TOPICS IN GEOMETRIC MEASURE THEORY

Week 3

- Read Chapter 15 in Maggi.
- Problem 1 (Intersection with half spaces): If $H_{t}=\left\{x \in \mathbb{R}^{n}:\langle x, e\rangle<t\right\}$ for some $e \in \mathbb{S}^{n-1}, t \in \mathbb{R}$, and E a set of finite perimeter in \mathbb{R}^{n}, then $E \cap H_{t}$ is a set of finite perimeter in \mathbb{R}^{n}. Show that for a.e. $t \in \mathbb{R}$

$$
\mu_{E \cap H_{t}}=\mu_{E}\left\llcorner H_{t}+e \mathcal{H}^{n-1}\left\llcorner\left(E \cap \partial H_{t}\right) .\right.\right.
$$

Note that for a.e. $t \in \mathbb{R}$

$$
\mathcal{H}^{n-1}\left(E \cap \partial H_{t}\right) \leq \mu_{E}\left(H_{t}\right), \quad\left|\mu_{E \cap H_{t}}\right|\left(\mathbb{R}^{n}\right) \leq\left|\mu_{E}\right|\left(\mathbb{R}^{n}\right) .
$$

- Problem 2: If $E \subset \mathbb{R}^{n}$ is a set of locally finite perimeter and $x \in \partial^{*} E$ then

$$
\nu_{E}(x)=\lim _{r \rightarrow 0^{+}} \frac{1}{\omega_{n-1} r^{n-1}} \int_{B(x, r) \cap \partial^{*} E} \nu_{E} d \mathcal{H}^{n-1} .
$$

- Read the introduction to Chapter 16 in Maggi.
- Read section 16.1 in Maggi.

