PROBLEMS WEEK 2

Problem 1: (Lebesgue points for Radon measures) Show that if μ is a Radon measure in \mathbb{R}^n and $f \in L^p_{loc}(\mathbb{R}^n)$ for some $1 \leq p < \infty$ then for μ -a.e. $x \in \mathbb{R}^n$

$$\lim_{r \to 0} \oint_{B(x,r)} |f - f_{x,r}|^p \, d\mu = 0.$$

Problem 2: (Campanato's criterion) Let $B = B(0,1) \subset \mathbb{R}^n$ be the unit ball with center 0. Let $1 \leq p < \infty$ and $\gamma \in (0,1)$. Show that if $u \in L^p(B)$ (i.e. $\int_B |u(y)|^p dy < \infty$) and u satisfies

$$\left(\oint_{B(x,r)} |u(y) - u_{x,r}|^p \, dy\right)^{\frac{1}{p}} \le \kappa r^{\gamma},$$

for some $\kappa > 0$ where $B(x,r) \subset B$ and $u_{x,r} = \oint_{B(x,r)} f(u) \, dy$, then there exists $\overline{u} : B \to \mathbb{R}$ such that $\overline{u} = u$ a.e. on B and for $x, y \in \frac{3}{4}B$,

$$|\overline{u}(x) - \overline{u}(y)| \le C\kappa |x - y|^{\gamma}.$$

Hint: Show that $\{u_{x,2^{-j}r}\}$ for $x \in \frac{3}{4}B$ and $B(x,r) \subset B$ is a Cauchy sequence.

Problem 3: Let μ be a Radon measure in \mathbb{R}^n . Set for $x \in \mathbb{R}^n$,

$$M_{\mu}f(x) = \sup_{r>0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} |f| \, d\mu,$$

if f is a μ -measurable function, and

$$M_{\mu}\nu(x) = \sup_{r>0} \frac{\nu(B(x,r))}{\mu(B(x,r))},$$

if ν is a Radon measure in \mathbb{R}^n .

1. Show that there exists a constant $C < \infty$ depending only on n, with the following property: if μ and ν are Radon measures in \mathbb{R}^n , then

$$\mu\left(\left\{x \in \mathbb{R}^n : M_\mu \nu(x) > t\right\}\right) \le C t^{-1} \nu(\mathbb{R}^n).$$

2. Show that for $1 there exists a constant <math>C_p < \infty$, depending only on n and p with the following property: if μ is a Radon measure in \mathbb{R}^n , then

$$\int \left(M_{\mu}f\right)^{p} d\mu \leq C_{p} \int |f|^{p} d\mu,$$

for all μ -measurable functions f.