Exponentials, Trig Functions, and Complex Power Series

A series ) ¢, of complex numbers ¢, = ay + ib; (ax and by real) is said to converge if the
corresponding series of real and imaginary parts, > aj and »_ by, both converge. In this case
the sum of the series is the obvious thing:

cr = ay + by == chZZak-i-iZbk.

Recall that the absolute value of a complex number ¢ = a+ib is defined to be |c| = Va? + b2,
i.e., the distance from ¢ to the origin in the complex plane. Since |a| < v/a? + b and

1b] < va?+ b2, we see that

Z |ck| converges — Z lag| and Z |bg| converge
= Z ay, and Z by converge — Z Cr converges.
Thus the fact that an absolutely convergent series converges continues to hold for complex
series.
In particular, the series Y ;° 2" /n! converges absolutely for any complex number z, by the

ratio test (since |2"| = |z|"). This series equals e* when z is real, and we use it to define e*
for z complex:
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The main step in dispelling the mystery of this complex exponential function is showing that

it still obeys the basic law of exponents.

Proposition. For any complex numbers z and w,

Proof. We have

P = wh = Awk
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We sum the double series on the right by first adding up the terms where j + k is a fixed
number n (that is, j runs from 0 to n and £ = n — j), and then summing over all possible n
(that is, n =0,1,2,...):



By the binomial theorem, the sum over j gives (z + w)", so

‘e’ = i M = e*t, [ ]
n!

n=0

(Actually, these manipulations with double series need some justification. I can give you a
reference for the full proof if you’re interested.)

Now, if 2 = z + iy, by (2) we have ¢* = e*e”. We know what e* is; what about e%? Well
since

- An+2 4n+3 __
) - _13 ? - =

-4n 1’i4n+1 =1

=1, =—ii"=1,...,i" =

from (1) we obtain

or in other words,
e = cosy + isiny. (3)

This marvelous formula, due to Euler, reveals the deep connection between exponential and
trigonometric functions.
Replacing y by —y, we see that

e = cos(—y) + isin(—y) = cosy — isiny. (4)

Adding and subtracting (3) and (4), we obtain formulas for the trig functions in terms of
exponentials:

e +e ™ . e —e ™
_— siny = —————
2 7 2i

(5)

cosy =
These equations explain the formal similarity between trig and hyperbolic functions:
cosh(iy) = cosy, sinh(iy) = isiny.
They also lead to an easy derivation of the addition formulas for sine and cosine:

cos(a £b) = (cosa)(cosb) F (sina)(sin b), (6)
sin(a+b) = (sina)(cosb) £ (cosa)(sin b.

Namely, use (5) to express the factors on the right in terms of e** and e*®  multiply out

according to (2), and simplify to obtain the expressions on the left.



Trig Functions Done Right: The high-school definitions of sine and cosine are unaccept-
ably vague because they involve measuring of an angle without giving a precise algorithm
for doing so. We are now in a position to remedy this defect. Namely, we take the Taylor
expansions

© (—1)k.’l?2k ) e (—1)k.’l?2k+1
COS.T:Zi., Slnﬁz;m, (7)

or equivalently the formulas (5), as a definition of sine and cosine. This leads immediately
to the differential formulas

cos' = —sin, sin’ = cos (8)

and also to the addition formulas (6), as explained above. From these identities, all the other
properties of trig functions are easy to derive, for example,

cos’z +sin® x = cos(z — ) = cos0 = 1. 9)

The one thing that is not so obvious is the connections of cos and sin with the number =,
and in particular their periodicity properties. These can be derived as follows. First, observe
that the series Y o°(—1)¥2% /(2k)! for cos2 is an alternating series whose terms decrease in
size beginning with k£ = 1; so by the alternating series test,
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cos2 =1— — = —1 with error less than — = —,

2! 4! 3
and in particular cos2 < 0. Since cos0 =1 > 0, by the intermediate value theorem there is
at least one number a € (0, 2) such that cosa = 0. Call the smallest such number [of course
it turns out that there is only one] %’/T. (This is to be taken as a definition of w, from which
the usual one as the ratio of the circumference to the diameter of a circle can then be derived
by calculus.) Now cosz > 0 for z € (0, 37), so by (8) sinz is increasing for z € (0, 37). Also
sin0 = 0, so sin(37) > 0, and by (9), sin*(37) = 1 — cos?(37) = 1. Conclusion: sin(37) = 1.
Now use the addition formulas:

1 1

cos(x + §7r) = (cosz)(cos §7r) — (sin z)(sin §7r) =0-cosx —1-sinx = —sinuz,
1 1

sin(z + §7r) = (sinz)(cos §7r) + (cos z)(sin §7r) =0-sinz +1-cosz = cosz.

Iterating these identities gives

. 1
cos(x +m) = cos(z+ 5T+ §7r) = —sin(z + §7T) = —cos z,

. . 1 1 1 )
sin(x +7) = sin(z + 57 + §7r) = cos(z + §7r) = —sinz,



and hence

cos(x + 2m) = cos(x + 7 + ) = cos z, sin(z 4+ 27) = sin(z + 7 + 7) = sin z.

Logarithms and Powers of Complex Numbers: If z is a nonzero complex number, a

logarithm of z is a complex number w such that e = z. Logarithms can easily be found by

writing z = z + 4y in polar coordinates (x = rcosf, y = rsinf, where r = |z| = /22 + y?):
2z =r(cosf + isinf) = re'? = 8T,

so logr + 10 is a logarithm of z. We say a logarithm rather than the logarithm because the

angle 6 is only determined up to multiples of 27, so each z has infinitely many logarithms.
If we fix a logarithm of z, call it log z, we can then define complex powers of z by

20 — ealogz’
the quantity on the right being defined by (1). Different choices of logz will usually yield
different answers. If ¢ is an integer there is no ambiguity; if a = p/q with p, ¢ integers then
there are ¢ possibilities (each nonzero complex number has ¢ distinct gth roots); and if a
is irrational there are infinitely many. But how to sort this all out sensibly is a subject for
another course . ..

De Moivre’s formula: Let

z = r(cos f + sin @) = re®

where r = |z| then .
2" = "™ = r"(cosnf + sin nf).



