We define \mathbb{R}^m -valued Radon measures on \mathbb{R}^n as bounded linear functionals on $C_c(\mathbb{R}^n, \mathbb{R}^m)$ (in the sense of the Riesz Representation Theorem). Notation: for $f \in C_c(\mathbb{R}^n, \mathbb{R}^m)$

$$\langle \vec{\mu}, f \rangle = \int_{\mathbb{R}^n} f \cdot d\vec{\mu} = \int_{\mathbb{R}^n} f \cdot \sigma \, d|\vec{\mu}| = \int_{\mathbb{R}^n} f \cdot \sigma \, d\mu.$$

Here for an open set $U \subset \mathbb{R}^n$

$$\mu(U) = \sup\{\langle \vec{\mu}, f \rangle : f \in C_c(U, \mathbb{R}^m), |f| \le 1\}$$

and for $A \subset \mathbb{R}^n$

$$\mu(A) = \inf\{\mu(U) : A \subset U, U \text{ open}\}.$$

 $\sigma: \mathbb{R}^n \to \mathbb{R}^m$ is μ measurable and $|\sigma| = 1 \mu$ -a.e.

Let $\{\vec{\mu_k}\}_k$ and $\vec{\mu}$ be \mathbb{R}^m -valued Radon measures. We say that $\vec{\mu_k}$ converges weakly to $\vec{\mu}$, $\vec{\mu_k} \rightharpoonup \vec{\mu}$ if for all $f \in C_c(\mathbb{R}^n, \mathbb{R}^m)$

$$\lim_{k \to \infty} \int_{\mathbb{R}^n} f \cdot d\vec{\mu_k} = \int_{\mathbb{R}^n} f \cdot d\vec{\mu}.$$

Problem 1: Show that if $\{\vec{\mu_k}\}_k$ and $\vec{\mu}$ are \mathbb{R}^m -valued Radon measures on \mathbb{R}^n with $\vec{\mu_k} \rightarrow \vec{\mu}$ then for every open set $U \subset \mathbb{R}^n$,

$$\mu(U) \le \liminf_{k \to \infty} \mu_k(U).$$

Problem 2: Assume $\{\vec{\mu_k}\}_k$ are \mathbb{R}^m -valued Radon measures on \mathbb{R}^n .

1. Show that if $\vec{\mu_k} \rightharpoonup \vec{\mu}$ and $\mu_k \rightharpoonup \nu$ then for every Borel set $E \subset \mathbb{R}^n$

$$\mu(U) \le \nu(E).$$

Furthermore if E is a bounded Borel set with $\nu(\partial E) = 0$ then

$$\vec{\mu}(E) = \lim_{k \to \infty} \vec{\mu}_k(E).$$

2. Show that if $\vec{\mu_k} \rightarrow \vec{\mu}$, $\mu_k(\mathbb{R}^n) \rightarrow \mu(\mathbb{R}^n)$, and $\mu(\mathbb{R}^n) < \infty$, then $\mu_k \rightarrow \mu$.

Problem 3: Let *B* be the unit ball centered at 0, $\rho \in C_c^{\infty}(B)$, $\rho \ge 0$, $\rho(-x) = \rho(x)$ for every $x \in \mathbb{R}^n$, and $\int_B \rho(x) dx = 1$. For $\varepsilon \in (0, 1)$, and $x \in \mathbb{R}^n$, let

$$\rho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \rho\left(\frac{x}{\varepsilon}\right)$$

If $\vec{\mu}$ is an \mathbb{R}^m -valued Radon measure on \mathbb{R}^n , we define $\vec{\mu} * \rho_{\varepsilon} : \mathbb{R}^n \rho \mathbb{R}^m$ as

$$\vec{\mu} * \rho_{\varepsilon}(x) = \int_{\mathbb{R}^n} \rho_{\varepsilon}(x-y) \, d\vec{\mu}(y)$$

Check that $\vec{\mu} * \rho_{\varepsilon} \in C^{\infty}(\mathbb{R}^n, \mathbb{R}^m)$ and

$$\nabla(\vec{\mu}*\rho_{\varepsilon})(x) = \vec{\mu}*\nabla\rho_{\varepsilon}(x) = \int_{\mathbb{R}^n} \nabla\rho_{\varepsilon}(x-y) \, d\vec{\mu}(y)$$

The ε -regularization $\vec{\mu_{\varepsilon}}$ of $\vec{\mu}$ is the \mathbb{R}^m -valued Radon measure on \mathbb{R}^n

$$\langle \vec{\mu_{\varepsilon}}, f \rangle = \int_{\mathbb{R}^n} f(x) (\vec{\mu} * \rho_{\varepsilon})(x) \, dx, \qquad f \in C_c(\mathbb{R}^n, \mathbb{R}^m).$$

1. Show that if $\vec{\mu}$ is a \mathbb{R}^m -valued Radon measure on \mathbb{R}^n , then as $\varepsilon \to 0$,

$$\vec{\mu_{\varepsilon}} \rightharpoonup \vec{\mu}, \qquad \mu_{\varepsilon} \rightharpoonup \mu.$$

2. Moreover. if $I_{\varepsilon}(E) = \{x \in \mathbb{R}^n : \operatorname{dist}(x, E) < \varepsilon\}$, then for every Borel set $E \subset \mathbb{R}^n$

$$\mu_{\varepsilon}(E) \le \mu(I_{\varepsilon}(E)).$$