligned}
& M_{k} C A \quad \Rightarrow\left|M_{k}\right| \leq|A|<\infty \\
& P\left(M_{k}\right) \leq P\left(E_{k} \cap E_{0}^{c}\right)+P\left(E_{0} \cap E_{k}^{c}\right) \\
& \leq P\left(E_{k}\right)+P\left(E_{0}^{C}\right)+P\left(E_{0}\right)+P\left(E_{k}^{c}\right)=2 P\left(E_{0}\right)+2 P\left(E_{k}\right) \\
&<4 P\left(E_{0}\right) \\
& \sup _{k}\left(\left|M_{k}\right|+P\left(M_{k}\right)\right)=\sup _{k}\left\|X_{M_{k}}\right\|_{B V} \leq|A|+4 P\left(E_{0}\right)<\infty
\end{aligned}
$$

$X_{M_{k^{\prime}}} \rightarrow X_{M}$ in $L^{1}\left(\mathbb{R}^{n}\right)$ \& M is set of finite perimeter
Claim

$$
\begin{aligned}
E_{k} & =E_{0} \cup M_{k} \backslash\left(E_{0} \cap M_{k}\right) \quad\left(M_{k}=E_{k} \cap E_{0}\right. \\
E_{0} \cup M_{k} \backslash\left(E_{0} \cap M_{k}\right) & =E_{k} \cup\left(E_{0} \mid E_{k}\right) \cap\left(E_{0} \mid E_{k}\right)^{c} \quad=E_{n} \cap E_{0}^{c} \\
& =E_{k} \cap\left(E_{0}^{c} \cup E_{k}\right)=E_{k} \cap E
\end{aligned}
$$

$$
\begin{aligned}
& \left.E_{k}=E_{0} \cup M_{k} \text { - (} E_{0} \cap M_{k}\right) \\
& X_{E_{k}}=X_{E_{0} \cup M_{k}}-X_{E_{0} \cap i_{k}} \\
& X_{M_{k}} \rightarrow X_{M} \text { in } L^{\prime} \\
& =X_{E_{0}}+X_{M_{k}}-X_{E_{0}} X_{M_{k}}-X_{\bar{\varepsilon}_{0}} X_{M_{k}} \\
& =X_{E_{0}}+X_{M}-X_{E_{0}} X_{M}-X_{E_{0}} X_{M} \\
& =X_{E_{0} \cup M}-X_{E_{0} \cap M}=X_{\text {EOUM }} \backslash(E O \cap M) \\
& E=E_{0} \cup M-\left(E_{0} \cap M\right) \quad X_{E_{h}} \rightarrow X_{E} \\
& \text { l.S.C } P(E) \leq \operatorname{luminf}_{k \rightarrow \infty} P\left(E_{k}\right)=\gamma \quad M \subset A \\
& \text { We need to show } E \backslash A=E \cdot \backslash A \Longrightarrow P(E)=\gamma A^{c} C M^{c} \\
& E \backslash A=E_{0} \cup M-E_{0} \cap M \backslash A=\left(E_{0} \cup M\right) \cap\left(E_{0} \cap M\right)^{C} \cap A^{C} \\
& =E_{0} \cap A^{c} \cap\left(E_{0}^{c} \cup M^{c}\right) \cup M \cap\left(E_{0}^{c} \cup M^{c}\right) \cap A^{c} \\
& \begin{array}{r}
=E_{0} \cap A^{c} \cap E_{0}^{c} \cup \underbrace{E_{0} \cap A^{c} \cap M^{c} \cup M \cap E_{0}^{C} \cap A^{c} \cup M \cap \cap^{c} \cap A^{c}}_{\phi} \underset{E_{0} \cap A^{c}}{C}=E_{0} \backslash A \quad \phi
\end{array}
\end{aligned}
$$

Relative isoperimetric problems
Given an open set $A \subset \mathbb{R}^{n}$ the relative isoperimetric problem in A amounts to the volume constrained minimization of the retatue perimeter in A
(*) $\alpha(A, m)=\inf \{\|\partial E\|(A)=P(E ; A): E \subset A: \quad V E I=m\}$ where $m \in(0,|A|)$

Example: A unit ball

A minimizer in (*) normalized to obtain apt $\|\partial E\|=\partial E$ is relate isoperimetric set in A.

Proposition (Existence of isoperimetric sets)
If A is an open bounded set of finite perimeter, $m \in(0,|A|)$ then there exists a set of finite perimeter ECA such that $P(E: A)=\alpha(A, m)$ \& $|E|=m$. In particular, E is a minimizer in the variational problem (*).

If there exists a competitor

$$
E_{t}=A \cap\left\{x: x_{1}<t\right\} \quad t \in \mathbb{R}
$$

By continuity argument $\exists t \in \mathbb{R}$ St-

$$
\left|E_{t}\right|=m
$$

$$
\alpha \leqslant P\left(E_{t}: A\right) \leqslant P(A)+\operatorname{diam} A
$$

$E_{u} \subset A$ finite perimeter $P\left(E_{n} ; A\right) \longrightarrow \alpha \quad\left|E_{n}\right|=m^{d}$

$$
P\left(E_{k}\right) \leq P\left(E_{k}: A\right)+P(A) \quad k \text { large enough } i \leq \alpha+1+P(A)
$$

$$
\begin{aligned}
& \left.\sup _{k}\left(P\left(E_{k}\right)+\mid E_{k}\right)\right)<\infty \quad E_{k} \subset A \quad\left\{E_{k}^{\prime} h C\left\{E_{k}\right\}\right. \\
& X_{E_{u^{\prime}}} \rightarrow X_{E} \operatorname{in} L^{\prime} \quad\left|E_{k^{\prime}}\right|=m \rightarrow|E|=m \\
& \Rightarrow E \subset A \\
& \alpha \leq P(E: A) \leq \liminf _{k \rightarrow \infty} P\left(E_{k}, A\right)=\alpha .
\end{aligned}
$$

