PROBLEMS WEEK 6 \& 7

Problem 1:

Definition: Let $S \subset \mathbb{R}^{n}, m \leq n-1$, and $\epsilon \in\left(0, \frac{1}{4}\right)$. Assume that $0 \in S$. We say that S has the weak ϵ - approximation property in $B_{1}(0)$ if $\forall \rho \in(0,1]$ and for each $Q \in S \cap B_{1}(0)$ there exists an m plane $L(\rho, Q)$ containing Q and such that

$$
S \cap B_{\rho}(Q) \subset(\epsilon \rho)-\text { neighborhood of } L(\rho, Q) \cap B_{\rho}(Q) .
$$

Prove that there is a function $\beta:(0, \infty) \rightarrow(0, \infty)$ with $\lim _{t \rightarrow 0} \beta(t)=0$ such that if S satisfies the weak ϵ - approximation property in $B_{1}(0)$ then

$$
\mathcal{H}^{m+\beta(\epsilon)}\left(S \cap B_{1}(0)\right)=0 .
$$

Here \mathcal{H}^{s} denotes the s dimensional Hausdorff measure.

Problem 2: Let μ be a Borel measure on \mathbb{R}^{n}, and let $E \subset \mathbb{R}^{n}$ be a μ-measurable set with $0<\mu(E)<\infty$. Show that for $s>0$

- if

$$
\limsup _{r \rightarrow 0} \frac{\mu(B(x, r) \cap E)}{r^{s}}<c<\infty \quad \forall x \in E,
$$

then $\mathcal{H}^{s}(E)>0$,

- if

$$
\limsup _{r \rightarrow 0} \frac{\mu(B(x, r) \cap E)}{r^{s}}>c>0 \quad \forall x \in E,
$$

then $\mathcal{H}^{s}(E)<\infty$.

Problem 3: Let $E \subset \mathbb{R}^{n}$ satisfy $0<\mathcal{H}^{s}(E)<\infty$, for $0<s<1$. Show that the density

$$
\theta^{s}(E, x)=\lim _{r \rightarrow 0} \frac{\mathcal{H}^{s}(E \cap B(x, r))}{\omega_{s} r^{s}}
$$

fails to exit at almost every point of E (i.e. $\theta^{s}(E, x)$ exists at most in a subset of E of \mathcal{H}^{s} measure 0).

Remark: Marstrand proved this result in 1954. Later on he showed that if $s>0$, and $\theta^{s}(E, x)$ exists on a subset $F \subset E$ with $\mathcal{H}^{s}(F)>0$, then s must be an integer.

Problem 4: Let μ_{j}, μ be Radon measures on a metric space X. Assume that for each $x \in X$, and each $j=1,2, \ldots$

$$
\theta\left(\mu_{j}, x, r\right)=\frac{\mu_{j}\left(B_{r}(x)\right)}{\omega_{n} r^{n}}, \text { and } \theta(\mu, x, r)=\frac{\mu\left(B_{r}(x)\right)}{\omega_{n} r^{n}}
$$

are non-decreasing functions of r. Assume also that μ_{j} converges weakly to μ, and that $x_{j} \rightarrow x$ as $j \rightarrow \infty$. Prove that

$$
\limsup _{j \rightarrow \infty} \theta\left(\mu_{j}, x_{j}\right) \leq \theta(\mu, x)
$$

Here $\theta\left(\mu_{j}, x\right)=\lim _{r \rightarrow 0} \theta\left(\mu_{j}, x, r\right)$, and $\theta(\mu, x)=\lim _{r \rightarrow 0} \theta(\mu, x, r)$.
Remark: Note that in particular if $\mu_{j}=\mu$ for each j and $\theta(\mu, x, r)$ is a non-decreasing function of r, then the result above proves the upper semi-continuity of the density.

Problem 5: Let $M \subset \mathbb{R}^{m}, 0<n<m$, and $\mu=\mathcal{H}^{n} L M$. Assume that μ is a Radon measure, and that for each $x \in M \theta(\mu, x, r)=\frac{\mu\left(B_{r}(x)\right)}{\omega_{n} r^{n}}$ is a non-decreasing function of r. Let $\lambda_{j}>0$ be a sequence converging to 0 as $j \rightarrow \infty$. For $x \in M$, let

$$
M_{j}=\frac{1}{\lambda_{j}}(M-x)=\left\{y=\frac{1}{\lambda_{j}}(z-x): z \in M\right\}
$$

and

$$
\mu_{j}=\mathcal{H}^{n}\left\llcorner\left(M_{j} \cap B_{1}(0)\right) .\right.
$$

Show that for each j, μ_{j} is a Radon measure. Prove that there exists a subsequence $\mu_{j_{k}}$ of μ_{j} that converges weakly to a Radon measure ν, and that

$$
\begin{equation*}
\theta(\mu, x)=\theta(\nu, 0) \tag{*}
\end{equation*}
$$

Note that in particular $(*)$ asserts that $\lim _{r \rightarrow 0} \theta(\nu, 0, r)$ exits.
Remark: The situation described in Problem 5 occurs when M is a minimal n-dimensional submanifold of \mathbb{R}^{m}. In that case $\nu=\mathcal{H}^{n} L C$, where C is a cone of vertex $0 . C$ is a tangent cone of M at x. As defined this cone depends on the subsequence $\lambda_{j_{k}}$. One of the big open questions in the subject is whether there is a unique tangent cone. Moreover the set $\{x \in M: \theta(\mu, x)=1\}$ is open and smooth. The set $\{x \in M: \theta(\mu, x)>1\}$ is a closed set of Hausdorff dimension at most $n-1$.

