Functions of bounded variation of sets of finite perimeter
Definitions: $U \subset \mathbb{R}^{n}$ open.
i) A function $f \in L(u)$ has bounded variation in $u$ if

$$
\sup \left\{\int_{u} t \operatorname{div} \phi d x: \phi \in C_{c}^{\prime}\left(u, \mathbb{R}^{n}\right):|\phi| \leq 1\right\}<\infty
$$

we curite $\quad f \in B V(u)$
ii) $E \subset \mathbb{R}^{n}$ measurable has finite perimeter in $u$ if $X_{E} \in \operatorname{BV}(u)$
iii) $f \in L_{\text {bloc }}^{\prime}(U)$ has locally bounded variation if for each open set $v \subset c u$ ( $v$ compactly contained in $u$ )

$$
\begin{gathered}
\sup \left\{\int_{V} f \operatorname{div} \phi d x: \phi \in C_{c}^{\prime}\left(v, \mathbb{R}^{n}\right):|\phi| \leq 1\right\}<\infty \\
f \in B V_{l o c}(u)
\end{gathered}
$$

iv) $E \subset \mathbb{R}^{n}$ measurable has locally finite perimeter in $U$ if $X_{E} \in B V_{l o c}(U)$.

Theorem (Structure theorem for $B V_{l o c}$ functions) Assume $f \in B V_{l o c}(U)$, there exist a Radon measure $\mu$ on $U$ and $\sigma: U \rightarrow \mathbb{R}^{n} \mu$. measurable function $s t$.
(i) $|\sigma(x)|=1 \quad \mu a \cdot e$
(ii) $\quad \forall \phi \in c_{c}^{\prime}\left(u, \mathbb{R}^{n}\right)$

$$
\int_{u} f \operatorname{div} \phi d x=-\int_{u} \phi \cdot \sigma d \mu
$$

Remark: The structure theorem asserts that the weak first partial derivatives of BV functions are Radon measures.

Notation: : If $f \in B V_{l o x}(u), \mu=\|D f\| \quad f \quad[D f]=\|D f\| L \sigma$ i.e $\phi \in C_{c}^{\prime}\left(u, \mathbb{R}^{n}\right)$

$$
\int_{u} f \operatorname{div} \phi d x=-\int_{u} \phi \cdot \sigma d\|D f\|=-\int_{u} \phi \cdot d[D f]
$$

(2) $E \subset \mathbb{R}^{n}$ set of locally finite perimeter of $X_{E} \in B V_{\text {lac }}(u)$ $\left\|D X_{E}\right\|=\|\partial E\|$ \& $\sigma=-\nu_{E}$ this $\forall \phi \in C_{c}^{\prime}\left(u, \mathbb{R}^{n}\right)$

$$
\int_{\bar{E}} \operatorname{div} \varphi d x=\int_{\bar{E}} \Phi \cdot \nu_{E} d\|\partial E\|
$$

$\|\partial E\|(U)$ perimeter of $E$ in $U$

$$
\begin{aligned}
& \mu_{E}=v_{E} d\|\partial E\| \\
& \left|\mu_{E}\right|=\|\partial E\|
\end{aligned}
$$

(4) Recall from Riesz Representation Theorem; if $f, X_{E} \in B V_{l o c}(u)$ $v \subset C U$, Vopen

$$
\begin{aligned}
& \|D f\|(v)=\sup \left\{\int_{V} f \operatorname{div} \phi: \phi \in C_{c}^{\prime}\left(v, \mathbb{R}^{n}\right):|\phi| \leq 1\right\} \\
& \left|\mu_{E}\right|(v)=\sup \left\{\int_{E} \operatorname{div} \phi: \phi \in C_{c}^{\prime}\left(v, \mathbb{R}^{n}\right):|\phi| \leq 1\right\}
\end{aligned}
$$

Example: 1. $C^{1}$ domain with $x^{n-1}(\partial E)<\infty$ set of finite

$$
\begin{aligned}
& \text { perimeter } \\
& \int_{E} \operatorname{div} \phi=\int_{\partial E} \phi \cdot V_{E} d x^{n-1} \\
& \mu_{E}=V_{E} d X I^{n-1} L \partial E
\end{aligned}
$$

Theorem (Isoperimetric inequalities)
Let $E \subset \mathbb{R}^{n}$ bounded set of finite perimeter. Then
i) $\left(L^{n}(E)\right)^{n-1 / n} \leq C_{1}\left|\mu_{E}\right|\left(\mathbb{R}^{n}\right)$ (isoperimetric inequality)
ii) For $B(x, r) \subset \mathbb{R}^{n} \quad$ (relative isoperimetric inequality) $\min \left\{L^{n}(B(x, r) \cap E) ; L^{n}(B(x, r) \backslash E)\right\}^{n-1 / n} \leqslant 2 C_{2}\left|\mu_{\bar{\tau}}\right|(B(x, r))$

Remark:
$E \subset \mathbb{R}^{n}$ set of locally finite perimeter it $\forall Y \in C_{c}^{\prime}\left(\mathbb{R}^{n}\right)$

$$
\int_{E} \nabla \varphi d x=\int_{\mathbb{R}^{n}} \varphi d \mu_{E}
$$

Theorem (Lower sermi-continuety of perimeter)
Suppose $\left\{E_{k}\right\}$ seq of sets of l.f.p $\& E \subset \mathbb{R}^{n}$ st for each compact set $k \subset \subset \mathbb{R}^{n}$

$$
\begin{aligned}
& \lim _{j \rightarrow \infty}\left|\left(E_{j} \Delta E\right) \cap k\right|=0 \\
& \begin{array}{l}
\limsup _{j \rightarrow \infty}\left|\mu_{E_{j}}\right|(k)<\infty
\end{array} \Leftrightarrow \int_{k}\left|X_{E_{j}}-X_{E}\right| d x \rightarrow 0 \\
& j \rightarrow \infty
\end{aligned}
$$

then $E$ is a set of l.f.p. in $\mathbb{R}^{n}$

$$
\mu_{E_{j}} \rightarrow \mu_{E}
$$

for every open set $u \subset \mathbb{R}^{n}$

$$
\left|\mu_{E}\right|(u) \leq \liminf _{j \rightarrow \infty}\left|\mu_{E_{j}}\right|(u)
$$

Proposition: If $E \subset \mathbb{R}^{n}$ set of l.f.p. in $\mathbb{R}^{n}$ then

$$
\sup \left|\mu_{E}\right|=\left\{x \in \mathbb{R}^{n}: 0<|E \cap B(x, r)|<\omega_{n} r^{n}, \forall r>0\right\} C \partial E
$$

Moreover there exists a Bored set $F$ sit

$$
|E \underline{\Delta} F|=0 \quad \& \quad \text { opt }|\mu F|=\partial F
$$

Theorem: If $R>0$ \& $\left\{E_{k}\right\}$ sets of finite perimeter in $\pi^{n}$ st
(i) $\sup _{k \geqslant 1}\left|\mu \bar{E}_{k}\right|\left(\mathbb{R}^{n}\right)<\infty \quad$ \& (ii) $\quad E_{k} \subset B_{R}$

Then there exist a subsequence $\left\{E_{k^{\prime}}\right\}$ and a set $E$ of $f . p$. st.
$E_{k^{\prime}} \rightarrow E$ in the sense that $X_{E_{k}^{\prime}} \rightarrow X_{E} ; E \subset L_{R}$ and

$$
\mu_{E_{k}^{\prime}} \rightarrow \mu_{E}
$$

Notation $P(E)=\left|\mu_{E}\right|\left(\mathbb{R}^{n}\right)$ perimeter of $E$

Existence of minimizors in geometuc variational problems
DIRECT METHOD OF CaLCuLus OF variations I In the class of sets of locally finite perimeter)
(1) Prove compactness of an arbitrary minimizing sequence.
(2) Show minimanility of the limit via lower semi-continuily.

Plateau type problems:
Classical Plateau problem: minimize area among surfaces with fixed boundary: given an open set $A \subset \mathbb{R}^{n}$ and $E \delta \subset \mathbb{R}^{n}$ set of finite perimeter, the Plateau problem in A will boundary data Es consists in minimizing $P(E)$ aonong all sets of $f$ - $P$. that coincide with Es outside $A$

Proposition: (Existence of minimizars for the Plateau type problem)
Let $A \subset \mathbb{R}^{n}$ open bounded set \& $E_{0}$ a set of finite perimeter in $\mathbb{R}^{n}$. There exists a set of finite perimeter $E$ st $E \backslash A=E_{0} \backslash A$ and

$$
P(E) \leq P(F) \quad \text { for every } F \text { s.t } F \backslash A=E_{0} \backslash A
$$

$E$ is a minimizer for the variational problem

$$
\gamma\left(A, E_{0}\right)=\inf \left\{P(F): F \backslash A=E_{0} \backslash A\right\}
$$

Relative isoperimetric problems
Given an open set $A \subset \mathbb{R}^{n}$ the relative isoperimetric problem in A amounts to the volume constrained minimization of the relalue perimeter in $A$
(*) $\alpha(A, m)=\inf \left\{\left|\mu_{E}\right|(A)=P(E ; A): E C A: \quad|E|=m\right\}$ where $m \in(0,|A|)$

A minimizer in (*) normalized to obtain opt $\left|\mu_{E}\right|=\partial E$ is relate isoperimetric set in $A$.

Proposition (Existence of isoperimetric sets)
If $A$ is an open bounded set of finite perimeter, $m \in(0,|A|)$ then there exists a set of finite perimeter E CA such that $P(E: A)=\alpha(A, m)$ \& $|E|=m$. In particular, $E$ is a minimizer in the variational problem $(*)$. revicur

Proposition: (Local perimeter bound on volume)
If $n \geqslant 2, t \in(0,1), x \in \mathbb{R}^{n}$ and $r>0$ then there exists a constant $K(n, t)>0$ such that

$$
P(E: B(x, r)) \geqslant C(n, t)|E \cap B(x, r)|^{n-1 / n}
$$

for every set of locally finite perimeter $E$ such that

$$
|E \cap B(x, r)| \leq t|B(x, r)|
$$

Pf: Recall the relative isoperimetric inequality

$$
\begin{aligned}
& P\left(E: B(x, r) \left\lvert\, \geqslant C(n) \min \{|E \cap B(x, r)| ; B(x, r)|E|\}^{\frac{n-1}{n}}\right.\right. \\
& \sin e \quad|E \cap B(x, r)| \leqslant t|B(x, r)| \\
& \left.|B(x, r)| E|\geqslant(1-t)| B(x, r)\left|\geqslant \frac{1-t}{t}\right| E \cap B(x, r) \right\rvert\, \\
& P(E: B(x, r)) \geqslant C(n) \min \{1,1-t / t\}^{n-1 / n}|E \cap B(x, r)|^{n-1 / n}
\end{aligned}
$$

