Problem 1: Prove that if μ is a Borel regular measure on \mathbb{R}^n , A is a μ -measurable set and $\mu(A) < \infty$ then $\mu \sqcup A$ is a Radon measure.

Problem 2: Let μ be a Borel measure in \mathbb{R}^n and B be a Borel set. Prove:

- 1. If $\mu(B) < \infty$, $\forall \epsilon > 0$ there exists a closed subset $C \subset \mathbb{R}^n$ such that $C \subset B$ and $\mu(B \setminus C) < \epsilon$.
- 2. If μ is a Radon measure, $\forall \epsilon > 0$ there exists an open set $U \subset \mathbb{R}^n$ such that $B \subset U$ and $\mu(U \setminus B) < \epsilon$.

Problem 3: Prove the approximation by open and compact sets for Radon measures. Let μ be a Radon measure in \mathbb{R}^n , then

1. For each set $A \subset \mathbb{R}^n$

$$\mu(A) = \inf\{\mu(U) : A \subset U, \ U \text{ open}\}\$$

2. For each μ -measurable set $A \subset \mathbb{R}^n$

 $\mu(A) = \sup\{\mu(K) : K \subset A, K \text{ compact}\}$

Problem 4: Prove that if μ is a Borel regular measure in \mathbb{R}^n its support

$$\operatorname{spt} \mu = \{ x \in \mathbb{R}^n : \mu(B(x,r)) > 0, \ \forall r > 0 \}$$

is a closed set.